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Abstract
Subgrid data from earth system models are a powerful, yet underutilized, data 
resource for investigating the climatic impacts of land use and land cover change 
(LULCC). In this paper, we describe a global dataset on subgrid land surface cli-
mate variables produced by the Community Earth System Model in a fully cou-
pled mode. The simulation was conducted at a 0.9° × 1.25° resolution under the 
Representative Concentration Pathway (RCP) 8.5 scenario from 2015 to 2100. 
Data are archived for eight subgrid tiles (urban, rural, tree, grass, shrub, bare soil, 
crop and lake) and include variables on the physical state, surface energy fluxes, 
runoff and atmospheric forcing conditions. Archival intervals are monthly, daily 
and hourly. Meta data on land surface parameters are also available. The data files 
are stored in NetCDF-4 (Network Common Data Form, version 4) format and 
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1   |   INTRODUCTION

Land use and land cover change (LULCC), such as defor-
estation and urbanization, alters local and regional cli-
mates via biophysical mechanisms (Alkama & Cescatti, 
2016; Lawrence et al., 2012; Mahmood et al., 2014; Pitman 
et al., 2009; Zhao et al., 2014). The biophysical process 
affects energy and water cycles via changing surface ra-
diative properties, heat storage, evapotranspiration and 
roughness (Mahmood et al., 2014). It can either amplify 
or dampen the temperature response to increasing green-
house gas concentrations (Boysen et al., 2020; Liao et al., 
2020). A good understanding of the biophysical impact of 
LULCC is critical to develop strategies for heat stress miti-
gation and sustainable land use.

The biophysical impact of LULCC has been investi-
gated via observations and climate modelling (Boysen 
et al., 2020; Feddema et al., 2005; Lee et al., 2011). 
Observational studies utilize data from in situ observa-
tion and satellite remote sensing to quantify the impacts 
of LULCC based on a space-for-time analogy (Duveiller 
et al., 2018; Lee et al., 2011; Schultz et al., 2017; Tang et al., 
2018; Zhang et al., 2014). They focus on the physical state 
differences between two contrasting systems located in 
the vicinity of each other, such as urban versus rural (Scott 
et al., 2018) and forest versus open land (Zhang et al., 
2014). It is assumed that they share the same atmospheric 
background and that differences in their temperatures 
and energy fluxes are solely attributed to their contrasting 
biophysical properties. Most modelling studies are based 
on two sets of simulations with different land cover under 
the same model configuration (Davin et al., 2020; Findell 
et al., 2017; Lawrence & Chase, 2010). For instance, the 
biophysical effect of deforestation can be evaluated by 
one simulation with intact vegetation cover and another 
with forest removed. These sensitivity experiments are 
computationally costly. A less expensive modelling ap-
proach takes advantage of the mosaic strategy of many 
land models, in which the land surface heterogeneity is 
represented as a mosaic of subgrid land tiles. The impact 
of LULCC is quantified by the physical state differences 

among different land tiles in a grid cell (Malyshev et al., 
2015; Oleson et al., 2010). Within one grid cell, all land 
tiles receive the same atmospheric forcing. The subgrid 
variabilities allow us to isolate the local climate changes 
due to LULCC forcing from the changes induced by atmo-
spheric climate variability.

The subgrid strategy has been employed to investigate 
how the local climate responds to urbanization and de-
forestation. The temperature response to urbanization, or 
the urban heat island (UHI) intensity, is the temperature 
difference between the urban and nonurban land tiles in 
a grid cell (Oleson et al., 2011). In deforestation studies, 
the deforestation signal is computed as the temperature 
difference between the forest and nonforest land tiles 
(Malyshev et al., 2015). These studies demonstrate that 
the subgrid information produced by earth system models 
(ESMs) can provide valuable insights for LULCC studies.

Traditionally, climate model data are archived as grid-
mean values. Subgrid data remain underutilized because 
they do not exist in the Coupled Model Intercomparison 
Project (CMIP) data depositories. In order to “retrieve” 
the data, users have to rerun a land surface model with 
the atmospheric forcing data saved from old coupled sim-
ulations (e.g. Zhao et al., 2017). Such retrieval tasks are 
daunting, requiring supercomputing facilities and skills in 
climate modelling.

The main objective of this paper is to describe a sub-
grid dataset produced by the earth system model – CESM 
(Community Earth System Model) – for the period from 
2015 to 2100 under a high-emission climate change sce-
nario. The key biophysical variables (temperature, hu-
midity, energy fluxes, atmospheric forcing and runoff 
variables) are output at the grid and subgrid levels at 
monthly, daily and hourly intervals. The subgrid land 
tiles include urban, rural, tree, grass, shrub, bare soil, crop 
and lake. Besides, the surface data, such as the fraction 
of land-use type, lake depth and leaf area index, are also 
archived to provide key surface information to aid the 
users. We anticipate that this dataset will become a valu-
able resource for characterizing local climate changes due 
to LULCC.

the meta data follow the latest Coupled Model Intercomparison Project phase 6 
standards. We anticipate that this dataset will become a useful resource for char-
acterizing local climate changes due to LULCC. This dataset can be downloaded 
from the Harvard Dataverse (https://doi.org/10.7910/DVN/HUXAH6).

