
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/364612512

Biophysical Impact of Land Use and Land Cover Change on Subgrid

Temperature in CMIP6 Models

Article  in  Journal of Hydrometeorology · October 2022

DOI: 10.1175/JHM-D-22-0073.1

CITATIONS

2
READS

179

7 authors, including:

Tao Tang

Yale University

10 PUBLICATIONS   99 CITATIONS   

SEE PROFILE

Keer Zhang

Yale University

4 PUBLICATIONS   14 CITATIONS   

SEE PROFILE

Lei Cai

Yunnan University

25 PUBLICATIONS   275 CITATIONS   

SEE PROFILE

David Lawrence

Geisel School of Medicine at Dartmouth

292 PUBLICATIONS   43,638 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Tao Tang on 17 March 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/364612512_Biophysical_Impact_of_Land_Use_and_Land_Cover_Change_on_Subgrid_Temperature_in_CMIP6_Models?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/364612512_Biophysical_Impact_of_Land_Use_and_Land_Cover_Change_on_Subgrid_Temperature_in_CMIP6_Models?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Tang34?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Tang34?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Yale-University?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Tang34?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Keer-Zhang-7?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Keer-Zhang-7?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Yale-University?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Keer-Zhang-7?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Cai-5?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Cai-5?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Yunnan_University?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Cai-5?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Lawrence-31?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Lawrence-31?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Geisel-School-of-Medicine-at-Dartmouth?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/David-Lawrence-31?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Tang34?enrichId=rgreq-5bbaf8c15c1ed1f72d85818ecb0b685a-XXX&enrichSource=Y292ZXJQYWdlOzM2NDYxMjUxMjtBUzoxMTQzMTI4MTEyNzQ4NDc4OUAxNjc5MDMzMTE1MzA1&el=1_x_10&_esc=publicationCoverPdf


Biophysical Impact of Land-Use and Land-Cover Change on

Subgrid Temperature in CMIP6 Models

TAO TANG ,a XUHUI LEE,a KEER ZHANG,a LEI CAI ,b,c DAVID M. LAWRENCE ,d

AND ELENA SHEVLIAKOVAe

a School of the Environment, Yale University, New Haven, Connecticut
b Norwegian Research Centre, Bergen, Norway

c Department of Atmospheric Sciences, Yunnan University, Kunming, China
d National Center for Atmospheric Research, Boulder, Colorado

e NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

(Manuscript received 13 April 2022, in final form 7 October 2022)

ABSTRACT: In this study, we investigate the air temperature response to land-use and land-cover change (LULCC;
cropland expansion and deforestation) using subgrid land model output generated by a set of CMIP6 model simulations.
Our study is motivated by the fact that ongoing land-use activities are occurring at local scales, typically significantly
smaller than the resolvable scale of a grid cell in Earth system models. It aims to explore the potential for a multimodel ap-
proach to better characterize LULCC local climatic effects. On an annual scale, the CMIP6 models are in general agree-
ment that croplands are warmer than primary and secondary land (psl; mainly forests, grasslands, and bare ground) in the
tropics and cooler in the mid–high latitudes, except for one model. The transition from warming to cooling occurs at ap-
proximately 408N. Although the surface heating potential, which combines albedo and latent heat flux effects, can explain
reasonably well the zonal mean latitudinal subgrid temperature variations between crop and psl tiles in the historical simu-
lations, it does not provide a good prediction on subgrid temperature for other land tile configurations (crop vs forest; grass
vs forest) under Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) forcing scenarios. A subset of simulations with the
CESM2 model reveals that latitudinal subgrid temperature variation is positively related to variation in net surface short-
wave radiation and negatively related to variation in the surface energy redistribution factor, with a dominant role from
the latter south of 308N. We suggest that this emergent relationship can be used to benchmark the performance of land
surface parameterizations and for prediction of local temperature response to LULCC.

KEYWORDS: Atmosphere; Land surface; Boundary currents; Climate models

1. Introduction

Land-use activities contribute to climate change via biogeo-
chemical and biophysical effects (e.g., Bonan 2008; Lee et al.
2011; Boysen et al. 2020). The former is associated with the
release of carbon to the atmosphere, lifting atmospheric CO2

concentration (e.g., Pan et al. 2011), while the latter is related
to the change of surface properties (e.g., albedo and roughness)
and latent heat (LE) flux (e.g., Davin and de Noblet-Ducoudré
2010; Li et al. 2015). Traditionally, modeling investigations of
land-use and land-cover change (LULCC) are conducted by
running two sets of Earth system model (ESM) simulations: the
first with preindustrial land-cover distributions and the second
with a present-day or a prescribed future land-cover map. One
difficulty with this modeling strategy is how to properly disen-
tangle LULCC climate signals from unforced model variability
and nonlocal feedback effects via changes to atmospheric and
oceanic circulations (Pitman et al. 2009; Pielke et al. 2011; Chen
and Dirmeyer 2020). It is possible to better characterize the

variability and enlarge the signal-to-noise ratio by performing a
large number of perturbation and control simulations, but the
computing cost is prohibitive.

An alternative approach detects the biophysical effects of
LULCC in “all-forcing” modeling experiments (Kumar et al.
2013; Lejeune et al. 2017) using a space-for-time substitution
(Lee et al. 2011). It searches iteratively for grid cells affected
and neighboring grid cells unaffected by LULCC. The tem-
perature and energy flux contrasts between these two groups
of grid cells are regarded as the climatic signal of LULCC.
This method has been used successfully in the investigation of
regional LULCC effects (Li et al. 2016b).

A third approach uses a chessboard method to investigate
deforestation climate effects (Winckler et al. 2017; Prevedello
et al. 2019; Robertson 2019). In these studies, deforested grid
cells are scattered in a chessboard pattern across the globe.
Model simulation is performed only once. The deforestation
signal is obtained by comparing deforested grid cells with
neighboring forested grid cells in the same model run. The
space-for-time analogy is tacitly assumed in data interpreta-
tion. This method provides more spatially refined insights
than the other two methods. Common to all the three meth-
ods is that results are reported as gridcell means.

In this study, we investigate the climate effects of LULCC
by evaluating model output at the subgrid-scale, following
Malyshev et al. (2015) and others. One reason for doing this is
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that ongoing land-use activities are occurring at local scales
that are typically smaller than the resolvable scale of a grid
cell in ESMs (on the order of 100 km). ESMs typically repre-
sent land surface heterogeneity by dividing land grid cells into
subgrid tiles, with each tile having similar physical, ecological,
and biogeochemical characteristics (Malyshev et al. 2015;
Lawrence et al. 2016; Lawrence et al. 2019). Generally, each
tile within a grid cell receives the same forcing from the atmo-
sphere, including incoming solar radiation, incoming longwave
radiation, precipitation, temperature, humidity, and wind at the
first model grid height, but the biophysical and biogeochemical
state and flux variables are simulated at each subgrid level and
then aggregated to produce grid-averaged values that are passed
back to the atmosphere. Since the same atmospheric forcing is
applied to all subgrid tiles within the same grid cell, the differing
responses of land-cover types to the same atmospheric conditions
can be examined (Malyshev et al. 2015). By focusing on subgrid
variations, it may be possible to generate process-level informa-
tion at the scales at which land-use activities}urbanization, de-
forestation, afforestation, agricultural intensification, and other
land management}are occurring. An additional benefit is that
the geographical region of study is not limited solely to regions
that have undergone large-scale land-use transitions. Instead, this
method can be used to quantify potential impacts of proposed
land-use changes virtually anywhere on the globe, as long as mul-
tiple land-use types exist within a single grid cell.

So far, subgrid data have been used in quantification of and
adaptation to urban heat stress using data from urban tiles
(Zhao et al. 2014; Oleson et al. 2015; Li et al. 2016), projection
of global lake evaporation changes using data from lake tiles
(Wang et al. 2018), evaluation of deforestation on local sur-
face climate using forest and grass plant functional types
(PFTs) (Schultz et al. 2016; Liao et al. 2020), assessment of
vulnerability of food production to climate change using sub-
grid data generated for crop tiles (Ren et al. 2018), evaluation
of land-atmosphere parameterizations (Hao et al. 2022), and
effects of nitrogen deposition on LULCC-modified lands (Paulot
et al. 2018). These studies have revealed the dominant roles of
albedo and LE in controlling subgrid temperature variations,
in agreement with observed deforestation effects (da Rocha
et al. 2004; von Randow et al. 2004) and with model simula-
tions of large-scale deforestation (Bonan 2008; Li et al. 2016b).
Specifically, in low latitudes, open land (e.g., cropland and
grassland) is warmer than forests because of reduced LE. In
mid–high-latitude regions, the pattern is reversed because
open land has higher albedo than forests. A reduction of LE
through transpiration and an increase in sensible heat flux
was identified as a primary cause for the summertime north-
ern midlatitude temperature response to cropland expansion
(Findell et al. 2017). Li et al. (2016a) proposed that the com-
bined effect of albedo and LE can be predicted by the heating
potential difference between land-use types, as

DHp 5 DnetSW 2 DLE, (1)

where Hp (5 netSW 2 LE) denotes heating potential, netSW
is net shortwave radiation at the surface, and D denotes
difference between two land-use types. The Hp difference can

explain reasonably well the latitudinal dependence of satellite-
observed surface temperature (skin temperature) contrast
between forests and grasslands (Schultz et al. 2017).

