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C L I M A T O L O G Y

Crowdsourced air temperatures contrast satellite 
measures of the urban heat island and its mechanisms
Zander S. Venter1*, Tirthankar Chakraborty2, Xuhui Lee2

The ubiquitous nature of satellite data has led to an explosion of studies on the surface urban heat island (SUHI). 
Relatively few have simultaneously used air temperature measurements to compare SUHI with the canopy UHI 
(CUHI), which is more relevant to public health. Using crowdsourced citizen weather stations (>50,000) and satellite 
data over Europe, we estimate the CUHI and SUHI intensity in 342 urban clusters during the 2019 heat wave. Satel-
lites produce a sixfold overestimate of UHI relative to station measurements (mean SUHI 1.45°C; CUHI 0.26°C), with 
SUHI exceeding CUHI in 96% of cities during daytime and in 80% at night. Using empirical evidence, we confirm 
the control of aerodynamic roughness on UHI intensity, but find evaporative cooling to have a stronger overall 
impact during this time period. Our results support urban greening as an effective UHI mitigation strategy and 
caution against relying on satellite data for urban heat risk assessments.

INTRODUCTION
The urban heat island (UHI) effect is the most well-known impact 
of urbanization on local climate (1) and can aggravate heat stress, 
increase cooling load, modify frequency of extreme rain events, and 
influence air pollution (2–5). While the founding studies on UHI were 
based on observed air temperature (Tair) within the urban canopy 
[the canopy UHI (CUHI)] (6, 7), the proliferation of satellite-based 
land surface temperature (LST) measurements has led to the definition 
of the surface UHI (SUHI) (8). The explosion of SUHI studies is 
partly because observing LST has distinct advantages over ground-
based measurements. Measurements from a single satellite usually 
use the same sensor, have complete global coverage, and eliminate 
the issues with setting up representative sites, which has been a major 
criticism of the CUHI literature (9). Consequently, almost all large-
scale observational estimates of UHI are based on satellite data (10–12). 
However, it is expected that given the dependence of the coupling 
between LST and Tair, on, among other things, vegetation and aero-
dynamic roughness, CUHI and SUHI are not identical quantities 
(13–17). In particular, for public health considerations, CUHI is much 
more relevant than SUHI, because heat stress is a function of Tair, 
not necessarily LST (17, 18).

A handful of studies have performed simultaneous measurements 
of CUHI and SUHI and suggest that they may have different diurnal 
and seasonal trends (3, 19, 20, 17, 21, 10). Because of the influence 
of urban areas on local meteorology, it is not standard practice to 
measure Tair in cities. Meteorological stations near urban areas are 
usually at airports, which are not representative of the urban core. 
Unfortunately, because of the scarcity of urban weather stations, mul-
ticity comparisons of CUHI and SUHI are practically nonexistent.

The dearth of urban weather stations has also precluded our 
ability to derive empirical evidence for determinants of UHI intensity 
at regional scales. A multitude of studies have argued or implicitly 
assumed that the UHI is primarily the result of a reduction in evap-
orative cooling in cities due to the lack of vegetation (12, 19, 22, 23). 
A recent study challenged this generally accepted paradigm by com-
bining land surface modeling with an offline temperature attribution 

method for a subset of cities in North America (24). The study demon-
strated that the difference in aerodynamic roughness between a city 
and its surrounding rural reference is a stronger determinant of the 
daytime SUHI than the difference in evapotranspiration, thereby ex-
plaining the trend in SUHI intensity across climate zones for a sample 
of cities in North America. The model used in this study has a coarse 
implementation of urban land cover (25, 26). In the few Earth system 
models with explicit urban representation, the urban land is consid-
ered to be a completely built-up subgrid tile in a larger grid, with the 
forcing held constant. In reality, urban areas may contain more than 
built-up structures, including green space, snowpack, and bare soils. 
Moreover, the atmospheric forcing may not necessarily be equal be-
tween the city and its rural reference, due to the differences in local-
scale aerosol concentrations and cloud cover. Alternative urban climate 
models do account for intra-urban land cover variations and are 
valuable for scenario testing and forecasting; however, they are only 
validated against a handful of station measurements (27).