K E Y W O R D S

biophysical impacts, climate model, individual soil column, land use and land cover change, 
subgrid data
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2   |   MODEL AND EXPERIMENT

2.1  |  Model description

The CESM Version 2 (CESM2) is a fully coupled global cli-
mate model (Danabasoglu et al., 2020). The land compo-
nent of CESM2 is the Community Land Model Version 5 
(CLM5; Lawrence et al., 2019). In CLM5, the land surface 
heterogeneity is represented as a nested subgrid hierarchy 
(Lawrence et al., 2019). Each grid cell is represented by up 
to five land units (vegetated, crop, lake, glacier and urban). 
Each land unit can have different number of columns to 
capture the state variability in the soil and snow. Each veg-
etated or crop column consists of at least one plant func-
tional type (PFT) or crop functional type (CFT). All subgrid 
units in a grid cell receive the same atmospheric forcing, 
and their physical states are computed separately at the sub-
grid level and are area-weighted to obtain grid-cell results.

2.2  |  Soil column configuration

By default, all PFTs in a grid cell share a single soil column 
and compete for water and nutrients. There are no varia-
tions of soil moisture and nitrogen conditions among the 
PFTs in a land unit. An alternative configuration is inde-
pendent soil column whereby each PFT in the vegetated 
land unit has its own soil column. The individual soil col-
umn scheme is preferable for studying the climatic impact 
of LULCC (Meier et al., 2018; Schultz et al., 2016), and was 
used in our simulation.

2.3  |  Experimental design

We conducted a fully coupled global climate simulation 
using CESM Version 2.1.2 with a 0.9° × 1.25° grid reso-
lution. The atmosphere, ocean and land components are 
Community Atmosphere Model version 6, Parallel Ocean 
Program version 2 and CLM5. The simulation was driven 
by the future climate forcing under the Representative 
Concentration Pathway (RCP) 8.5 scenario. The vegeta-
tion phenology was prescribed by satellite observations.

The surface data were fixed at present-day level in this 
simulation. In CLM5, the default present-day surface data 
use the global urban extent and urban properties at 2000 de-
veloped by Jackson et al. (2010) (hereafter J2010). Here, the 
urban extent in J2010 was replaced with the extent of 2020 
produced by He et al. (2021) (hereafter He2021; Supporting 
Information). He et al. (2021) projected the global urban 
land from 2020 to 2070 under five Shared Socioeconomic 
Pathways (SSPs) at a 1-km resolution as binary data (urban 
or nonurban). We only used the urban land cover in 2020 

under the SSP5 scenario from He2021 to generate our new 
surface data. The reason for using He2021 is that we plan to 
carry out additional experiments with future urban extent 
provided by He2021. We wish to use the urban land cover 
from the same data source for consistency among this sim-
ulation and future experiments. The He2021 dataset is in 
broad agreement, in terms of total urban area and urban 
area growth rate, with previous urban land cover projec-
tions (Figure  S2; Chen et al., 2020; Gao & O’Neill, 2020; 
Huang et al., 2021; Li et al., 2019). The urban properties, 
including morphological, thermal and radiative character-
istics, prescribed for the new surface dataset are the same 
with those in the J2010 dataset. Besides, all other land use 
is held constant at 2015 levels.

The key variables of the surface data are archived as 
meta data (Table  S1). Examples include the fraction of 
land-use type, urban canyon height-to-width ratio, lake 
depth and leaf area index. Figure 1 displays the fraction 
of urban, lake, tree (including all tree PFTs) and grass (in-
cluding all grass PFTs) in the surface dataset.

A 60-year spin-up was conducted offline with the in-
dividual soil column configuration in order to achieve 
an equilibrium land condition. The spin-up was initiated 
with a start file which has been spun up with the shared 
column configuration for at least 800 years using the stan-
dard CLM spin-up protocol (Lawrence et al., 2019). The 
land air temperature, vapor pressure and energy fluxes 
adjusted quickly in the first year after the configuration 
change (Figure S3). The soil moisture also reached a sta-
ble condition after 40  years of simulation. The annual 
mean ground heat flux of the tree land tile differed by 
0.1–5 W m−2 from zero in year 1 of the spin-up and ap-
proached near-zero values (<0.5 W m−2 in magnitude) at 
low and mid latitudes in year 60 (Figure S4). Similarly, the 
annual mean ground heat flux at low and mid latitudes 
also converged to zero for grass and other PTFs. In high-
latitude regions (north of 44°N and south of 50°S), these 
subgrid ground heat fluxes were nonzero because of en-
ergy consumption by snowmelt.

Our simulation started with the spun-up initial land 
condition and model integration continued from 2015 to 
2100. The key biophysical variables at the grid and subgrid 
levels were archived at monthly and daily intervals during 
the entire simulation and at hourly intervals during two 
5-year periods (2019–2023 and 2096–2100).

3   |   DATA DESCRIPTION

3.1  |  Data preparation

Table 1 displays a list of output variables. All variables 
are archived at the subgrid level except the atmospheric 
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4  |      ZHANG et al.

forcing variables because all subgrid units within a 
grid share the same atmospheric forcing. Monthly and 
daily data are available from 2015 to 2100 except run-
off variables which are only available at monthly inter-
vals. Hourly data are available during 2019–2023 and 
2096–2100.

The model outputs grid, land unit and PFT level re-
sults. We combined these outputs as area-weighted means 
for eight overlapping subgrid land tiles: urban, rural, 
tree, grass, shrub, bare soil, crop and lake (Figure 2). The 
urban tile is the area-weighted result of three urban den-
sity classes, and the lake tile is the result of the lake land 
unit. The rural tile is the area-weighted results of all the 
natural vegetation PFTs, crop CFTs and the bare soil PFT. 
Similarly, the tree, grass, shrub and crop tiles are the area-
weighted results of their respective PFTs.