Understanding how air temperature responds to LULCC is
highly relevant to human and ecological health. It is not
known if DHp has the same predictive power for 2-m air
temperature variations between forests and grasslands or for
variations between other land-use types (e.g., forest vs crop-
land). One concern is that the LULCC climate effect is also
controlled by the efficiency of energy redistribution between
the surface and the atmospheric boundary layer. In a future
CO2-enriched world, the stomatal conductance of land eco-
systems is projected to decrease (Yang et al. 2019), leading to
decreased efficiency of turbulent flux and therefore may en-
large subgrid variations in temperature. Even though crops
and grasses are both considered open land [with low surface
roughness, similar albedos and relatively low leaf area index
(LAI)], cropland expansion (at the expense of primary and
secondary land) is known to cause different temperature re-
sponses than replacement of forests by grasslands (Bonan
2001), partly because of the differences in seasonal LAI pat-
terns and greenness (Lamchin et al. 2020).

Multimodel approaches have become a central component to
national and international assessments to understand past, pre-
sent and future climates (Taylor et al. 2012; Eyring et al. 2016;
Jia et al. 2019). To date, published studies on subgrid-scale tem-
perature responses to LULCC have relied on one or at most
two models (Malyshev et al. 2015; Schultz et al. 2016; Liao et al.
2020), and no attempt has been made to evaluate the subgrid-
scale temperature response using a multimodel ensemble. A
multimodel approach has the potential to obtain a more robust
estimate of the climate effects of LULCC, including a range of
projected outcomes and the drivers of these outcomes, and also
may uncover limitations in land parameterization schemes.

In this study, we analyzed the subgrid results from seven
simulations produced by four CMIP6 models. These simula-
tions were conducted under three CO2 forcing scenarios [his-
torical, Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5), and
4 3 CO2]. We focus on three types of subgrid variations [crop
vs primary and secondary land (psl), grass vs forest, and crop
vs forest] across latitudes. By examining latitudinal patterns
of subgrid screen-height (2 m) air temperature response and
model-to-model variations, we hope to generate insights that
can help to improve LSM performance. Another specific goal
is to evaluate if heating potential can form an emergent relation-
ship on the subgrid temperature response to LULCC in this
ensemble of model simulations. Process-based emergent relation-
ships, established with multimodel ensembles and constrained
by observations, have been shown to enable credible projections
on many other aspects of the climate system, such as the snow al-
bedo and the carbon cycle feedback (Hall et al. 2019). A robust
emergent relationship for subgrid surface climate may improve
our ability to predict the climate effect of local LULCC.

2. Model descriptions and simulations

The historical climate simulations were made with four ESMs:
CESM2, NorESM2-LM, GFDL-ESM4, and UKESM1-0-LL.
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These models are participants of the Land Use Model Intercom-
parison Project (LUMIP) (Lawrence et al. 2016). LUMIP is one
the 21 endorsed MIPs under the CMIP6 protocol (Eyring et al.
2016), with the aim to advance our understanding of the impacts
of LULCC on the climate and the biogeochemical cycle. The ex-
periment employed in this study, labeled “hist-noLu,” was forced
by anthropogenic and natural forcing from 1850 to 2014, while
the land use and land cover were held constant at the year of
1850. In other words, the fraction of cropland and pastureland,
the crop type distribution, land management regimes, wood har-
vesting, fire ignition/suppression rates, and so on, did not vary
during the simulation period. In CESM2, vegetation structure
(LAI, stem area index, canopy top and bottom heights) were cal-
culated prognostically with its BGC model. The basic configura-
tions of these models and their LSM schemes are summarized in
Table 1.

We performed one extra hist-noLu simulation using
CESM2 with a modified version of its land scheme. In CLM5,
the land component of CESM2 (Lawrence et al. 2019), the
land surface is represented as a nested hierarchy of subgrid
levels. The first subgrid level is the land unit, including vegeta-
tion, lake, urban, glaciers, and crops, with a fraction assigned
to each land unit. The crop tile contains managed, unman-
aged, rainfed and irrigated crops. The irrigation option is en-
abled in both hist-noLu simulations. In irrigated croplands, a
check is made once per day to determine whether irrigation is
required on that day. Irrigation is required if crop leaf area is
positive and the available soil water is below a specific thresh-
old (Lawrence et al. 2018). The second subgrid level is the col-
umn, which intends to capture variability in the soil and snow
state variables within a single land unit. The key characteristic
of the column level is that this is where the state variables for
water and energy in the soil and snow are defined. The third
subgrid level is PFT, which captures the biophysical and bio-
geochemical differences between broad categories of plants.
In the default CLM5 configuration, the vegetated land unit is
assigned a single column whereby all the PFTs in the unit
share the same soil column in terms of water, nutrient use and

soil heat exchange. Recent studies have shown that this
shared soil column configuration can lead to unrealistic
ground heat fluxes because a common soil temperature is arti-
ficially maintained for all PFTs within a column (Schultz et al.
2016; Meier et al. 2018). In this new hist-noLu simulation,
each PFT in the vegetation unit was assigned its own soil col-
umn, following the method described by Schultz et al. (2016).
We note that UKESM1 and NorESM2 are configured with
shared soil column and GFDL has an individual soil column
for different vegetation and land-use types (Table 1).

Although CESM2-CLM5.0 (and presumably the other
models) can output data at the PFT level, the LUMIP proto-
col only requested subgrid data for up to four subgrid tiles
(psl, crop, urban, and pastureland), and only two tiles (psl and
crop) have complete data across the four LUMIP models as-
sessed here. For this reason, our multimodel analysis is re-
stricted to subgrid variations between these two tiles. In
LUMIP, the psl tile is an area-weighted aggregation of forest,
unmanaged grassland, and shrub.

The NorESM2 model uses CLM5 as its land component
(Seland et al. 2020). All vegetation PFTs share a single soil
column.

The land component of the GFDL model, LM4, is based on
the LM3 model (Shevliakova et al. 2009; Zhao et al. 2018). In
LM4, each grid cell consists of up to 15 tiles (including a bare
soil tile) to represent subgrid differences in hydrology and
carbon states. Each tile has its own soil column. Changes in
tile types and areas occur annually according to the Land-Use
Harmonization dataset (Hurtt et al. 2020). The physical and
biogeochemical fluxes between the land and the atmosphere
are calculated separately for each tile. There is no real crop in
the GFDL model; instead, cropland is approximated by C3 and
C4 grass (Shevliakova et al. 2009). For LUMIP subgrid tile re-
porting, all secondary and natural tiles are aggregated into the
psl tile (Lawrence et al. 2016). Croplands are unirrigated.

The land component of UKESM1 model, JULES-GL7,
uses a surface tiling scheme to represent subgrid heterogene-
ity. Tiles in a grid cell share a single soil column. Each tile has

TABLE 1. Models and simulations used in this study.

Model
Resolution
(lat 3 lon)

Land surface
model

Soil
configuration Forcing Tile pair Irrigation Reference

NCAR-CESM2 (default) 0.9 3 1.25 CLM5 Shared Hist-noLu Crop–psl On Lawrence et al. (2019),
Danabasoglu et al.
(2020)

NorESM22-LM 1.9 3 2.5 CLM5 Shared Hist-noLu Crop–psl On Seland et al. (2020)
GFDL-ESM4 1.0 3 1.25 LM4 Individual Hist-noLu Crop–psl Off Zhao et al. (2018),

Dunne et al. (2020)

UKESM11-0-LL 1.25 3 1.9 JULES-GL7.0 Shared Hist-noLu Crop–psl Off Sellar et al. (2019),
Wiltshire et al.
(2020)

NCAR-CESM2 (individual soil) 0.9 3 1.25 CLM5 Individual Hist-noLu Crop–psl On Schultz et al. (2016)
NCAR-CESM2 (individual soil) 0.9 3 1.25 CLM5 Individual 4 3 CO2 Crop–psl Off This study
NCAR-CESM2 (individual soil) 0.9 3 1.25 CLM5 Individual SSP5-8.5 Crop–forest On Zhang et al. (2022)

Grass–forest
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its own albedo, surface conductance, turbulent fluxes, ground
heat flux, radiation fluxes, snow mass and snow melt, and sur-
face temperature. There are nine surface tiles consisting of
five PFTs (broadleaf trees, needleleaf trees, C3 grass, C4 grass
and shrubs) and four nonvegetated surface types (urban,
inland water, bare soil, and ice). The tile fractions are spatially
varying and produced by a remapping of the 17 IGBP types.
The crop and pasture are physiologically identical to the natu-
ral grasses. For example, a cropland tile consists of 75%
C3 grass, 5% C4 grass and 20% bare soil (Wiltshire et al.
2020). Irrigation in the UKESM1 is turned off in the CMIP6
simulations.