We aimed to use the recent proliferation of crowdsourced citizen 
weather stations (CWSs) (28) to address gaps in our knowledge of the 
relative magnitude and distribution of SUHI and CUHI and empir-
ically test whether aerodynamic roughness is an important deter-
minant of UHI intensity. We do this using CWS Tair measurements 
from >50,000 private weather stations throughout Europe during the 
month of July 2019. The time period chosen coincides with the heat 
wave that exceeded long-term averages by 5°C for more than three 
consecutive days (fig. S1). This was comparable to the 2003 heat wave, 
which was estimated to have killed more than 70,000 people (29). We 
find that the mean CUHI is lower than the mean SUHI during daytime 
in 96% of urban clusters, when the adverse effects of heat stress would 
be maximum. To further examine the coupling between the CUHI 
and the SUHI, we use a random forest (RF) regression to determine the 
controlling factors of each. Last, we extend this methodology to a subset 
of cities with building height measurements to determine if rough-
ness is an important factor for the spatial variability of UHI (fig. S2).

RESULTS
CUHI versus SUHI
We found that city-scale UHI was overestimated by 1.19 ± 0.02°C 
(mean ± SE, n = 342) if LST was used instead of Tair (mean SUHI 
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1.45°C versus mean CUHI 0.26°C; Figs. 1 and 2A). For the cities 
considered during July 2019, this reflects a sixfold overestimation in 
the urban contribution to local temperature if satellite observations 
are used instead of ambient air temperature measurements. The up-
ward bias was present during both day and night with an average 
SUHI and CUHI of 2.00 ± 0.05°C and 0.05 ± 0.03°C during the day, 
respectively, and an average SUHI and CUHI of 0.90 ± 0.02°C and 
0.47 ± 0.03°C during the night, respectively. Note that CUHI may 
be underestimated by up to 0.75°C in some cases because of an up-
ward bias in rural CWS measured relative to established meteoro-
logical station measurements (fig. S12). Nevertheless, even after 
correcting for the positive bias, SUHI still exceeds CUHI by 40% at 
minimum. Satellite-based SUHI estimates are higher than CUHI in 
96% of the cities during daytime and 80% of cities at night. This 
difference is consistent over the July 2019 period and the associated 
heat wave event (fig. S3); however, at a finer temporal resolution, it 
is apparent that the difference is maximized during the day and 
minimized at night (Fig. 2B). The temporal variance in SUHI is not 
well correlated to that of CUHI particularly during the night (fig. 
S4). Predominant daily weather explains part of the temporal vari-
ance in CUHI-SUHI differences (fig. S5). Specifically, SUHI ex-
ceeds CUHI more on days with relatively low cloud cover, wind 
speeds, and high diurnal air temperature ranges. While the CUHI is 
positive in 81% of the cities, the magnitude during daytime is less 
than 0.05 in 52% cities. A further analysis of the individual sta-
tion data confirms that this is partly due to the location of the 
CWS. Weather stations in vegetated parts of the city show a lower 
CUHI (0.09 ± 0.02°C) than those situated on predominantly built-up 
surfaces (0.3 ± 0.02°C). Even when only the stations over built-up 

surfaces are considered, satellite overestimates the UHI intensity 
by five times.

UHI attribution
Using a combination of land cover, terrain, and city morphology 
variables in an RF regression model, we were able to explain more 
of the variance in local-scale SUHI [R2 = 0.49, root mean square 
error (RMSE) = 1.22°C] than CUHI (R2 = 0.23, RMSE = 1.05°C; 
table S1). Here, local-scale UHI refers to the urban-rural tempera-
ture differentials for each Tair station or LST pixel. Land cover vari-
ables included evapotranspiration [using the normalized difference 
vegetation index (NDVI) as a proxy], surface albedo, and the frac-
tion of impervious surface area (ISA). Terrain variables included 
elevation above sea level, distance to coastline, and a number of in-
dices describing the diversity [topographic diversity index (TDIV)], 
relative position [topographic position index (TPI)], and solar heat 
load [continuous heat-insolation load index (CHILI)] of the sur-
rounding terrain (see Materials and Methods for details). City mor-
phology was characterized by the standard deviation in the heights 
of surrounding buildings. Multiple linear regression (MLR) models 
with the same explanatory data corroborate this finding with 
more variance explained in local-scale SUHI (R2 = 0.49) than CUHI 
(R2 = 0.12; table S2).