The radiative surface temperature (Ts) is not a stan-
dard variable in this archive. It can be computed from the 
surface upwelling longwave radiation flux and surface 
emissivity (Supporting Information). Other diagnostic in-
formation can also be derived from the archived variables. 
For example, lake ice period can be diagnosed with lake 
surface albedo which is the ratio of rsus to rsds (Table 1). 

An albedo greater than 0.2 usually indicates ice cover 
(Oke, 1987; Subin et al., 2012).

The data are archived in the NetCDF-4 (Network 
Common Data Form, version 4) format with one variable 
stored per file. The meta data follow the CMIP6 standards 
built on the CF convention. All hourly data are stamped 
with UTC time. The naming convention for the data files 
is b.e21.SSP585UC_IndividualSoil_ + short name + grid/
subgrid land tile + output frequency + time period.nc. As 
an example, file ‘b.e21.SSP585UC_IndividualSoil_tas_
Grid_Daily_2015-2019.nc’ contains the grid mean 2-m air 
temperature daily data from 2015 to 2019.

3.2  |  Data and code availability

This dataset can be freely downloaded from the Harvard 
Dataverse (download page: https://doi.org/10.7910/
DVN/HUXAH6; Zhang et al., 2021). The total file size is 
484 GB. The monthly files are 6.2 GB, daily files 164 GB 
and hourly files 313 GB in size. The surface data with 
key variables (Table S1), 386 MB in size, are also avail-
able for download. We provide sample python scripts at 

F I G U R E  1   Spatial distribution of the percent fraction of (a) urban, (b) lake, (c) tree and (d) grass in the new present-day surface data. 
Tree and grass fractions include all tree and grass PFTs in a grid cell respectively
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      |  5ZHANG et al.

the download page for reading the data, generating sea-
sonal and diurnal variation plots, and calculating urban 
emissivity. The raw outputs of all variables at the PFT, 
the land unit and the grid level, about 4.4 TB in size, is 
available upon request.

4   |   DATA OVERVIEW

In the subgrid framework, the temporal changes induced 
by LULCC are approximated by the spatial variations 

between a base land tile and a perturbed land tile. For 
instance, the effects of deforestation can be quantified 
by differences in the physical states between the grass 
(perturbed state) and the tree (base state) land tile. To in-
vestigate the impact of urbanization, the urban and rural 
tiles are the perturbed state and base state respectively. 
Similarly, the lake climatic effect can be examined by 
comparing the lake tile with the nonlake (rural) tile, using 
grids that contain both the lake and nonlake tiles.

Here, we examine the seasonal variations of key vari-
ables and show the lake effect across latitudes. In the 

T A B L E  1   A list of output variables. Symbol × indicates data availability

Variable Short name Unit Grid Subgrid

Frequency

Monthly Daily Hourly

2-m air temperature tas K × × × × ×

2-m vapor pressure huv Pa × × × × ×

2-m wet-bulb temperature wba °C × × × × ×

Daily maximum 2-m air temperature tasmax K × × × ×

Daily minimum 2-m air temperature tasmin K × × × ×

Daily maximum 2-m wet-bulb 
temperature

wbamax °C × × × ×

Daily minimum 2-m wet-bulb 
temperature

wbamin °C × × × ×

Latent heat flux hfls W m-2 × × × × ×

Sensible heat flux hfss W m-2 × × × × ×

Ground heat flux hfdsl W m-2 × × × × ×

Waste heat from air conditioning (AC) 
and space heating

fwaste W m-2 × × × × ×

Heat removed by AC fahac W m-2 × × × × ×

Heat generated by space heating fahsh W m-2 × × × × ×

Surface upwelling shortwave radiation rsus W m-2 × × × × ×

Surface upwelling longwave radiation rlus W m-2 × × × × ×

Surface downwelling shortwave 
radiation

rsds W m-2 × × × ×

Surface downwelling longwave 
radiation

rlds W m-2 × × × ×

Precipitation pr kg m-2 s-1 × × × ×

Atmospheric air pressure at forcing 
height

fps Pa × × × ×

Atmospheric air temperature at 
forcing height

fta K × × × ×

Atmospheric air potential temperature 
at forcing height

ftheta K × × × ×

Atmospheric specific humidity at 
forcing height

fhus kg kg-1 × × × ×

10-m wind speed sfcWind m s-1 × × × ×

Total runoff mrro kg m-2 s-1 × × ×

Total surface runoff sfcmrro kg m-2 s-1 × × ×

Note: Monthly and daily data are available for the whole simulation period and hourly data are available during 2019–2023 and 2096–2100.
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6  |      ZHANG et al.

Supporting Information, we present the diurnal cycles 
of these variables and an example to investigate the im-
pact of urbanization on extreme temperatures by com-
paring the distributions of air temperature of the urban 
and rural tiles. All application examples use the data 
in the summer season, JJA (June–July–August) of the 
Northern Hemisphere and DJF (December–January–
February) of the Southern Hemisphere. These results 
demonstrate the potential of this dataset to advance 
LULCC studies. Other potential applications include 
but not limited to attribution analysis on LULCC signals 
(Liao et al., 2020; Zhao et al., 2014) and the LULCC ef-
fect on runoff.