The spatial distribution of psl and crop fractions are shown
in Fig. S1 in the online supplemental material. The psl tile
takes up over 50% of the land surface in all models. The dif-
ferences across the models are due to different treatments of
the psl tile. For example, desert (bare ground) is included in
psl tile of CESM2 and GFDL model, but not in UKESM1.

To investigate how atmospheric CO2 influences subgrid
temperature variations and to increase the number of subgrid
tile configurations, we performed two more simulations with
CESM2 using the individual soil column setup (Table 1). The
first simulation was an instant quadrupling of the preindustrial
CO2 concentration (4 3 CO2) with the same land use and
land cover as in hist-noLu. This simulation was run in coupled
mode for 120 years. Subgrid data were aggregated to four
land tiles according to the LUMIP protocol and only the psl
and the crop data were analyzed here. The second simulation
was forced by the SSP5–8.5 scenario from 2015 to 2100. This
is a high emission transient scenario, with atmospheric CO2

increasing from about 400 ppm in 2015 to about 1135 ppm in
2100 resulting in a radiative forcing of 8.5 W m22 in 2100 rela-
tive to the preindustrial level (Meinshausen et al. 2020). At-
mospheric CO2 can impact the surface climate directly via
stomatal control on transpiration and indirectly via snow phe-
nology change induced by changes in temperature. The multi-
ple CO2 scenarios allow us to determine which impact is
stronger. The land use of year 2015 was used throughout the
simulation. Subgrid data were archived for eight land tiles
(Zhang et al. 2022). In this study, we analyzed the data for for-
est, crop, and grass tiles.

Some ESMs deploy a land parameterization that considers
subgrid topographic effects (Tesfa and Leung 2017; Hao et al.
2022). In the ESMs shown in Table 1, there is no elevation
change between different land uses within the same model
grid.

3. Data analysis

The 2-m air temperature (T) variations are the main focus
in this study. These variations were quantified as the differ-
ence, denoted by D, in T between three pairs of subgrid tiles,
including 1) crop versus psl from the hist-noLu simulations
and the 4 3 CO2 simulation, 2) crop versus forest from the
SSP5-8.5 simulation, and 3) grass versus forest from the
SSP5–8.5 simulation. In these paired calculations, psl and for-
est tiles are the baseline land use, and crop and grass are the
perturbations. For example, when examining the data from

hist-noLu simulations, DT is the difference in the 2-m air tem-
perature between crop and psl (crop minus psl). The D values
of other subgrid variables were calculated similarly (crop mi-
nus forest and grass minus forest). Unless stated otherwise,
results are presented as seasonal and annual means of the last
20 years of each simulation. They are year 1995–2014 for the
hist-noLu simulations, year 100–120 for the 4 3 CO2 simula-
tion and 2081–2100 for the SSP5–8.5 simulation.

Using the space-for-time substitution, the contrast in tem-
perature between the crop and the psl or forest tile can be re-
garded as the local climate effect of agricultural expansion.
Likewise, the contrast between the grass and the forest tile is
equivalent to the local climate effect of deforestation. This ap-
proach considers direct impact only. It does not include indi-
rect impact due to atmospheric changes (e.g., cloud feedback)
or effects of local terrain variations (Hao et al. 2022).

The subgrid temperature variations are related to sub-
grid variations in Hp, which were calculated according to
Eq. (1). Subgrid variations in several biophysical properties
and surface fluxes, including LAI, netSW, and LE, were
also examined.

For a subset of model simulations, we investigated the de-
pendence of DT on the efficiency of energy redistribution be-
tween each land tile and the overlaying atmosphere. This
efficiency was quantified using the dimensionless energy redis-
tribution factor f. Following Lee et al. (2011) and Bright et al.
(2017), f was calculated from the diagnostic equation:

f 5
l

Ts – Tb

(R*
n 2 G) 2 1, (2)

where Ts and Tb represent surface temperature and air tem-
perature at the blending height (or the lowest atmospheric
grid), respectively, l is the local climate sensitivity given by
1/(4sT3

S) with s being the Stefan–Boltzmann constant, G de-
notes the ground heat flux, and R*

n is apparent net radiation
given as

R*
n 5 _SW 2 ↑SW 1 _LW 2 sT4

b, (3)

where _SW is the incoming shortwave radiation, ↑SW is the
outgoing shortwave radiation, and _LW is the incoming long-
wave radiation. Higher f values indicate more efficient con-
vection exchange or energy dissipation from the surface to
the lower boundary layer. The daytime f ranges from about
2 to 30 and the nighttime f from about 0.3 to 4 (Chakraborty
and Lee 2019). Calculation of f was made for three simula-
tions, all using CESM2 (hist-noLu with independent soil
column, 4 3 CO2, and SSP5–8.5) but was not done for other
simulations because the blend-height air temperature was not
available.

4. Results

a. Climatic effects of cropland expansion:
Geographic pattern

Figure 1 maps the differences of annual mean temperature
and Hp terms between crop and psl tiles for each model. In
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the space-for-time framework, these subgrid variations can be
interpreted as local climatic effects of cropland expansion.
Cropland-induced cooling (DT , 0) in mid–high latitudes
of Northern Hemisphere (NH) and warming in the tropics
(DT . 0) are observed in all models with varying magni-
tudes, except for UKESM1. The UKESM1 model, on the
other hand, shows a widespread cooling across the globe.
The DT patterns are broadly consistent with previous
studies using remote sensing data (Li et al. 2015, 2016a;
Duveiller et al. 2018; Boysen et al. 2020) and can be largely
explained by DHp (Figs. 1p–t), in which grids with positive
DHp generally show positive DT, and vice versa. The spatial
correlation coefficient r between DT and DHp is higher
than 0.74 (p , 0.001) except for GFDL model with r 5 0.23
(p , 0.001). The result for GFDL is noisy compared with
the CLM-based models.

On the whole, cropland expansion leads to a widespread
decrease of net SW radiation, with a stronger drop in high lat-
itudes, which is a result of an increase in albedo (Figs. 1f–j).
There are two reasons for the difference: (i) In the growing
season, croplands generally have a higher albedo than forests
and therefore reflect more SW radiation (Pielke et al. 2011; Li
et al. 2015; Duveiller et al. 2018); (ii) during the winter, snow
can mask croplands but has smaller impact on forests, leading
to a larger albedo effect at high latitudes (Robinson and
Kukla 1984).

In all the models, cropland expansion results in a reduction
of LE at low latitudes (DLE , 0, Figs. 1k–o), possibly owing
to the shallower root system and smaller LAI of cropland
compared with psl (Bonan 2008; Davin and de Noblet-Ducoudré
2010; Lawrence and Vandecar 2015), and reduced surface
roughness (Winckler et al. 2019b). These models are not

consistent in some midlatitude regions: DLE shows no change
or slightly positive changes in arid zones (west North America
and central Asia) in CLM-based models (two CESM2 simula-
tions and one NorESM2 simulation) while in GFDL and
UKESM1, DLE shows slightly negative values. Different
model parameters such as root distribution and plant water
uptake (Meier et al. 2018), as well as the differing re-
sponses of precipitation and snowfall (Li et al. 2015) may
partially explain the incongruent responses of LE across
the models.

b. Seasonal pattern of cropland climate effects

Figure 2 shows the seasonal evolution of zonal mean val-
ues for DT, DnetSW, and DLE between crop and psl tiles.
Crops are warmer all year round (except for UKESM1,
which produces cooling), with a slightly stronger warming
in summer in CLM-based models than in GFDL in the
tropics (Fig. 2, upper row). Such a warming pattern is
mainly contributed by reduced LE (Fig. 2, lower row). The
DT in mid–high latitudes (e.g., around 608N) shows strong
seasonality in all the models, with the strongest negative DT
observed in February to May (Fig. 2, upper and middle
rows), which is mainly attributed to the snow-masking ef-
fect (Bonan et al. 1992).