The urban-rural differentials in surface evapotranspiration and 
elevation contributed the most to explaining the variance in local-
scale SUHI and CUHI, respectively, for all 342 clusters (fig. S6). 
When considering the subset of 30 urban clusters with building 
height data (fig. S15), evapotranspiration was the second most 
important variable for both CUHI and SUHI, whereas aerodynamic 

Fig. 1. Distribution of city-rural temperature differentials for July 2019 in Europe. (A) Private weather station (n = 59,810) air temperature and (B) satellite-derived 
LST are relativized to mean rural temperatures for 342 urban clusters. Temperature differentials give an indication of UHI intensity illustrated by the zoomed-extent windows 
for London, Paris, and Berlin.
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roughness was less important in explaining variations in SUHI than 
CUHI (Fig. 3). For the cities considered, results from both RF (Fig. 3) 
and MLR models (table S2) reveal that evapotranspiration is a stronger 
determinant of the variability in CUHI than roughness during the 
day, although this difference fades at night (Fig. 3). Roughness is an 
important determinant of CUHI at night, where increases in city-
rural roughness differentials contribute to larger CUHI intensities 
(Fig. 4). The partial dependence of local-scale UHI on evapotrans-
piration reveals that when evapotranspiration is lower inside relative 
to outside cities, both SUHI and CUHI have greater magnitudes, 
whereas city areas with higher evapotranspiration than rural areas 
result in negative SUHI and CUHI (Fig. 4). These partial dependencies 
of CUHI on roughness and evapotranspiration are consistent over 
multiple spatial scales (fig. S7).

Apart from considering the variation in local-scale UHI, we also 
explored the city-scale UHI by aggregating station measures up to 
city means. Using MLR of intercity variations in UHI resulted in 
similar patterns to those produced from the analysis of local-scale 
UHI (fig. S8). Mean city nighttime CUHI and SUHI were significantly 
(P < 0.05) lower in cities with higher urban-rural evapotranspiration 
differentials, lending support to the local-scale results in Figs. 3 and 
4. However, city-rural aerodynamic roughness differentials had no 
significant (P > 0.05) effect on mean city CUHI and SUHI (fig. S8).

DISCUSSION
While the impact of UHI on heat stress is only one of its many im-
pacts, it has been the focus of a large number of studies, especially 
those looking at interactions between larger-scale phenomena like 
regional heat stress or global warming and urbanization (30–32). 
Studies on both individual (17, 33) and multiple cities (16) have 
shown that the SUHI is usually higher than the CUHI, especially 
during the daytime, which we confirm by scaling this comparison 
up to over 342 European cities during a heat wave period. The notably 
higher magnitude of SUHI has important implications for under-
standing and attributing the source of heat stress in urban areas. 
Because air temperature is the major constituent of heat stress, urban-
rural air temperature differentials can help isolate the contribution 
of urbanization to local-scale heat exposure. Epidemiological studies 
have relied on near-surface air (ambient) temperature measured at 

fixed sites to quantify thermal exposure (34). However, spatially ex-
plicit LST data from satellites are gaining popularity and are being 
increasingly applied, either directly or for predicting air temperature, 
to public health risk studies (35, 36). In doing so, researchers run 
the risk of overestimating the magnitude of temperature exposure 
as well as the contribution of urbanization to the local temperature. 
This is particularly concerning given that the upward bias of satellite-
based measures of UHI was greatest during conditions that are 
most relevant to heat risk epidemiology (daytime, low cloud cover, 
high diurnal temperature ranges, and low wind speeds). Proper 

Fig. 2. SUHI and CUHI intensities. (A) Frequency distribution of all available hourly (local time) UHI intensities for European urban clusters (n = 342) during July 2019. 
(B) Hourly mean (point) and interquartile range (vertical line) for UHI intensities over each hour of the day.

Fig. 3. Determinants of SUHI and CUHI intensities. (A) Predictor variable importance 
scores are plotted for RF models explaining the variance in local-scale (n = 5703 
stations; 47,652 pixels) SUHI and CUHI over a subset of urban clusters (30) with 
building height data. Models are stratified into nighttime and daytime mean UHI 
for roughness and evapotranspiration. Mean importance values are plotted for the 
total predictor variable suite in (B) and (C).
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quantification of the public health implications of UHI requires dense 
monitoring networks in cities, and in the absence of these monitor-
ing networks, crowdsourced air temperature measurements can be 
a reasonable alternative, as we demonstrate in the present study.

We also find that evapotranspiration and roughness were impor
tant determinants of both SUHI and CUHI intensity during this heat 
wave period (fig. S6). In particular, for the goal of reducing the effect 
of UHI on human health, urban green spaces remain an important 
mitigation option given that evapotranspiration was the dominant 
driver of UHI during the day (Fig. 3). However, urban greening may 
lead to elevated humidity levels, which is another contributor to 
human heat stress and can thereby counteract the benefit gained 
from evaporative cooling (37). In cities where urban greening is con-
strained by water limitations (e.g., in arid environments), an alter-
native may involve changing building structure, height, and spacing 

so as to reduce intracity aerodynamic roughness. This heat mitiga-
tion strategy is equally supported by our results, showing that CUHI 
is exacerbated by greater city-rural roughness differentials, particu-
larly at night. This alternative, while challenging as it requires fun-
damental changes to the city built environment morphology (24), 
can be considered for future urban planning.