4.1  |  Seasonal variations

Figure 3 shows the seasonal variations of screen-height (2-
m) air temperature (tas), vapor pressure (huv) and surface 
Bowen ratio for three pairs of land tiles in the Northern 
Hemisphere during 2015–2044. In each plot, only grids that 
contain both tiles of interest are included. In Figure 3a–c, 
urban land tiles generally have higher air temperature, 
lower vapor pressure and higher Bowen ratio than rural 
land tiles. The annual urban-versus-rural temperature 
difference (0.59–0.92°C) is slightly lower than the global 
mean value (1.10°C) reported by Oleson et al. (2011), 
who used an earlier CLM version with overestimated 

F I G U R E  2   Schematic diagram 
illustrating the compositions of subgrid 
land tiles from subgrid patches

F I G U R E  3   Seasonal variations of screen-height air temperature (tas), vapor pressure (huv) and Bowen ratio for urban and rural tiles 
(top row), grass and tree tiles (middle row) and lake and nonlake (rural) tiles (bottom row) in the Northern Hemisphere during 2015–2044. 
In each plot, the actual quantities are given by the left y-axis, and the difference between the two tiles is given by the right y-axis
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      |  7ZHANG et al.

anthropogenic heat flux. The global temperature and 
vapor pressure contrasts between tree and grass tiles are 
minor, their differences being −0.15 to 0.17°C and −0.01 
to 0.05 hPa respectively (Figure 3d–e). The higher Bowen 
ratio at tree tiles than the grass tiles indicates that the tree 
land cover on average partitions more available energy 
into sensible heat flux than grass (Figure 3f). These Bowen 
ratio contrasts are consistent with previous observational 
studies (Burakowski et al., 2018; Yamazaki et al., 2004). 
As for the lake effect, Figure 3g indicates that lakes have 
a slightly higher monthly air temperature than nonlake 
(rural) tiles from July to February and lower temperature 
during March to June. Due to higher lake evaporation 
rates, the vapor pressure is higher and the Bowen ratio is 
lower at lake tiles than at nonlake tiles (Figure 3h–i).

Figure  4 displays seasonal variations of the energy 
fluxes of the same three pairs of land tiles in the Northern 
Hemisphere. Note that the ground heat flux is defined as 
the heat flux into ground, buildings or lake but exclud-
ing the anthropogenic heat flux (hfdsl  –  fahac  +  fahsh; 
Supporting Information). The net radiation flux 
(rsds + rlds – rsus – rlus) and the ground heat flux are posi-
tive if the energy is going towards the surface, and a positive 
sensible heat flux (hfss) or latent heat flux (hfls) indicates 
that the flux is going upward towards the atmosphere. The 
anthropogenic heat flux is the sum of waste heat from AC 

and heating appliances (fwaste) and the heat generated 
by space heating (fahsh). Globally, urbanization increases 
the sensible heat flux and decreases the latent heat flux, 
especially during JJA (Figure 4c). Deforestation leads to a 
reduction of net radiation, sensible and latent heat fluxes 
(Figure 4f), in broad agreement with previous observational 
(Duveiller et al., 2018) and modelling studies (Boysen et al., 
2020). On average, lake tiles have higher net radiation and 
latent heat fluxes and lower sensible heat flux than nonlake 
land tiles (Figure 4i) because of low lake albedo and unlim-
ited water availability. The “ground heat flux” of lakes is 
higher than that of nonlake tiles from January to August, 
and the opposite is true for other months when the surface 
of some lakes is frozen. Here, the heat flux into the lake is 
the sum of heat conduction and shortwave radiation trans-
mission into the lake (Subin et al., 2012).

4.2  |  Lake effects on air temperature

The air temperature difference between lake and non-
lake tiles during the daytime and night-time as well as 
its changes at the end of the 21st century are shown in 
Figure 5. The daytime period is 8 am to 4 pm local time and 
the night-time period is 8 pm to 4 am local time. During 
the day, lake tiles south of 60°N have lower temperature 

F I G U R E  4   Seasonal variations of energy flux variables for perturbed land tiles (a, urban; d, grass; g, lake) and the corresponding base 
land tiles (b, rural; e, tree; h, nonlake) in the Northern Hemisphere during 2015–2044. Panels (c), (f) and (i) display the differences between 
the paired tiles. Black lines: net radiation flux; blue lines: latent heat flux; red lines: sensible heat flux; yellow lines: anthropogenic heat flux; 
green lines: ground heat flux
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8  |      ZHANG et al.

than nonlake titles in the same grid cell, with a difference 
of 0 to 2.5°C (Figure 5a). This lake cooling effect is the 
most prominent (2.1°C to 2.5°C) near 30°N and 30°S. In 
high-latitude regions north of 60°N, lake tiles have slightly 
higher temperature, by 0 to 0.35°C, than nonlake tiles. At 
night, the lake warming effect peaks near the equator and 
at 50°N (Figure 5b).

The difference in the daytime lake versus nonlake tem-
perature contrast between current climate (2019–2023) 
and the end of the century (2096–2100) is negative in most 
regions (Figure 5c), indicating a stronger lake cooling ef-
fect in the future. One interpretation is that lake tiles warm 
up more slowly than nonlake tiles over time, similar to 
the results obtained by Wang et al. (2018) using an earlier 
version of CLM under the RCP 8.5 scenario. According to 
Wang et al. (2018), the mechanism underlying the differ-
ent warming rates of lake and land is that the lake evap-
oration increases more than land evaporation, due to the 
changes in surface energy allocation in a warmer climate. 
In contrast, the night-time lake warming effect generally 
becomes weaker in the future, as indicated by the nega-
tive time change values, except for some lakes located in 
Southern Canada and Siberia (Figure 5d).