In the three CLM-based model simulations, there is
a stripe of negative DT in the middle latitudes of NH in
the spring-to-summer transition (from April to June;
Figs. 2a,b,e). This cooling is mainly attributed to the positive
DLE (Figs. 2k,l,o). The enhanced LE appears to be a result
of the crop growth in the springtime as evidenced by posi-
tive DLAI (Fig. 3).
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FIG. 1. Changes of annual mean temperature and heating potential terms for each model (crop minus psl). (a)–(e) Temperature T,
(f)–(j) net SW radiation, (k)–(o) LE, and (p)–(t) heating potential Hp. Gray dots indicate that the changes are significant at 0.05 level
based a two-sided Student’s t test. The dots are shown every 5 grids for clarity.
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c. Sensitivity to soil column configuration

The three CLM-based model simulations show nearly iden-
tical zonal mean patterns of the subgrid contrasts in annual
mean temperature and the Hp terms between crop and psl
tiles (Figs. 4a,b,e). All show the largest drop in temperature
around 608N, with a zonal mean value from 20.24 to20.28 K.
Then DT increases southward and switches to positive values
around 428N, with a peak (0.61–0.71 K) in the tropical re-
gions. The tropical (208S–208N) mean DT is 0.44 K (CESM2

default), 0.44 K (NorESM2), and 0.39 K (CESM2 individual
soil; Fig. 5). The mean DT for mid–high latitudes (408–708N) is
20.07 K (CESM2 default), 20.09 K (NorESM2), and 20.11 K
(CESM2 individual soil). In the CESM2 default and the Nor-
ESM2 simulations, all natural PFTs shared the same soil column,
whereas in the CESM2 individual soil simulation, each PFT was
assigned its own soil column. In all three simulations, crops had
their own separate soil columns. Figures 4 and 5 indicate that the
result for the psl tile is insensitive to soil column configuration.

FIG. 2. Hovmöller plot for (a)–(e) DT, (f)–(j) DnetSW, and (k)–(o) DLE. Results shown are zonal mean values vs month. All results are
crop minus psl. Gray dots indicate missing data or insignificant changes at the 0.05 level based on a two-sided Student’s t test.
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Individual soil configuration is preferred over shared col-
umn configuration if the interest is subgrid variations between
PFTs within the natural vegetation land unit, such as variations
between forest and grass (Schultz et al. 2016). In the present
study, the psl tile is an aggregate of multiple PFTs (forest,
grass, shrub, and bare ground). The insensitivity shown in
Figs. 4 and 5 indicates that the aggregation has mostly elimi-
nated bias errors associated with unrealistic ground heat fluxes
in shared column configuration.

d. Influence of atmospheric CO2 on subgrid variations

Our model ensemble encompasses a wide range of CO2

levels: from 285 to 400 ppm under the historical forcing,

1140 ppm in the 4 3 CO2 scenario and from 400 to 1135 ppm
under the SSP5–8.5 scenario. To examine the influence of
CO2 on subgrid variations, we compare in Fig. 6 the zonal
mean contrasts (crop minus forest) in T, netSW, and LE be-
tween the first 20 (2015–34) and the last 20 years (2081–2100)
of the CESM2 model simulation under SSP5–8.5 scenario.
The mean CO2 concentration is ;430 ppm in the first period
and ;1000 ppm in the last period. The grid by grid scatter-
plots are given in Fig. S2. The differences between these two
periods can be explained by changing background climate
and indirect effects of rising CO2. For example, the magnitude
of albedo effect may be reduced in a warmer world (Fig. 6b).
A higher CO2 concentration may reduce stomatal opening,
resulting in a lower LE flux. The contrast in the DnetSW
(crop minus forest) is less negative at mid–high latitudes in
the second period than in the first period (Fig. 6b) because of
less snowfall and a shorter snow cover duration in a warmer
climate (Fig. S3), which leads to less negative DT in the high
latitudes (Fig. 6a). The DLE is slightly more positive in the
second than in the first period, due to more cropland irriga-
tion (higher soil moisture content) driven by higher tempera-
ture in the later period (Fig. 6c). The CO2 effect via stomatal
regulation appears negligible on the differences between
crops and forests.

e. Emergent relationship on subgrid temperature variations

Figure 7 shows the correlation between zonally averaged
DT, DnetSW, DLE, and DHp for crops minus psl. The correla-
tion between DT and DnetSW is stronger for the mid–high lat-
itudes than for the tropical regions, with a correlation
coefficient of 0.86 (p , 0.01) and a slope of 0.04 K (W m22)21

across all models (Fig. 7a). This regional difference indicates
a stronger albedo effect in the mid–high latitudes than in low

FIG. 3. As in Fig. 2, but for DLAI in the CESM2 model default
simulation. Gray dots indicate missing data or insignificant changes
at the 0.05 level based on a two-sided Student’s t test.

FIG. 4. Zonal mean changes (crop minus psl) of annual mean temperature and heating potentialHp terms for each model simulation.
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latitudes. In contrast, DLE controls the temperature change in
the tropical regions, characterized with a correlation coeffi-
cient of 20.80 (p , 0.01) and a slope of 20.03 K (W m22)21

(Fig. 7b, red). The impact of DLE in the mid–high latitudes is
relatively minor (Fig. 7b, blue). The correlation pattern with
the heating potential DHp does not differ much between the
two zones (Fig. 7c).

The crop-versus-psl difference in the overall heating
potential DHp, which combines both DnetSW and DLE
[Eq. (1)], as the independent variable correlates reasonably
well with DT (r 5 0.72, p , 0.01) for all latitudes and all
hist-noLu model simulations (Fig. 7d). The regression
equation is given by

DT 5 20:030 1 0:025DHp, (4)

where DT is in kelvins and DHp is in watts per square meter.
In comparison, DT and DHp in a large-scale deforestation ex-
periment are highly correlated in the latitude zone from 208S
to 508N but poorly correlated north of 508N (Li et al. 2016a).
A small group of outliers in Fig. 7d deviate significantly from
Eq. (4). They occur in the GFDL model, mainly north of
458N and south of 408S (Fig. 4c), implying factors other than
DnetSW and DLE, such as the energy redistribution factor,
may also play a role in modifying DT.

An open question is whether Eq. (4) is a robust emergent
relationship on subgrid variations under other CO2 scenarios
and on variations associated with other types of land use.
To answer this question, we did three out-of-sample tests us-
ing the CESM2 model results (crop 2 psl in 4 3 CO2, grass 2
forest in SSP5–8.5 and crop 2 forest in SSP5-8.5; Table 1).
We found that this relationship predicts DT reasonably well
for the same subgrid tile configuration (crop vs psl) under 4 3

CO2 (Fig. 8a, r 5 0.92), but does not work well for DT associ-
ated with two other tile configurations (grass vs forest,
Fig. 8b; crop vs forest, Fig. 8c) under the SSP5-8.5 scenario. In
these two cases, most of the data points lie above the regres-
sion line of Eq. (4). In the case of crop versus forest, the rela-
tionship is noisy with r value of 0.47 only. In other words,
albedo and LE differences cannot fully explain the range of
local temperature responses to LULCC.

Published modeling studies of large-scale deforestation
have shown that the surface air temperature responds to
changes in surface roughness in addition to changes in albedo
and LE (e.g., Winckler et al. 2019b). In the local surface en-
ergy balance framework, this roughness effect can be quanti-
fied with the energy redistribution factor f (Lee et al. 2011).
We analyzed the dependence of DT on various combinations
of DnetSW, DLE, and Df using a subset of the simulations
with CESM2. We did not consider DnetSW 2 DLE 2 DH as
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FIG. 5. Domain-averaged annual mean DT for tropical regions
(red), mid–high-latitude regions (blue), and global land grids (or-
ange, no Antarctica) for each model. Results are crop minus psl.
Each circle represents a 1-yr value during 1995–2014.

FIG. 6. Zonal mean differences (crop minus forest) of (a) temperature, (b) net SW radiation, and (c) LE flux under the SSP5–8.5 scenario
in 2015–34 (blue) and 2081–2100 (red).
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predictor, because on the annual time scale this combination
is roughly equivalent to D↑LW or change in the outgoing
longwave radiation. Since ↑LW is controlled by the surface
temperature according to the Stephan–Boltzmann law, use of

D↑LW as a predictor of DT would amount to circular reason-
ing of explaining temperature with temperature. The best sta-
tistical model is obtained by regressing DT against DnetSW
and Df (all as zonal mean values):

FIG. 7. Linear relationship between zonally averaged (a) DT and DnetSW, (b) DT and DLE, and (c),(d) DT and DHp for
all hist-noLu simulations (crop minus psl). In (a), (b), and (c), red and blue symbols represent tropics and mid–high-latitude
regions, respectively. In (d), all latitude bands are used. Each symbol represents zonal mean value of one latitude band. The
lines represent linear regression fit, with linear correlation (r) and confidence level (p) values shown.
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DT 5 0:017 3 DnetSW – 0:170 3 Df – 0:018: (5)

This linear model explains 88% of the variations (r2 5 0.88)
in DT between crop versus psl, crop versus forest, and grass
versus forest under three different CO2 forcing scenarios
(historical, 4 3 CO2 and SSP5–8.5; Fig. 9a). Consistent with
the heating potential relationship [Eqs. (1) and (4)], DT is
positively related to DnetSW, indicating that land-use
change that causes a reduction in albedo contributes to
warming. On the other hand, the relationship with Df is
negative, or land-use change that increases the efficiency of
surface-air energy redistribution contributes to cooling.
The zonal patterns of Df are given in Fig. S4. In these three
tile pairs, open land tiles (crop and grass) have smaller f
than their corresponding baseline tile (psl or forest). This is
because f decreases with increasing heat diffusion resis-
tance in the surface layer and with increasing Bowen ratio
(Lee et al. 2011) and because open land tiles have higher

diffusion resistance due to their lower roughness and gener-
ally higher Bowen ratio.