Although Zhao et al. (24) showed that the aerodynamic roughness 
of the city is an important determinant of the geographic distribu-
tion of UHI intensities in North America, it has been difficult to 
empirically test this hypothesis. For one, aerodynamic roughness is 
hard to determine from observations, especially for heterogeneous 
terrain like cities. Moreover, although it is possible to theoretically 
separate the effect of vegetation and roughness differentials on the 
UHI intensity, their effects are hard to isolate in practice, because 
the presence of vegetation also changes aerodynamic roughness and 

Fig. 4. Partial dependence of UHI on roughness and evapotranspiration. Lines represent the smoothed effect of roughness and evapotranspiration on local-scale 
(n = 5703 stations; 47,652 pixels) SUHI and CUHI intensity after controlling for the effect of all other explanatory variables. RF models were used for daytime and nighttime 
daily UHI separately.
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cities are more heterogeneous than their simplified representations in 
climate models. Here, we attempt to do so statistically using proxies 
for evapotranspiration (NDVI) and aerodynamic roughness (stan-
dard deviation of building height; fig. S2). We find that, for the cities 
considered, evapotranspiration is a stronger determinant of the spatial 
variability in both SUHI and CUHI during the day. However, note 
that roughness still remains an important determinant of the magni-
tude of the CUHI magnitude, particularly at night. Consistent with 
the results of Zhao et al. (24), during daytime, as the urban-rural 
differential in aerodynamic roughness increases, the CUHI decreases, 
implying higher convective dissipation of heat from the urban area. 
For the urban-rural differential in NDVI, negative values imply less 
evapotranspiration in urban areas and, thus, higher UHI intensity, 
while positive values (possibly due to the presence of urban green 
space) lead to a reduction in local-scale UHI intensity due to local-
scale evaporative cooling. For aerodynamic roughness, this pattern 
reverses at night for both CUHI and SUHI, as the rougher urban 
areas bring down warmer air from aloft compared to smoother 
rural landscape.

The overall dominance of evapotranspiration over roughness for 
determining variability of UHI intensity in our study is consistent 
with a recent study on a smaller subset of cities in Europe (38). 
Nevertheless, the generalizability of our results is limited to the 
temporal (summer) and geographical (Europe) extent of our analysis. 
The RF modeling framework used is by definition limited to the state 
space dimensions defined by the input dataset. Therefore, making 
inference to different climates and making predictions of how UHI will 
respond under climate change scenarios would require broadening 
our sampling over space and time. Despite this, our statistical model-
ing framework, driven by empirical data, is a unique and important 
complement to process-based numerical models and analytical attri-
bution frameworks. Attribution frameworks, as used by Zhao et al. 
(24) and Li et al. (39), have the added advantage of being able to 
separate not only order of importance of variables but also the degree 
of relative importance at large scales. However, several such frame-
works (40, 41) do not necessarily agree with each other. On the other 
hand, process-based numerical models are restricted by both the 
quality of input data and the large potential variability in model pa-
rameters in urban areas (42, 43). Our statistical approach relies on a 
priori assumptions about mechanistic links between predictor and 
response data, with the linear models assuming linear dependence 
between response and predictor, and the RFs also including nonlinear 
interactions. However, these results and methods remain useful tools 
for both hypothesis testing and hypothesis generation.

Crowdsourced weather data are now widely available (44), with 
dense CWS networks in major urban centers globally (https://
weathermap.netatmo.com). Although data quality is a concern, it 
does not preclude the use of these data in urban climatology studies. 
Data quality control procedures used in the present study (fig. S9) 
are open source (28, 45) and significantly reduce risk of including 
statistically implausible Tair due to misplacement of sensors, solar 
exposition (radiative errors), inconsistent metadata, and device 
malfunctions. These quality control procedures are based on outlier 
detection and spatial correlation checks within the crowdsourced 
dataset and the option to cross-calibrate with reference meteorological 
stations. However, we did find evidence that quality control proce-
dures do not completely remove solar contamination biases (fig. S12), 
particularly for detecting UHI. Netatmo CWS sensors have a large 
thermal mass compared to standard temperature sensors used at 