5   |   DISCUSSION

5.1  |  Comparison with the LUMIP data 
depository

Recently, the Land Use Model Intercomparison Project 
(LUMIP), a project endorsed by CMIP6, has included a 
data request of some key variables for the Tier 1 experi-
ments at (up to) four subgrid land tiles: primary and sec-
ondary land, crop, pasture and urban at monthly intervals 
(Lawrence et al., 2016). LUMIP represents the first at-
tempt to create datasets on subgrid variables. Currently, 
six modelling groups have deposited subgrid monthly 
mean data in a public depository (https://esgf-node.llnl.
gov/searc​h/cmip6/; accessed on 25 June 2021).

Our dataset was generated with a protocol similar to 
LUMIP, and offers three enhancements. First, the number 
of land tiles in this dataset is increased to eight (Figure 2), 
allowing more options than the LUMIP archive for inves-
tigation of climate effects of local LULCC.

Second, hourly and daily data are available in addition 
to monthly means. The daily data are helpful for investi-
gating the impact of LULCC on extreme temperatures (e.g. 
Figure S7). Hourly data are desirable for heat stress stud-
ies. Heat stress indices cannot be accurately calculated 
from monthly or daily air temperature and humidity be-
cause they are nonlinearly related to temperature and hu-
midity. For example, the wet-bulb temperature computed 

from monthly or 6-h data is systematically overestimated 
by 0.5 to 1.5°C (Buzan et al., 2015). Additionally, biophys-
ical processes are highly dynamic over the course of the 
24-hr cycle. The hourly data permit a mechanistic exam-
ination of how the surface climate responds differently to 
land perturbation during the day and at night.

Third, a comprehensive set of surface data and atmo-
spheric forcing variables is archived in this dataset. Our 
surface data provide information on urban (emissivity, 
fractions of road, roof and wall), the height of canopy top 
and bottom, soil texture and lake depth, which can help 
further the investigation. The atmospheric forcing vari-
ables are particularly useful in efforts to attribute local cli-
mate responses to different biophysical drivers (Lee et al., 
2011; Rigden & Li, 2017; Zhao et al., 2014).

Finally, the results archived by LUMIP were produced 
with historical greenhouse gas forcing. The present study 
presents the results for a future forcing scenario (RCP8.5). 
When used together, these datasets allow investigation on 
how atmospheric CO2 may influence subgrid variations.

5.2  |  Limitations and known issues

We wish to draw the reader's attention to several limita-
tions and known issues of this dataset. First, although 
CESM2 can capture the climatology, seasonal and inter-
annual patterns of most fields (Collier et al., 2018; Fasullo, 
2020; Lawrence et al., 2019), biases still exist in surface 
relative humidity, surface upward longwave radiation, an-
thropogenic heat flux and the energy partitions between 
latent and sensible heat fluxes (Chen et al., 2018; Cheng 
et al., 2021; Oleson & Feddema, 2020). The anthropogenic 
heat flux scheme in CLM5 omits anthropogenic heat 
sources such as traffic and industrial production, result-
ing in underestimation. The equilibrium climate sensi-
tivity, defined as the global surface temperature increase 
after a doubling of CO2 concentration, is 5.3 K for CESM2 
(Danabasoglu et al., 2020), which is higher than the best 
estimate of 1.5–4.5 K. Thus, the future climate change pro-
jected by CESM2 may be too strong. Previous studies also 
indicate that the regional bias of CESM2 may vary for dif-
ferent regions of interest (Cheng et al., 2021; Collier et al., 
2018). We urge caution when interpreting the regional re-
sults from this dataset.

Second, the user may run the risk of double-counting 
some of the energy terms if a clear distinction is not made 
between the anthropogenic heat flux, heat storage and the 
ground heat flux. The surface energy balance equation is 
expressed as (variable definitions in Table 1):

(1)

rsds + rlds − rsus − rlus + fahac + fwaste = hfls + hfss + hfdsl
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For nonurban tiles, fahac and fwaste are zero. For lake 
tiles, hfdsl includes both heat conduction and shortwave 
radiation transmission into the water column. In an urban 
system, hfdsl has incorporated fahac and fahsh. To obtain 
a “natural” ground heat flux excluding AC and space heat-
ing contributions (Supporting Information), Equation  1 
can be rearranged as:

The subscript u means they are all on urban land tiles. 
Here, fwasteu + fahshu is the total anthropogenic heat flux 
entering the climate system, and hfdslu − fahacu + fahshu 
is the “natural” ground heat flux or the heat flux into 
ground and buildings but excluding anthropogenic heat 
flux.

Third, many ESMs (including CESM) have difficulty 
reproducing the response of the diurnal air temperature 
cycle to deforestation (Lejeune et al., 2017). The diurnal 
temperature range (DTR) is smaller in grass tiles than 
in forest (tree) tiles in this dataset (Figure S5d), but ob-
servational studies show larger DTR over grasses than 
over forests (Lee et al., 2011; Zhang et al., 2014). In other 
words, the daytime and night-time air temperature dif-
ference between grass and forest tiles is negative and 
positive, respectively, according to CLM5 (Figure S5d), 

but the opposite is true according to observations. This 
inconsistency may be associated with parameterization 
issues in current land models, such as roughness for-
mulation, the response of partitioning of available en-
ergy between latent and sensible heat fluxes to LULCC 
and the derivation of the screen-height air temperature 
(Chen & Dirmeyer, 2019; Chen et al., 2018; Lejeune 
et al., 2017).