The individual contributions of DnetSW and Df to DT can
be estimated by multiplying their coefficients, respectively
(Figs. 9b–e). In the three tile configurations, change in the en-
ergy redistribution factor dominates the latitudinal pattern of
DT between 608S and 308N (blue lines). In mid–high latitudes
(roughly north of 408N), change in albedo is dominant, result-
ing in lower temperatures in open land (crop and grass) than
in psl or forest.

f. Behavior of the UKESM1 model

In contrast to warming at low latitudes and cooling at
high latitudes in the other model simulations, the UKESM1
model shows cooling due to cropland expansion across all
latitudes (Figs. 1, 2 and 4). To understand this behavior, we
compared the annual albedo and LE for the crop and the
psl tile and their differences among the five hist-noLu

FIG. 9. An emergent relationship on subgrid temperature variations in CESM2 model simulations. (a) Original DT vs fitted DT
[Eq. (5)]. (b)–(e) Zonal mean plot of original DT, fitted DT. In (b)–(e), the blue and orange lines represent contribution to DT from
changes in energy redistribution factor and in netSW, respectively. The SSP5–8.5 results are for 2081–2100.
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model simulations (Fig. 10, Tables 2 and 3). The albedo of
the crop tile in UKESM1 is generally higher than other
models. In the region of 408–708N, the UKESM1 model
has a mean crop albedo of 0.37 compared with 0.23 in
CESM2 (default) and 0.29 in GFDL, causing a stronger re-
duction of net SW radiation (213.8 W m22) than in other
models (from 26.6 to 212.5 W m22). The most negative

zonal mean DT of 20.93 K occurs in the UKESM1 simula-
tion at 608N (Fig. 4d).

The UKESM1 model shows a similar LE to CESM2 for the
psl tile (Fig. 10d), but a roughly 20 W m22 higher LE for the
crop tile in the tropics relative to CESM2. This translates into
a less negative LE change (24.4 W m22) compared with
CESM2 (218.0 W m22) in the tropical region (Table 3), and

FIG. 10. Zonal mean plot of mean albedo in psl (a) tile, (b) crop land tile, and (c) their differences in hist-noLu simulations. (d)–(f) As in
(a)–(c), but for LE flux.

TABLE 2. Albedo and DnetSW radiation in each model for the tropics and mid–high latitudes.

Mean albedo (psl) Mean albedo (crop) Dalbedo (crop 2 psl)
DnetSW

(crop 2 psl; W m22)

Model 208S–208N 408–708N 208S–208N 408–708N 208S–208N 408–708N 208S–208N 408–708N

CESM2 default 0.16 0.19 0.16 0.23 0 0.04 20.5 26.6
NorESM2 0.16 0.19 0.16 0.24 0 0.05 20.3 26.6
GFDL 0.18 0.19 0.23 0.29 0.05 0.10 210.4 212.5
UKESM1 0.19 0.27 0.23 0.37 0.04 0.10 28.1 213.8
CESM2 individual soil 0.16 0.19 0.16 0.24 0 0.05 20.4 26.8
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negative or near-zero DHp (Fig. 4d) as opposed to large posi-
tive DHP in CESM2 (Fig. 4a). The combination of a stronger
albedo effect and a reduced LE change leads to the above-
mentioned consistent cooling in UKESM1 model.

The GFDL model also shows a strong albedo-driven cool-
ing effect at high latitudes and a high LE flux in the tropics
for the crop tile (Figs. 10b,e). However, due to a high LE
flux of the psl tile, the LE difference between crop and psl is
similar to the other models at low latitudes and is negative
at mid–high latitudes, which offsets the cooling effect from
albedo.

5. Discussion and summary

In this study, we investigated the LULCC impact on local
subgrid tile air temperature with a set of CMIP6 ESMs across
a large range of CO2 concentrations. We found that the sub-
grid temperature response to LULCC varies by latitude, and
depends on the competing effects of albedo, LE and energy
redistribution. Because of this balancing act, there exists a
transitional latitude that divides warming to the south and
cooling to the north from land clearing. Satellite-based studies
on land surface temperature show that deforestation leads
to cooling north of 458–558N (Alkama and Cescatti 2016;
Duveiller et al. 2018), while in observational studies of air
temperature, the transition from warming to cooling occurs

farther south, at around 358N (Lee et al. 2011; Zhang et al.
2014). In a model simulation of local deforestation (grass vs
forest) under the historical climate (1991–2010; Schultz et al.
2016), the transition in air temperature change occurs at
around 488N. Winckler et al. (2019c) reported a transition of
458–558N for surface temperature in the MPI-ESM model. In
the historical simulations presented here, the transition of
positive DT (2-m air temperature, crop minus psl) to nega-
tive DT occurs at around 408N (388–428N; Figs. 4a,b,c,e).
The simulation of a transient climate scenario suggests that
under future higher CO2 conditions, the transition may shift
farther north (Fig. 6a).

The latitudinal dependence of temperature response to
LULCC can be further understood by quantifying the relative
contribution of nonradiative processes. Following Bright et al.
(2017), the nonradiative contribution is given as

nonradiative fraction 5
|RH2|

(|RH1| 1 |RH2| 1 |RH3|)
3 100%: (6)

In Eq. (6), |RH1|, |RH2|, and |RH3| are the first, second,
and third terms on the right-hand side of Eq. (5). The zonal
mean results (Fig. 11) show that the nonradiative contribution
exceeds 50% between 458S and 308N, with peak values
(.80%) at tropical latitudes (158S and 108N), over the ranges

TABLE 3. LE flux in each model for the tropics and mid–high latitudes (W m22).

Mean LE (psl) Mean LE (crop) DLE (crop 2 psl)

Model 208S–208N 408708N 208S–208N 408–708N 208S–208N 408–708N

CESM2 default 72.1 30.4 54.2 29.7 218.0 20.8
NorESM2 75.4 31.2 54.5 31.5 220.8 0.3
GFDL 85.6 44.3 70.2 32.8 215.4 211.6
UKESM1 77.7 31.8 73.3 29.1 24.4 22.7
CESM2 individual soil 68.5 28.5 54.0 29.4 214.4 0.9

FIG. 11. Zonal mean fractions of DT contributed by nonradiative process in CESM2 simulations.
Dashed line represents 50%.
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of the CO2 and land-use change scenarios simulated by
CESM2. These results confirm the dominant role of nonradia-
tive processes at these latitudes, consistent with previous anal-
yses (Bright et al. 2017; Ge et al. 2019). For example, in
Bright et al. (2017), the authors found that nonradiative pro-
cesses dominate the local temperature response to LULCC
effect, especially in the tropics. In more northern latitudes,
the nonradiative contribution seems to be more sensitive to
CO2 concentration, irrigation status (the irrigation scheme
was turned off in the 4 3 CO2 simulation) and LULCC type
(Fig. 11).

Unlike the other models, the UKESM1 model shows cool-
ing due to agricultural expansion across all latitudes (Fig. 4d).
This different behavior arises largely from the higher albedo
and the higher LE of the crop tile in UKESM1 than in the
other models (Tables 2 and 3; Fig. 10). The land surface
scheme in UKESM1 is JULES (Table 1). Previous modeling
studies with JULES reveal that its albedo response to land
clearing is too strong in comparison to other models (Kumar
et al. 2013; Davies-Barnard et al. 2014; Robertson 2019;
Winckler et al. 2019a). In an evaluation of JULES against an
observational dataset, Robertson (2019) found that albedo er-
rors in JULES are a major reason for its temperature biases.
The exact cause of the albedo errors is not clear. It may be re-
lated to relative biases in optical parameter settings, such as
leaf and soil albedo, among different PFTs or to LAI calcula-
tion and calculation of canopy radiation. They also suggest
that errors in surface roughness length may partially explain
its different LE response from other models. In these studies,
performance evaluation is based on grid mean values in con-
trol versus perturbation simulations (Davies-Barnard et al. 2014),
“all-forcing” simulations (Kumar et al. 2013) or “chessboard”
simulations (Robertson 2019; Winckler et al. 2019a) as de-
scribed in the introduction. Our analysis demonstrates sim-
ilar parameterization biases at the subgrid level in JULES.
This example supports the view that subgrid model data
provides useful diagnostic information on land surface
model performance.