weather stations, and many are likely placed in positions exposed to 
solar radiation, which results in an upward temperature bias. For 
studying urban climate, our results mirror the issues raised by Stewart 
(9) on the general UHI literature, with specifics of individual sensor 
placement possibly leading to a large degree of control on the CUHI 
variability (fig. S6). Ideally, station manufacturers would require 
customers to record more detailed metadata on station placement 
so that these data can be more readily screened for quality issues by 
researchers. At our end, we have tried to account for these variabilities 
through extensive quality assurance (fig S9), evaluating the station 
data against existing products both in bulk and under varying sky 
conditions (figs. S11 and S12), and by quantifying how the calculated 
CUHI intensity varies with both intra-urban land cover variability 
and weather conditions (figs. S5 and S14). Despite quality issues, 
dense Tair station networks offer an unprecedented advantage over 
satellite imagery to derive hourly UHI estimates, irrespective of cloud 
cover, and provide temperature measures that are more relevant to 
human thermal comfort than satellite-derived LST. The extent to 
which crowdsourced weather stations can provide more reliable in-
sights relative to established meteorological stations requires further 
investigation. Although denser networks of Netatmo CWS data are 
available within cities, established meteorological stations, which are 
rarely present in cities, have more stringent quality control to prior-
itize optimum station location and accurate data collection.

On the basis of our findings, we conclude that incorporating 
satellite-based measures (LST) of UHI in epidemiological research 
should be done with great caution, particularly on clear-sky days 
when the discrepancy with CUHI is at its maximum. Similarly, ground-
based measures of UHI need to be adopted in epidemiological re-
search with caution because the public health impacts of thermal 
exposure are also linked to humidity, wind speed, and behavioral 
differences and comorbidities that contribute to health outcomes. 
Assuming that epidemiologists do want to calculate CUHI, the rela-
tionship between SUHI and CUHI is not easily explained by a linear 
regression model (fig. S4), and therefore, it is difficult to come up 
with regression coefficients to convert SUHI to CUHI for incorpo-
ration in epidemiological studies. We suggest that crowdsourced 
and established meteorological weather stations should be used in 
parallel to calculate CUHI directly, after adequate cross-calibration 
and quality assurance of CWS. In doing so, caution should be taken 
when calculating UHI from stations in very different topographic 
contexts. The large importance scores for elevation and topographic 
diversity on CUHI suggest that the placement of the weather stations 
has a strong impact on the local-scale CUHI, as calculated in this 
study. Therefore, they can confound the UHI effect, which is by defi-
nition the effect of urban land cover and not elevation or topography 
on ambient temperature.

In contrasting SUHI and CUHI, we are not implying that one is 
better or worse than the other. Satellites and weather stations mea-
sure distinct and complementary components of the UHI effect, and 
SUHI remains useful for applications like weather prediction, be-
cause LST provides lower boundary conditions to models. Our ob-
servation that SUHI and CUHI differs serves as a point of departure 
for further discussion and hypothesis testing. Last, our results show 
that the UHI attribution is slightly different for SUHI and CUHI. In 
the context of public health risk and heat stress, evapotranspiration 
appears to be a stronger driver of CUHI during the day, although 
roughness is also important at night. Together, our results support 
the use of green space and building structures that reduce canopy 
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roughness as possible UHI mitigation options, particularly for 
ameliorating the impacts of future heat waves on the CUHI and, 
thus, public health.

MATERIALS AND METHODS
Air temperature data
The recent proliferation of CWS in urban areas allows dense meteoro-
logical observations to be crowdsourced (28, 45, 46). We downloaded 
hourly air temperature (Tair) data during July 2019 for all available 
CWS provided by Netatmo (https://netatmo.com/) in Europe. CWS 
are known to have quality issues caused by sensor misplacement, 
solar exposure, inconsistent metadata, and device or internet mal-
functions (45). We followed the quality control method developed 
by (28) to clean the raw Tair data for statistically implausible read-
ings using the “Crowd-QC” package in R (47). The procedure flags 
stations with equivalent latitude and longitude coordinates and then 
applies a modified z score approach for the detection of statistical 
outliers from the hourly Tair distribution (fig. S9). The final step 
excludes stations with Tair measures that, when correlated against 
the spatial median of hourly Tair over a month, produce a Pearson’s 
correlation coefficient of less than 0.9. The data cleaning proce-
dure reduced the number of available stations from 113,215 to 
95,084 stations.