Fourth, the subgrid strategy only quantifies the direct 
biophysical impact of LULCC at the local scale, and can-
not capture the indirect impacts associated with LULCC, 
including the impact caused by changes in atmospheric 
conditions and water-energy balances at regional and 
global scales. In addition, the carbon cycle feedback via 
changing land use and dynamic vegetation phenology, an-
other large-scale impact, is not considered. Previous stud-
ies found that the local effects are very similar between 
simulations with different LULCC scenarios (Winckler 
et al., 2017) and between fixed land-use simulations and 
satellite observations (Chen & Dirmeyer, 2020). In other 
words, LULCC local effects can be investigated inde-
pendently of the LULCC-induced regional large-scale 
changes.

Finally, atmospheric CO2 and transient land cover may 
affect subgrid variations. Some of the CO2 effect can be in-
vestigated by comparing subgrid results at the beginning 
and at the end of the RCP 8.5 simulation period and with 

(2)
rsds+rlds−rsusu−rlusu+ fwasteu+ fahshu
=hflsu+hfssu+ (hfdslu− fahacu+ fahshu)

F I G U R E  5   The lake minus nonlake air temperature during (a) the daytime and (b) the night-time in 2019–2023. The changes of the lake 
minus nonlake air temperature between 2096–2100 and 2019–2023 during (c) the daytime and (d) the night-time
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the results under the historical scenario in the LUMIP data 
depository. Simulations of other scenarios (e.g. RCP2.6, 
RCP4.5, 4 × CO2) and with transient land cover and dy-
namic vegetation phenology will be helpful in evaluating 
scenario uncertainties. It is our future plan to conduct 
these simulations and publish the subgrid datasets.

6   |   SUMMARY

In comparison with the subgrid data in the LUMIP de-
pository, our dataset is enhanced in three respects: (1) 
We provide data for eight land tiles (urban, rural, tree, 
grass, shrub, bare soil, crop and lake) instead of four; (2) 
Biophysical variables are available at high frequencies 
(hourly and daily) in addition to the monthly interval; 
(3) A comprehensive list of surface data and atmospheric 
forcing variables is included. These features allow for 
wider investigations of the relationships between LULCC 
and local climate at multiple time scales and across cli-
mate zones.

The seasonal variations of key state variables and en-
ergy fluxes at subgrid tiles are in broad agreement with 
those in published observational and modelling studies. 
Results show that the future daytime lake cooling effect 
becomes stronger and the night-time warming effect be-
comes weaker than under the current climate. We antic-
ipate that this dataset will become a useful resource for 
meteorologists, hydrologists and ecologists to investigate 
the interplay between surface climate, ecosystem func-
tions and climate change.

ACKNOWLEDGEMENTS
We would like to acknowledge high-performance com-
puting support from Cheyenne (https://doi.org/10.5065/
D6RX99HX) provided by NCAR's Computational and 
Information Systems Laboratory, sponsored by the 
National Science Foundation. The Community Earth 
System Model Version 2 is freely available at https://www.
cesm.ucar.edu/model​s/cesm2/. The modified code and 
raw output of the simulation in this paper are available 
from authors upon request (keer.zhang@yale.edu).

CONFLICTS OF INTEREST
The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS
X.L. and N.S. designed this study. K.Z. performed the 
simulation and data processing. L.Z. contributed ideas to 
the model simulation. C.H., Q.H. and Z.L. conducted the 
urban land cover projection. H.C. and J.Z. generated the 
new surface data for the model simulation. X.L. and K.Z. 
drafted the manuscript.

OPEN PRACTICES

This article has earned an Open Data badge for making 
publicly available the digitally-shareable data necessary 
to reproduce the reported results. The data is available 
at https://doi.org/10.7910/DVN/HUXAH6. Learn more 
about the Open Practices badges from the Center for 
OpenScience: https://osf.io/tvyxz/wiki.

ORCID
Keer Zhang   https://orcid.org/0000-0001-9966-7566 

REFERENCES
Alkama, R. & Cescatti, A. (2016) Biophysical climate impacts of re-

cent changes in global forest cover. Science, 351, 600–604.
Boysen, L.R., Brovkin, V., Pongratz, J., Lawrence, D.M., Lawrence, P., 

Vuichard, N. et al. (2020) Global climate response to idealized 
deforestation in CMIP6 models. Biogeosciences, 17, 5615–5638.

Burakowski, E., Tawfik, A., Ouimette, A., Lepine, L., Novick, K., 
Ollinger, S. et al. (2018) The role of surface roughness, albedo, 
and Bowen ratio on ecosystem energy balance in the Eastern 
United States. Agricultural & Forest Meteorology, 249, 367–376.

Buzan, J.R., Oleson, K. & Huber, M. (2015) Implementation and com-
parison of a suite of heat stress metrics within the Community 
Land Model version 4.5. Geoscientific Model Development, 8, 
151–170.

Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J. et al. (2020) 
Global projections of future urban land expansion under shared 
socioeconomic pathways. Nature Communications, 11, 1–12.

Chen, L. & Dirmeyer, P.A. (2019) Differing responses of the diur-
nal cycle of land surface and air temperatures to deforestation. 
Journal of Climate, 32, 7067–7079.

Chen, L. & Dirmeyer, P.A. (2020) Reconciling the disagreement be-
tween observed and simulated temperature responses to defor-
estation. Nature Communications, 11, 1–10.

Chen, L., Dirmeyer, P.A., Guo, Z. & Schultz, N.M. (2018) Pairing 
FLUXNET sites to validate model representations of land-use/
land-cover change. Hydrology and Earth System Sciences, 22, 
111–125.

Cheng, Y., Huang, M., Zhu, B., Bisht, G., Zhou, T., Liu, Y. et al. (2021) 
Validation of the community land model version 5 over the con-
tiguous United States (CONUS) using in situ and remote sensing 
data sets. Journal of Geophysical Research: Atmospheres, 126, 1–27.