The surface heating potential Hp has been used to explain
the land surface temperature variations observed by satellites
(Schultz et al. 2017). In the present study, Hp explains reason-
ably well the latitudinal dependence of the 2-m air tempera-
ture change between crop and psl land tiles for all the five
hist-noLu model simulations (including UKESM1; r 5 0.72,
Eq. (4) and Fig. 7c). However, this relationship does not hold
for two other subgrid tile configurations (grass vs forest; crop
vs forest; Fig. 8). An alternative formulation, given by Eq. (5),
combines the contributions to subgrid temperature variations
from radiative processes via changes in the net SW radiation
(primarily due to surface albedo change) and from nonradia-
tive processes via the energy redistribution factor, the latter of
which accounts for the surface roughness effect. Equation (5)
appears more robust than the Hp relationship [Eq. (4)],
explaining 88% of the subgrid air temperature variations be-
tween crop versus psl, crop versus forest, and grass versus for-
est tiles and under three different CO2 forcing scenarios
(historical, 43 CO2, and SSP5–8.5; Fig. 9a). In a pseudovalida-
tion exercise, with the MODIS albedo product and CESM2-

generated f values, we find that Eq. (5) fits reasonably well
with the latitudinal variation of DT observed at 42 paired flux
network (FLUXNET) sites [open land vs forest, values aver-
aged every 58 of latitude; Lee et al. (2011) and Zhang et al.
(2014); r 5 0.95, p , 0.001, RMSE 5 0.23 K; Fig. S5]. We sug-
gest that Eq. (5) may serve as an emergent constraint for
benchmarking the performance of land surface models and for
prediction of local temperature response to LULCC.

One limitation of the present study is that atmospheric tem-
perature data at the first model grid height (or blending
height) are not available for three of the four ESMs. In keep-
ing with the typical practice, these models archive air temper-
ature at fixed pressure levels (1000, 925, 850 hPa, and so on),
with the lowest level being 1000 hPa, or ;100 m above the
sea level. However, the surface elevation in most land surface
grids is greater than 100 m. Data at the blending height are
necessary to perform diagnostic calculation of the energy re-
distribution factor f. Because of this data limitation, Eq. (5) is
based on the data provided by CESM2 only. To check the ro-
bustness of Eq. (5), we also estimated the f values for the four
hist-noLu simulations (CESM2 default, NorESM2, GFDL,
UKESM1; Table 1), using the temperature at the lowest pres-
sure level as a substitute for the blending height temperature.
Using the Df value obtained this way along with DnetSW, we
calculated the DT from Eq. (5). The results, presented in
Fig. S6, show that Eq. (5) performs reasonably well across the
four ESM models. As f is increasingly used in LULCC stud-
ies, it is imperative that in future LUMIP-like projects, out-
puts for the blending height be archived along with surface
and 2-m height variables.

In summary, our study shows that the albedo effect and LE
flux response cannot fully explain the temperature response to
LULCC activities. A new emergent relationship is proposed
that combines the albedo effect and the effect of energy redistri-
bution between the surface and the atmosphere. This relation-
ship highlights the dominant role of nonradiative processes in
the temperature response. Simulations under higher CO2 condi-
tions indicate that rising atmospheric CO2 can alter the local
climate effects of LULCC indirectly by altering irrigation inten-
sity and snow cover duration. These insights from a multimodel
and multiscenario perspective may be helpful to evaluate the
performance of land surface model parameterizations.

Acknowledgments. We acknowledge the support from the
U.S. National Science Foundation (Grant AGS1933630 to
X.L.). High-performance computing support from Cheyenne
(https://doi.org/10.5065/D6RX99HX) was provided by the
NCAR’s Computational and Information System Laboratory,
sponsored by the National Science Foundation and other agen-
cies. D.M.L. is supported by the National Center for Atmo-
spheric Research, which is a major facility sponsored by the
NSF under Cooperative Agreement 1852977 and by the U.S.
Department of Energy, Office of Biological and Environmen-
tal Research Grant DE-FC03-97ER62402/A0101.

Data availability statement. The CMIP6/LUMIP model
output used in this study is available at https://esgf-node.llnl.

T A NG E T A L . 385MARCH 2023

Brought to you by Yale University Library | Unauthenticated | Downloaded 03/01/23 05:43 PM UTC

https://doi.org/10.5065/D6RX99HX
https://esgf-node.llnl.gov/projects/cmip6/


gov/projects/cmip6/. The output of the SSP5–8.5 simulation is
available at https://doi.org/10.7910/DVN/HUXAH6. The out-
put of the 43 CO2 simulation, the data and Matlab scripts used
in figure production are available upon reasonable request.

REFERENCES

Alkama, R., and A. Cescatti, 2016: Biophysical climate impacts of
recent changes in global forest cover. Science, 351, 600–604,
https://doi.org/10.1126/science.aac8083.

Bonan, G. B., 2001: Observational evidence for reduction of daily
maximum temperature by croplands in the Midwest United
States. J. Climate, 14, 2430–2442, https://doi.org/10.1175/1520-
0442(2001)014,2430:OEFROD.2.0.CO;2.

}}, 2008: Forests and climate change: Forcings, feedbacks, and
the climate benefits of forests. Science, 320, 1444–1449,
https://doi.org/10.1126/science.1155121.

}}, D. Pollard, and S. L. Thompson, 1992: Effects of boreal for-
est vegetation on global climate. Nature, 359, 716–718, https://
doi.org/10.1038/359716a0.

Boysen, L. R., and Coauthors, 2020: Global climate response to
idealized deforestation in CMIP6 models. Biogeosciences, 17,
5615–5638, https://doi.org/10.5194/bg-17-5615-2020.

Bright, R. M., E. Davin, T. O’Halloran, J. Pongratz, K. Zhao,
and A. Cescatti, 2017: Local temperature response to land
cover and management change driven by non-radiative
processes. Nat. Climate Change, 7, 296–302, https://doi.
org/10.1038/nclimate3250.

Chakraborty, T., and X. Lee, 2019: Land cover regulates the spa-
tial variability of temperature response to the direct radiative
effect of aerosols. Geophys. Res. Lett., 46, 8995–9003, https://
doi.org/10.1029/2019GL083812.

Chen, L., and P. A. Dirmeyer, 2020: Reconciling the disagreement
between observed and simulated temperature responses to
deforestation. Nat. Commun., 11, 202, https://doi.org/10.1038/
s41467-019-14017-0.

Danabasoglu, G., and Coauthors, 2020: The Community Earth
System Model version 2 (CESM2). J. Adv. Model. Earth Syst.,
12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

da Rocha, H. R., M. L. Goulden, S. D. Miller, M. C. Menton, L.
D. V. O. Pinto, H. C. de Freitas, and A. M. Silva Figueira,
2004: Seasonality of water and heat fluxes over a tropical for-
est in eastern Amazonia. Ecol. Appl., 14, 22–32, https://doi.
org/10.1890/02-6001.

Davies-Barnard, T., P. J. Valdes, J. S. Singarayer, and C. D. Jones,
2014: Climatic impacts of land-use change due to crop yield
increases and a universal carbon tax from a scenario model.
J. Climate, 27, 1413–1424, https://doi.org/10.1175/JCLI-D-13-
00154.1.

Davin, E. L., and N. de Noblet-Ducoudré, 2010: Climatic impact
of global-scale deforestation: Radiative versus nonradiative
processes. J. Climate, 23, 97–112, https://doi.org/10.1175/
2009JCLI3102.1.

Dunne, J. P., and Coauthors, 2020: The GFDL Earth System
Model version 4.1 (GFDL-ESM4): Overall coupled model
description and simulation characteristics. J. Adv. Model.
Earth Syst., 12, e2019MS002015, https://doi.org/10.1029/
2019MS002015.

Duveiller, G., J. Hooker, and A. Cescatti, 2018: The mark of veg-
etation change on Earth’s surface energy balance. Nat. Com-
mun., 9, 679, https://doi.org/10.1038/s41467-017-02810-8.

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J.
Stouffer, and K. E. Taylor, 2016: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization. Geosci. Model Dev., 9, 1937–
1958, https://doi.org/10.5194/gmd-9-1937-2016.

Findell, K. L., A. Berg, P. Gentine, J. P. Krasting, B. R. Lintner,
S. Malyshev, J. A. Santanello, and E. Shevliakova, 2017: The
impact of anthropogenic land use and land cover change on
regional climate extremes. Nat. Commun., 8, 989, https://doi.
org/10.1038/s41467-017-01038-w.

Ge, J., W. Guo, A. J. Pitman, M. G. De Kauwe, X. Chen, and C.
Fu, 2019: The nonradiative effect dominates local surface
temperature change caused by afforestation in China. J. Cli-
mate, 32, 4445–4471, https://doi.org/10.1175/JCLI-D-18-0772.1.

Hall, A., P. Cox, C. Huntingford, and S. Klein, 2019: Progressing
emergent constraints on future climate change. Nat. Climate
Change, 9, 269–278, https://doi.org/10.1038/s41558-019-0436-6.

Hao, D., and Coauthors, 2022: Impacts of sub-grid topographic
representations on surface energy balance and boundary con-
ditions in the E3SM land model: A case study in Sierra
Nevada. J. Adv. Model. Earth Syst., 14, e2021MS002862,
https://doi.org/10.1029/2021MS002862.