The remaining Netatmo stations included some data gaps, which 
can be caused by drops in wifi signal or battery failures (fig. S10A). 
Therefore, we also excluded stations that had more than 20% of their 
time series missing during July 2019. We performed a sensitivity 
analysis to show that stations with 80% of data will give monthly 
means that are within 0.1°C of the actual mean (fig. S10B). To do 
this, we selected 500 random stations with full data coverage and 
then iteratively removed a random subset of Tair measurements at 
proportions ranging from 0 to 0.9. We calculated monthly Tair means 
from the subsets and measured the absolute deviation from the actual 
monthly means. After excluding stations with <80% data coverage, 
we were left with 75,293 stations.

To validate the quality-controlled Tair data, we used data from the 
Global Historical Climatology Network Daily (GHCND) dataset 
and the ERA5 fifth generation European Centre for Medium-Range 
Weather Forecasts (ECMWF) atmospheric reanalysis of the global 
climate (48). We first calculated the mean value for daily Tair maxi-
mum readings for each GHCND station over July 2019 within Europe. 
After doing the same for the Netatmo stations, we performed a spatial 
join with the GHCND stations by averaging Netatmo Tair values from 
stations within a 2-km buffer of each GHCND (fig. S11C). Using the 
ERA5 gridded dataset, we calculated the July average for the daily 
2-m maximum Tair and performed a spatial join with the Netatmo data 
by averaging Netatmo Tair values within each ERA5 grid cell. Given 
that the land module of ERA5 does not consider urban land cover, we 
only included Netatmo stations that were defined as rural accord
ing to the Global Human Settlement Layer (GHSL) produced by the 
European Joint Research Centre (49). The linear regression gives an 
RMSE of 0.95° and 1.31°C for the GHCND and ERA5 data, respec-
tively (fig. S11). The Netatmo data appear to have a slight positive 
bias in TairMax. Even within a 2 km buffer or 20 km grid cell, there 
is likely to be large variation in Tair that is sensitive to microscale 
topographic effects, which, depending on the distribution of Netatmo 
stations, will skew the Netatmo readings. In addition, Netatmo sta-
tions do not always have radiation shields, which could also explain the 

positive bias. We tested this by assessing how the bias changes on cloud 
cover days, when one would expect the effect of radiation to be minimal. 
Cloud cover does reduce the positive station bias; however, this bias was 
systematic and displayed little difference between urban and rural 
stations. Thus, this bias does not compromise the calculation of UHI 
(fig. S12).

LST data
All raster and satellite data were extracted and processed within the 
Google Earth Engine cloud-computing platform (50). We collected 
daily LST data over Europe during July 2019 from the moderate-
resolution imaging spectroradiometer (MODIS) satellites TERRA 
(MOD11A1) and AQUA (MYD11A1). LST data are preprocessed 
to clear-sky pixels with average LST error of less than or equal to 3 
and are made available at 1 km × 1 km resolution. MODIS satellites 
collect data daily at approximately 1:30, 10:30, 13:30, and 22:30 local 
time and thus provide information on daytime and nighttime tempera-
ture. To obtain hourly LST values, we first converted the MODIS 
overpass times from local solar time to universal time coordinated 
(UTC) local time according to the MODIS user guide by subtracting 
the MODIS grid’s longitude in degrees divided by 15. We then ac-
counted for the time zone of each urban cluster in combination with 
daylight savings time to offset the UTC for each city. This resulted 
in LST readings with hour-specific time stamps that could be synced 
with the hourly Netatmo dataset. In the components of our analysis 
that aggregated data to daytime and nighttime UHI, we relied on 
the definitions of “day” and “night” implicit in the MOD11A1 and 
MYD11A1 raster datasets. These were LST values defined by the ras-
ter bands “LST_Day_1km” and “LST_Night_1km,” respectively.

Calculating UHIs
To calculate UHI magnitudes, we followed a rural buffer zone (also 
known as ring-based buffer) approach commonly used in UHI studies 
(20, 36, 51). In our analysis, we calculated both city-scale UHI and 
local-scale UHI. City-scale UHI is defined as the temperature dif-
ference between mean city and mean rural weather station Tair or 
LST. Local-scale UHI is defined at the station/pixel level as the dif-
ferential between each city weather station or satellite pixel and the 
rural mean. It thus provides a measure of intracity UHI variation. 
To define urban clusters, we used the GHSL “degree of urbanization” 
raster product, which labels 1 km × 1 km grid cells as uninhabited, 
rural, and low- and high-density urban (49). These classes are derived 
from both the GHSL built-up areas and GHSL population grid data-
sets. We isolated the low- and high-density urban pixels and used a 
connectivity function to define urban clusters using the same prin-
ciples outlined in the City Clustering Algorithm (52). This involves 
iteratively aggregating neighboring urban pixels into a connected 
object defining the bounds of a unique urban cluster (fig. S13). We 
excluded urban clusters that were smaller than the 50th percentile 
of the urban cluster size class distribution (40 km2), because they 
have very few Netatmo stations. Even after this filtering, the sample 
size was substantial at 931 clusters.