Collier, N., Hoffman, F.M., Lawrence, D.M., Keppel-aleks, G., Koven, 
C.D., Riley, W.J. et al. (2018) The international land model 
benchmarking (ILAMB) system: Design, theory, and imple-
mentation. Journal of Advances in Modeling Earth Systems, 10, 
2731–2754.

Danabasoglu, G., Lamarque, J.F., Bacmeister, J., Bailey, D.A., 
DuVivier, A.K., Edwards, J. et al. (2020) The community earth 
system model version 2 (CESM2). Journal of Advances in 
Modeling Earth Systems, 12, 1–35.

Davin, E.L., Rechid, D.I., Breil, M., Cardoso, R.M., Coppola, E., 
Hoffmann, P. et al. (2020) Biogeophysical impacts of foresta-
tion in Europe: First results from the LUCAS (Land Use and 
Climate across Scales) regional climate model intercomparison. 
Earth System Dynamics, 11, 183–200.

 20496060, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.153 by Y
ale U

niversity, W
iley O

nline L
ibrary on [26/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5065/D6RX99HX
https://doi.org/10.5065/D6RX99HX
https://www.cesm.ucar.edu/models/cesm2/
https://www.cesm.ucar.edu/models/cesm2/
mailto:keer.zhang@yale.edu
https://doi.org/10.7910/DVN/HUXAH6
https://osf.io/tvyxz/wiki
https://orcid.org/0000-0001-9966-7566
https://orcid.org/0000-0001-9966-7566


      |  11ZHANG et al.

Duveiller, G., Hooker, J. & Cescatti, A. (2018) The mark of veg-
etation change on Earth’s surface energy balance. Nature 
Communications, 9, 1–12.

Fasullo, J.T. (2020) Evaluating simulated climate patterns from the 
CMIP archives using satellite and reanalysis datasets using the 
Climate Model Assessment Tool (CMATv1). Geoscientific Model 
Development, 13, 3627–3642.

Feddema, J.J., Oleson, K.W., Bonan, G.B., Mearns, L.O., Buja, L.E., 
Meehl, G.A. et al. (2005) The importance of land-cover change 
in simulating future climates. Science, 310, 1674–1678.

Findell, K.L., Berg, A., Gentine, P., Krasting, J.P., Lintner, B.R., 
Malyshev, S. et al. (2017) The impact of anthropogenic land use 
and land cover change on regional climate extremes. Nature 
Communications, 8, 1–9.

Gao, J. & O’Neill, B.C. (2020) Mapping global urban land for 
the 21st century with data-driven simulations and Shared 
Socioeconomic Pathways. Nature Communications, 11, 1–12.

He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J. et al. (2021) Future 
global urban water scarcity and potential solutions. Nature 
Communications, 12, 1–11.

Huang, Q., Zhang, H., Vliet, J., Ren, Q., Wang, R.Y., Du, S. et al. 
(2021) Patterns and distributions of urban expansion in global 
watersheds. Earth’s Future, 9, 1–16.

Jackson, T.L., Feddema, J.J., Oleson, K.W., Bonan, G.B. & Bauer, 
J.T. (2010) Parameterization of urban characteristics for global 
climate modeling. Annals of the Association of American 
Geographers, 100, 848–865.

Lawrence, D.M., Fisher, R.A., Koven, C.D., Oleson, K.W., Swenson, 
S.C., Bonan, G. et al. (2019) The community land model ver-
sion 5: description of new features, benchmarking, and impact 
of forcing uncertainty. Journal of Advances in Modeling Earth 
Systems, 11, 4245–4287.

Lawrence, D.M., Hurtt, G.C., Arneth, A., Brovkin, V., Calvin, K.V., 
Jones, A.D. et al. (2016) The Land Use Model Intercomparison 
Project (LUMIP) contribution to CMIP6: Rationale and 
experimental design. Geoscientific Model Development, 9, 
2973–2998.

Lawrence, P.J. & Chase, T.N. (2010) Investigating the climate impacts 
of global land cover change in the community climate system 
model. International Journal of Climatology, 30, 2066–2087.

Lawrence, P.J., Feddema, J.J., Bonan, G.B., Meehl, G.A., O’Neill, 
B.C., Oleson, K.W. et al. (2012) Simulating the biogeochem-
ical and biogeophysical impacts of transient land cover 
change and wood harvest in the Community Climate System 
Model (CCSM4) from 1850 to 2100. Journal of Climate, 25, 
3071–3095.

Lee, X., Goulden, M.L., Hollinger, D.Y., Barr, A., Black, T.A., Bohrer, 
G. et al.(2011) Observed increase in local cooling effect of defor-
estation at higher latitudes. Nature, 479, 384–387.

Lejeune, Q., Seneviratne, S.I. & Davin, E.L. (2017) Historical land-
cover change impacts on climate: Comparative assessment 
of LUCID and CMIP5 multimodel experiments. Journal of 
Climate, 30, 1439–1459.

Li, X., Zhou, Y., Eom, J., Yu, S. & Asrar, G.R. (2019) Projecting global 
urban area growth through 2100 based on historical time se-
ries data and future shared socioeconomic pathways. Earth’s 
Future, 7, 351–362.

Liao, W., Liu, X., Burakowski, E., Wang, D., Wang, L. & Li, D. (2020) 
Sensitivities and responses of land surface temperature to 

deforestation-induced biophysical changes in two global earth 
system models. Journal of Climate, 33, 8381–8399.