Hurtt, G. C., and Coauthors, 2020: Harmonization of global land
use change and management for the period 850–2100
(LUH2) for CMIP6. Geosci. Model Dev., 13, 5425–5464,
https://doi.org/10.5194/gmd-13-5425-2020.

Jia, G., and Coauthors, 2019: Land–climate interactions. Climate
Change and Land, P. R. Shukla et al., Eds., Cambridge Uni-
versity Press, 131–247.

Kumar, S., P. A. Dirmeyer, V. Merwade, T. DelSole, J. M. Ad-
ams, and D. Niyogi, 2013: Land use/cover change impacts in
CMIP5 climate simulations: A new methodology and 21st
century challenges. J. Geophys. Res. Atmos., 118, 6337–6353,
https://doi.org/10.1002/jgrd.50463.

Lamchin, M., and Coauthors, 2020: Understanding global spatio-
temporal trends and the relationship between vegetation
greenness and climate factors by land cover during 1982–
2014. Global Ecol. Conserv., 24, e01299, https://doi.org/10.
1016/j.gecco.2020.e01299.

Lawrence, D., and K. Vandecar, 2015: Effects of tropical defores-
tation on climate and agriculture. Nat. Climate Change, 5, 27–
36, https://doi.org/10.1038/nclimate2430.

Lawrence, D. M., and Coauthors, 2016: The Land Use Model In-
tercomparison Project (LUMIP) contribution to CMIP6: Ra-
tionale and experimental design. Geosci. Model Dev., 9,
2973–2998, https://doi.org/10.5194/gmd-9-2973-2016.

}}, and Coauthors, 2018: Technical description of version 5.0 of
the Community Land Model (CLM). NCAR Tech. Note, 337
pp., https://www.cesm.ucar.edu/models/cesm2/land/CLM50_
Tech_Note.pdf.

}}, and Coauthors, 2019: The Community Land Model version
5: Description of new features, benchmarking, and impact of
forcing uncertainty. J. Adv. Model. Earth Syst., 11, 4245–
4287, https://doi.org/10.1029/2018MS001583.

Lee, X., and Coauthors, 2011: Observed increase in local cooling
effect of deforestation at higher latitudes. Nature, 479, 384–
387, https://doi.org/10.1038/nature10588.

Lejeune, Q., S. I. Seneviratne, and E. L. Davin, 2017: Historical
land-cover change impacts on climate: Comparative assess-
ment of LUCID and CMIP5 multimodel experiments. J. Cli-
mate, 30, 1439–1459, https://doi.org/10.1175/JCLI-D-16-0213.1.

Li, D., S. Malyshev, and E. Shevliakova, 2016: Exploring histori-
cal and future urban climate in the Earth System Modeling

J OURNAL OF HYDROMETEOROLOGY VOLUME 24386

Brought to you by Yale University Library | Unauthenticated | Downloaded 03/01/23 05:43 PM UTC

https://esgf-node.llnl.gov/projects/cmip6/
https://doi.org/10.7910/DVN/HUXAH6
https://doi.org/10.1126/science.aac8083
https://doi.org/10.1175/1520-0442(2001)014<2430:OEFROD>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<2430:OEFROD>2.0.CO;2
https://doi.org/10.1126/science.1155121
https://doi.org/10.1038/359716a0
https://doi.org/10.1038/359716a0
https://doi.org/10.5194/bg-17-5615-2020
https://doi.org/10.1038/nclimate3250
https://doi.org/10.1038/nclimate3250
https://doi.org/10.1029/2019GL083812
https://doi.org/10.1029/2019GL083812
https://doi.org/10.1038/s41467-019-14017-0
https://doi.org/10.1038/s41467-019-14017-0
https://doi.org/10.1029/2019MS001916
https://doi.org/10.1890/02-6001
https://doi.org/10.1890/02-6001
https://doi.org/10.1175/JCLI-D-13-00154.1
https://doi.org/10.1175/JCLI-D-13-00154.1
https://doi.org/10.1175/2009JCLI3102.1
https://doi.org/10.1175/2009JCLI3102.1
https://doi.org/10.1029/2019MS002015
https://doi.org/10.1029/2019MS002015
https://doi.org/10.1038/s41467-017-02810-8
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1038/s41467-017-01038-w
https://doi.org/10.1038/s41467-017-01038-w
https://doi.org/10.1175/JCLI-D-18-0772.1
https://doi.org/10.1038/s41558-019-0436-6
https://doi.org/10.1029/2021MS002862
https://doi.org/10.5194/gmd-13-5425-2020
https://doi.org/10.1002/jgrd.50463
https://doi.org/10.1016/j.gecco.2020.e01299
https://doi.org/10.1016/j.gecco.2020.e01299
https://doi.org/10.1038/nclimate2430
https://doi.org/10.5194/gmd-9-2973-2016
https://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf
https://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf
https://doi.org/10.1029/2018MS001583
https://doi.org/10.1038/nature10588
https://doi.org/10.1175/JCLI-D-16-0213.1


framework: 1. Model development and evaluation. J. Adv.
Model. Earth Syst., 8, 917–935, https://doi.org/10.1002/
2015MS000578.

Li, Y., M. Zhao, S. Motesharrei, Q. Mu, E. Kalnay, and S. Li,
2015: Local cooling and warming effects of forests based on
satellite observations. Nat. Commun., 6, 6603, https://doi.org/
10.1038/ncomms7603.

}}, N. De Noblet-Ducoudré, E. L. Davin, S. Motesharrei,
N. Zeng, S. Li, and E. Kalnay, 2016a: The role of spatial scale
and background climate in the latitudinal temperature re-
sponse to deforestation. Earth Syst. Dyn., 7, 167–181, https://
doi.org/10.5194/esd-7-167-2016.

}}, and Coauthors, 2016b: Potential and actual impacts of de-
forestation and afforestation on land surface temperature. J.
Geophys. Res. Atmos., 121, 14 372–314386, https://doi.org/10.
1002/2016JD024969.

Liao, W., X. Liu, E. Burakowski, D. Wang, L. Wang, and D. Li,
2020: Sensitivities and responses of land surface temperature
to deforestation-induced biophysical changes in two global
Earth system models. J. Climate, 33, 8381–8399, https://doi.
org/10.1175/JCLI-D-19-0725.1.

Malyshev, S., E. Shevliakova, R. J. Stouffer, and S. W. Pacala,
2015: Contrasting local versus regional effects of land-
use-change-induced heterogeneity on historical climate: Anal-
ysis with the GFDL Earth System Model. J. Climate, 28,
5448–5469, https://doi.org/10.1175/JCLI-D-14-00586.1.

Meier, R., and Coauthors, 2018: Evaluating and improving the
Community Land Model’s sensitivity to land cover. Biogeo-
sciences, 15, 4731–4757, https://doi.org/10.5194/bg-15-4731-2018.

Meinshausen, M., and Coauthors, 2020: The Shared Socio-
economic Pathway (SSP) greenhouse gas concentrations and
their extensions to 2500. Geosci. Model Dev., 13, 3571–3605,
https://doi.org/10.5194/gmd-13-3571-2020.

Oleson, K. W., A. Monaghan, O. Wilhelmi, M. Barlage, N. Brun-
sell, J. Feddema, L. Hu, and D. F. Steinhoff, 2015: Interac-
tions between urbanization, heat stress, and climate change.
Climatic Change, 129, 525–541, https://doi.org/10.1007/s10584-
013-0936-8.

Pan, Y., and Coauthors, 2011: A large and persistent carbon sink
in the world’s forests. Science, 333, 988–993, https://doi.org/10.
1126/science.1201609.

Paulot, F., S. Malyshev, T. Nguyen, J. D. Crounse, E. Shevliakova,
and L. W. Horowitz, 2018: Representing sub-grid scale varia-
tions in nitrogen deposition associated with land use in a
global Earth system model: Implications for present and fu-
ture nitrogen deposition fluxes over North America. Atmos.
Chem. Phys., 18, 17 963–17 978, https://doi.org/10.5194/acp-18-
17963-2018.

Pielke, R. A., Sr., and Coauthors, 2011: Land use/land cover
changes and climate: Modeling analysis and observational ev-
idence. Wiley Interdiscip. Rev.: Climate Change, 2, 828–850,
https://doi.org/10.1002/wcc.144.

Pitman, A. J., and Coauthors, 2009: Uncertainties in climate re-
sponses to past land cover change: First results from the lucid
intercomparison study. Geophys. Res. Lett., 36, L14814,
https://doi.org/10.1029/2009GL039076.

Prevedello, J. A., G. R. Winck, M. M. Weber, E. Nichols, and
B. Sinervo, 2019: Impacts of forestation and deforestation on
local temperature across the globe. PLOS ONE, 14,
e0213368, https://doi.org/10.1371/journal.pone.0213368.