To define the rural buffer zones, we buffered each urban cluster 
by 10 km by applying focal mode smoothing function so that there 
is no overlap in rural zones of neighboring clusters (fig. S13B). 
Although there are many ways of defining the rural reference zone 
(22), we adopted a 10-km buffer zone based on a precedent set by 
other studies and findings from Clinton and Gong (11) that UHI 
intensity does not change dramatically with varying buffer zone sizes. 
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Where there are two adjacent urban areas, the focal mode function 
will find the buffer zone border between the two that is equidistant 
to their original borders. According to best practice for UHI calcu-
lation (9), before calculating city-rural temperature differentials, we 
accounted for terrain effects by only including stations and LST pixels 
within 50 m of the mean urban cluster elevation. We used the Global 
Multi-resolution Terrain Elevation Data (GMTED) 2010 (53) at 7 arc 
sec resolution to perform this correction. We also used the MODIS 
land cover dataset (54) (MCD12Q1) to mask any pixels covered by 
water and any rural zone pixels containing urban land cover. To ob-
tain more local-scale information on Netatmo weather station loca-
tions, we calculated the mode land cover class from the Copernicus 
Global Land Cover dataset (55) within a 300-m buffer of each sta-
tion (fig. S14). LST-derived SUHI and Netatmo station–derived 
CUHI were calculated for daytime and nighttime temperatures for 
hours coincident with MODIS overpass. Netatmo weather stations 
intersecting the urban clusters plus rural buffers of interest amount-
ed to 59,810. UHI was calculated for clusters with at least five Netat-
mo stations in both urban and rural zones to reduce potential bias 
from station error. This resulted in 342 urban clusters available for 
UHI analysis.

RF modeling
Recent advances in machine learning and statistics have allowed 
researchers to extend the scope of application beyond prediction 
and classification alone. Regression tree algorithms such as the RF 
(56) are increasingly being used as tools for exploratory analysis and 
causal inference (57–59). Supervised RF models can give insight 
into the causal relationships between explanatory/predictor vari-
ables and the response variable in question. We use RF modeling as 
a tool to explore the marginal effects of aerodynamic roughness and 
evapotranspiration on local-scale UHI (station- or pixel-specific 
city-rural differentials).

City-rural temperature differentials were calculated from July 2019 
averages of daily daytime and nighttime mean temperature time se-
ries for each Netatmo station and LST pixel. The temperature value 
for each Netatmo station or LST pixel was subtracted from the rural 
cluster average. This resulted in four response variable datasets strat-
ified by temperature source (LST and Tair) and type (day, night). 
Separate RF models were built for each response variable.

We collected a range of predictor variables to explain the variance 
in city-rural temperature differentials (table S3) based on knowledge 
derived from previous reviews of important determinants of UHI 
(20, 36). The primary variables of interest to test our hypothesis were 
aerodynamic roughness and evapotranspiration (fig. S2). To include 
roughness in our model, we limited the analysis to a subset of 30 urban 
clusters (fig. S15), where building height data are made available 
through the Copernicus urban atlas for 2012 (https://land.copernicus.
eu/local/urban-atlas). We calculated three morphological parameters 
that characterize aerodynamic roughness, which are often used in 
urban canopy models (60, 61). These included mean building height, 
building fraction (horizontal building surface divided by total 
surface), and the standard deviation of building height. We used 
the normalized difference vegetation index (NDVI) as a proxy for 
evapotranspiration by calculating the median NDVI from all avail-
able cloud-masked Landsat 8 Operational Land Imager surface re-
flectance scenes over Europe during July 2019. Global datasets for 
potential and actual evapotranspiration do not have coverage in 
urban areas (62). Given that NDVI is the primary input into the 

evapotranspiration algorithms and is highly correlated with potential 
evapotranspiration (63–65), we argue that it is an adequate proxy to 
be used in our study.