Mahmood, R., Pielke, R.A., Hubbard, K.G., Niyogi, D., Dirmeyer, 
P.A., Mcalpine, C. et al. (2014) Land cover changes and their 
biogeophysical effects on climate. International Journal of 
Climatology, 34, 929–953.

Malyshev, S., Shevliakova, E., Stouffer, R.J. & Pacala, S.W. (2015) 
Contrasting local versus regional effects of land-use-change-
induced heterogeneity on historical climate: Analysis with the 
GFDL earth system model. Journal of Climate, 28, 5448–5469.

Meier, R., Davin, E.L., Lejeune, Q., Hauser, M., Li, Y., Martens, B. 
et al. (2018) Evaluating and improving the Community Land 
Model’s sensitivity to land cover. Biogeosciences, 15, 4731–4757.

Oke, T.R. (1987) Boundary layer climates, 2nd edition. New York: 
Routledge.

Oleson, K.W., Bonan, G.B. & Feddema, J. (2010) Effects of white roofs 
on urban temperature in a global climate model. Geophysical 
Research Letters, 37, 1–7.

Oleson, K.W., Bonan, G.B., Feddema, J. & Jackson, T. (2011) An 
examination of urban heat island characteristics in a global 
climate model. International Journal of Climatology, 31, 
1848–1865.

Oleson, K.W. & Feddema, J. (2020) Parameterization and surface 
data improvements and new capabilities for the community 
land model urban (CLMU). Journal of Advances in Modeling 
Earth Systems, 12, 1–30.

Pitman, A.J., De Noblet-Ducoudré, N., Cruz, F.T., Davin, E.L., Bonan, 
G.B., Brovkin, V. et al. (2009) Uncertainties in climate responses 
to past land cover change: First results from the LUCID inter-
comparison study. Geophysical Research Letters, 36, 1–6.

Rigden, A.J. & Li, D. (2017) Attribution of surface temperature anom-
alies induced by land use and land cover changes. Geophysical 
Research Letters, 44, 6814–6822.

Schultz, N.M., Lawrence, P.J. & Lee, X. (2017) Global satellite data 
highlights the diurnal asymmetry of the surface temperature 
response to deforestation. Journal of Geophysical Research: 
Biogeosciences, 122, 903–917.

Schultz, N.M., Lee, X., Lawrence, P.J., Lawrence, D.M. & Zhao, L. 
(2016) Assessing the use of subgrid land model output to study 
impacts of land cover change. Journal of Geophysical Research: 
Atmospheres, 121, 6133–6147.

Scott, A.A., Waugh, D.W. & Zaitchik, B.F. (2018) Reduced Urban 
Heat Island intensity under warmer conditions. Environmental 
Research Letters, 13, 1–9.

Subin, Z.M., Riley, W.J. & Mironov, D. (2012) An improved lake 
model for climate simulations: Model structure, evaluation, 
and sensitivity analyses in CESM1. Journal of Advances in 
Modeling Earth Systems, 4, 1–27.

Tang, B., Zhao, X. & Zhao, W. (2018) Local effects of forests on tem-
peratures across Europe. Remote Sensing, 10, 1–24.

Wang, W., Lee, X., Xiao, W., Liu, S., Schultz, N., Wang, Y. et al. (2018) 
Global lake evaporation accelerated by changes in surface en-
ergy allocation in a warmer climate. Nature Geoscience, 11, 
410–414.

Winckler, J., Reick, C.H. & Pongratz, J. (2017) Robust identification 
of local biogeophysical effects of land-cover change in a global 
climate model. Journal of Climate, 30, 1159–1176.

Yamazaki, T., Yabuki, H., Ishii, Y., Ohta, T. & Ohata, T. (2004) Water 
and energy exchanges at forests and a grassland in eastern 

 20496060, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.153 by Y
ale U

niversity, W
iley O

nline L
ibrary on [26/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12  |      ZHANG et al.

Siberia evaluated using a one-dimensional land surface model. 
Journal of Hydrometeorology, 5, 504–515.

Zhang, K., Lee, X., Schultz, N.M., Zhao, L., He, C., Huang, Q. et al. 
(2021) A global dataset on subgrid land surface climate (2015–
2100) from the Community Earth System Model, Harvard 
Dataverse. https://doi.org/10.7910/DVN/HUXAH6

Zhang, M., Lee, X., Yu, G., Han, S., Wang, H., Yan, J. et al. (2014) 
Response of surface air temperature to small-scale land clearing 
across latitudes. Environmental Research Letters, 9(3), 034002.

Zhao, L., Lee, X. & Schultz, N.M. (2017) A wedge strategy for mitiga-
tion of urban warming in future climate scenarios. Atmospheric 
Chemistry and Physics, 17, 9067–9080.

Zhao, L., Lee, X., Smith, R.B. & Oleson, K. (2014) Strong contribu-
tions of local background climate to urban heat islands. Nature, 
511, 216–219.

SUPPORTING INFORMATION
Additional supporting information may be found in the 
online version of the article at the publisher’s website.

How to cite this article: Zhang, K., Lee, X., 
Schultz, N.M., Zhao, L., He, C., Huang, Q., 
et al (2022) A global dataset on subgrid land surface 
climate (2015–2100) from the Community Earth 
System Model. Geoscience Data Journal, 00, 1–12. 
Available from: https://doi.org/10.1002/gdj3.153

 20496060, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/gdj3.153 by Y
ale U

niversity, W
iley O

nline L
ibrary on [26/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.7910/DVN/HUXAH6
https://doi.org/10.1002/gdj3.153