Ren, X., M. Weitzel, B. C. O’Neill, P. Lawrence, P. Meiyappan, S.
Levis, E. J. Balistreri, and M. Dalton, 2018: Avoided eco-
nomic impacts of climate change on agriculture: Integrating a

land surface model (CLM) with a global economic model
(iPETS). Climatic Change, 146, 517–531, https://doi.org/10.
1007/s10584-016-1791-1.

Robertson, E., 2019: The local biophysical response to land-use
change in HadGEM2-ES. J. Climate, 32, 7611–7627, https://
doi.org/10.1175/JCLI-D-18-0738.1.

Robinson, D. A., and G. Kukla, 1984: Albedo of a dissipating
snow cover. J. Appl. Meteor. Climatol., 23, 1626–1634, https://
doi.org/10.1175/1520-0450(1984)023,1626:AOADSC.2.0.CO;2.

Schultz, N. M., X. Lee, P. J. Lawrence, D. M. Lawrence, and L.
Zhao, 2016: Assessing the use of subgrid land model output
to study impacts of land cover change. J. Geophys. Res. Atmos.,
121, 6133–6147, https://doi.org/10.1002/2016JD025094.

}}, P. J. Lawrence, and X. Lee, 2017: Global satellite data high-
lights the diurnal asymmetry of the surface temperature re-
sponse to deforestation. J. Geophys. Res. Biogeosci., 122,
903–917, https://doi.org/10.1002/2016JG003653.

Seland, Ø., and Coauthors, 2020: Overview of the Norwegian
Earth System Model (NorESM2) and key climate response
of CMIP6 DECK, historical, and scenario simulations. Geo-
sci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-
13-6165-2020.

Sellar, A. A., and Coauthors, 2019: UKESM11: Description
and evaluation of the UK Earth System Model. J. Adv.
Model. Earth Syst., 11, 4513–4558, https://doi.org/10.1029/
2019MS001739.

Shevliakova, E., and Coauthors, 2009: Carbon cycling under
300 years of land use change: Importance of the secondary veg-
etation sink. Global Biogeochem. Cycles, 23, GB2022, https://
doi.org/10.1029/2007GB003176.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview
of CMIP5 and the experiment design. Bull. Amer. Meteor.
Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.

Tesfa, T. K., and L.-Y. R. Leung, 2017: Exploring new topography-
based subgrid spatial structures for improving land surface
modeling. Geosci. Model Dev., 10, 873–888, https://doi.org/
10.5194/gmd-10-873-2017.

von Randow, C., and Coauthors, 2004: Comparative measure-
ments and seasonal variations in energy and carbon exchange
over forest and pasture in south west Amazonia. Theor. Appl.
Climatol., 78, 5–26, https://doi.org/10.1007/s00704-004-0041-z.

Wang, W., X. H. Lee, W. Xiao, S. D. Liu, N. Schultz, Y. W.
Wang, M. Zhang, and L. Zhao, 2018: Global lake evapora-
tion accelerated by changes in surface energy allocation in a
warmer climate. Nat. Geosci., 11, 410–414, https://doi.org/10.
1038/s41561-018-0114-8.

Wiltshire, A. J., and Coauthors, 2020: JULES-GL7: The Global
Land configuration of the Joint UK Land Environment Sim-
ulator version 7.0 and 7.2. Geosci. Model Dev., 13, 483–505,
https://doi.org/10.5194/gmd-13-483-2020.

Winckler, J., C. H. Reick, and J. Pongratz, 2017: Robust identifica-
tion of local biogeophysical effects of land-cover change in a
global climate model. J. Climate, 30, 1159–1176, https://doi.
org/10.1175/JCLI-D-16-0067.1.

}}, Q. Lejeune, C. H. Reick, and J. Pongratz, 2019a: Nonlocal
effects dominate the global mean surface temperature re-
sponse to the biogeophysical effects of deforestation.
Geophys. Res. Lett., 46, 745–755, https://doi.org/10.1029/
2018GL080211.

}}, C. H. Reick, R. M. Bright, and J. Pongratz, 2019b: Impor-
tance of surface roughness for the local biogeophysical effects
of deforestation. J. Geophys. Res. Atmos., 124, 8605–8618,
https://doi.org/10.1029/2018JD030127.

T A NG E T A L . 387MARCH 2023

Brought to you by Yale University Library | Unauthenticated | Downloaded 03/01/23 05:43 PM UTC

https://doi.org/10.1002/2015MS000578
https://doi.org/10.1002/2015MS000578
https://doi.org/10.1038/ncomms7603
https://doi.org/10.1038/ncomms7603
https://doi.org/10.5194/esd-7-167-2016
https://doi.org/10.5194/esd-7-167-2016
https://doi.org/10.1002/2016JD024969
https://doi.org/10.1002/2016JD024969
https://doi.org/10.1175/JCLI-D-19-0725.1
https://doi.org/10.1175/JCLI-D-19-0725.1
https://doi.org/10.1175/JCLI-D-14-00586.1
https://doi.org/10.5194/bg-15-4731-2018
https://doi.org/10.5194/gmd-13-3571-2020
https://doi.org/10.1007/s10584-013-0936-8
https://doi.org/10.1007/s10584-013-0936-8
https://doi.org/10.1126/science.1201609
https://doi.org/10.1126/science.1201609
https://doi.org/10.5194/acp-18-17963-2018
https://doi.org/10.5194/acp-18-17963-2018
https://doi.org/10.1002/wcc.144
https://doi.org/10.1029/2009GL039076
https://doi.org/10.1371/journal.pone.0213368
https://doi.org/10.1007/s10584-016-1791-1
https://doi.org/10.1007/s10584-016-1791-1
https://doi.org/10.1175/JCLI-D-18-0738.1
https://doi.org/10.1175/JCLI-D-18-0738.1
https://doi.org/10.1175/1520-0450(1984)023<1626:AOADSC>2.0.CO;2
https://doi.org/10.1175/1520-0450(1984)023<1626:AOADSC>2.0.CO;2
https://doi.org/10.1002/2016JD025094
https://doi.org/10.1002/2016JG003653
https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.1029/2019MS001739
https://doi.org/10.1029/2019MS001739
https://doi.org/10.1029/2007GB003176
https://doi.org/10.1029/2007GB003176
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.5194/gmd-10-873-2017
https://doi.org/10.5194/gmd-10-873-2017
https://doi.org/10.1007/s00704-004-0041-z
https://doi.org/10.1038/s41561-018-0114-8
https://doi.org/10.1038/s41561-018-0114-8
https://doi.org/10.5194/gmd-13-483-2020
https://doi.org/10.1175/JCLI-D-16-0067.1
https://doi.org/10.1175/JCLI-D-16-0067.1
https://doi.org/10.1029/2018GL080211
https://doi.org/10.1029/2018GL080211
https://doi.org/10.1029/2018JD030127


}}, and Coauthors, 2019c: Different response of surface temper-
ature and air temperature to deforestation in climate models.
Earth Syst. Dyn., 10, 473–484, https://doi.org/10.5194/esd-10-
473-2019.

Yang, Y., M. L. Roderick, S. Zhang, T. R. McVicar, and R. J.
Donohue, 2019: Hydrologic implications of vegetation re-
sponse to elevated CO2 in climate projections. Nat. Cli-
mate Change, 9, 44–48, https://doi.org/10.1038/s41558-018-
0361-0.

Zhang, K., and Coauthors, 2022: A global dataset on subgrid land
surface climate (2015–2100) from the Community Earth System
Model. Geosci. Data J., https://doi.org/10.1002/gdj3.153, in press.

Zhang, M., and Coauthors, 2014: Response of surface air tempera-
ture to small-scale land clearing across latitudes. Environ. Res.
Lett., 9, 034002, https://doi.org/10.1088/1748-9326/9/3/034002.

Zhao, L., X. Lee, R. B. Smith, and K. Oleson, 2014: Strong
contributions of local background climate to urban heat
islands. Nature, 511, 216–219, https://doi.org/10.1038/
nature13462.

Zhao, M., and Coauthors, 2018: The GFDL Global Atmo-
sphere and Land Model AM4.0/LM4.0: 2. Model de-
scription, sensitivity studies, and tuning strategies. J.
Adv. Model. Earth Syst., 10, 735–769, https://doi.org/10.
1002/2017MS001209.

J OURNAL OF HYDROMETEOROLOGY VOLUME 24388

Brought to you by Yale University Library | Unauthenticated | Downloaded 03/01/23 05:43 PM UTC
View publication stats

https://doi.org/10.5194/esd-10-473-2019
https://doi.org/10.5194/esd-10-473-2019
https://doi.org/10.1038/s41558-018-0361-0
https://doi.org/10.1038/s41558-018-0361-0
https://doi.org/10.1002/gdj3.153
https://doi.org/10.1088/1748-9326/9/3/034002
https://doi.org/10.1038/nature13462
https://doi.org/10.1038/nature13462
https://doi.org/10.1002/2017MS001209
https://doi.org/10.1002/2017MS001209
https://www.researchgate.net/publication/364612512