Apart from the two primary predictor variables, we collected 
additional land cover and terrain morphology predictors (table S3). 
We used the Copernicus Imperviousness Density 2015 layer at 100-m 
resolution (66) to extract ISA. Distance to ocean was calculated using 
the distance to the nearest coast layer produced by NASA (https://
oceancolor.gsfc.nasa.gov/docs/distfromcoast/). Median black sky 
albedo was calculated using the MODIS MCD43A3 product (67) for 
Europe over July 2019 for all available bands, and this was reduced 
into a single raster by averaging across bands. Elevation above sea 
level and terrain slope was calculated from the GMTED dataset at 
30-m resolution. To characterize solar insolation and terrain relief, 
we also extracted the CHILI, TDIV, and TPI at 90-m resolution (68). 
These variables have been used as surrogate variables for terrain 
variability that may induce a variety of temperature and moisture 
conditions. The TDIV variable is calculated with the TPI and CHILI 
indices within a multiscale diversity framework to define the diversity 
of physiographic units within a moving window. See “multi-scale 
diversity” in (68).

To merge the predictor data with the LST data, we resampled all 
predictor variables up to the 1 km × 1 km resolution of LST data by 
calculating the mean values within each LST pixel. For the Tair data, 
we extracted the mean predictor values within a range of circular 
buffer zones around each Netatmo weather station location. Buffer 
zone radii used included 30, 50, 100, 200, 400, 800, 1600, 3200, and 
6400 m and were chosen based on precedents set by previous studies 
modeling urban Tair using statistical approaches (17, 69). Separate 
RF models were built for each buffer size, and model results were 
averaged across all models.

We assessed model performance by withholding 30% of the 
dataset from the model training stage and thereafter testing model 
predictions against it. By regressing observed temperature on pre-
dicted temperature, we derived the RMSE and adjusted R2 as 
measures of model accuracy and fit, respectively. This process was 
repeated 10 times, in a bootstrapping procedure, for each model to 
smooth over the random variation caused by the splitting of train-
ing and validation datasets.

The RF algorithm measures predictor variable importance by 
quantifying the increase in prediction errors when a predictor is per-
muted in the validation data. We also derived partial dependence 
curves describing the marginal effect of each predictor variable on 
temperature differentials when holding all other predictors constant. 
We collected variable importance scores and partial dependence 
curves for each iteration of the bootstrapping procedure. By using 
RF modeling for exploratory analysis of predictor importance and 
marginal effects on temperature differentials, we needed to ensure 
that predictor variables were not collinear, which would confound 
results. We therefore first tested for multicollinearity in the predic-
tor set by calculating variance inflation factor (VIF) values for each 
predictor and only including those with a VIF of less than 5 (70). 
The VIF score is based on a cross-correlation analysis where pair-
wise correlations between each combination of predictor variables 
are performed. We found that building fraction, building height, 
and the standard deviation of building height were collinear so we 
dropped building fraction and building height from the predictor set. 
Therefore, building height standard deviation was the selected proxy 
for aerodynamic roughness.
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As a further test of the effect of potential multicollinearity and 
the sensitivity of the model to the predictor variable set, we created 
a null model where only roughness and evapotranspiration were 
included as predictors and then iteratively added other predictors to 
the model to explore the effect on variable importance. We found 
that the difference in importance between roughness and evapo-
transpiration was relatively invariant with the addition of potentially 
collinear predictors (fig. S16). Overall variable importance scores 
were derived from the average of this iterative modeling procedure.

Linear regression modeling
To supplement and corroborate the RF model estimates of variable 
importance for roughness and evapotranspiration as determinants 
of local-scale UHI, we also produced MLR models. The MLR analysis 
was limited to the subset of urban clusters (n = 30) with building 
height data because the point was to corroborate the RF model vari-
able importance scores, informing the core hypothesis about UHI 
attribution. Separate MLR models were made for daytime and 
nighttime LST and Tair datasets. Temperature was regressed on all 
explanatory variables, and we then used the “relaimpo” package in 
R to calculate relative importance scores for roughness and evapo-
transpiration (71) using the “lmg” method (72). All variables were 
included in the model; however, the relative importance of roughness 
versus evapotranspiration was determined by decomposing the resid-
ual R2 using the “always” parameter to define the variables that are 
held constant. In addition to examining local-scale UHI, we also ex-
plored city-scale UHI by examining the contribution of city mean 
roughness and evapotranspiration differentials to explaining the 
variation in UHI intensity between cities. We therefore performed 
a linear regression of daytime and nighttime CUHI and SUHI on 
mean city-rural roughness and evapotranspiration differentials.

Last, we also used linear regression to assess how daily weather 
influences the temporal variation in local-scale SUHI-CUHI differences. 
We regressed SUHI-CUHI differences on daily fractional cloud cover, 
diurnal temperature range, and wind speed. Daily cloud cover prob-
abilities were derived from the PATMOS-x dataset (73), temperature 
data from the Netatmo stations, and wind speed from the ERA5 
daily reanalysis dataset.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/22/eabb9569/DC1
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