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The biophysical effects of land cover change, summarized as changes in albedo, surface 

roughness, and evapotranspiration (ET), have been shown to be more important in influencing 

local to regional climate than the changes in biogeochemical processes associated with land cover 

change.  However, uncertainties remain in the understanding of the biophysical effects of land 

cover change, both in the present climate, and under future climate scenarios.  This dissertation 

investigates the biophysical of drivers of the day and nighttime surface temperature response to 

deforestation in the present climate, and develops a modeling framework to isolate and evaluate 

the biophysical effects of land cover change within a global climate model. 

There is a general consensus on the broad spatial patterns of the surface temperature response to 

land cover change, in that deforestation results in localized warming in the tropics and cooling in 

the high latitudes.  However, a diurnal asymmetry exists in the surface temperature response to 

deforestation (ΔTS), and the biophysical drivers of those patterns are not well understood.  Using 

satellite observations, reanalysis data, and in-situ measurements, we investigate the day and 

nighttime drivers of ΔTS. Our findings confirm that the strongest daytime warming occurs in the 

tropics, where ΔTS can reach 6 K and above.  In the mid and high-latitudes, the average daytime 

ΔTS is 3.1 ± 0.07 and 1.4 ± 0.10 K, respectively.  We find that daytime ΔTS is driven by changes 

in absorbed solar radiation and the latent heat flux.  In contrast to daytime conditions, nighttime 

ΔTS is negative over most regions, indicating that open lands are cooler than forests, with the 

strongest cooling observed at high latitudes (-1.4 ± 0.04 K).  We find that the magnitude and 

spatial pattern of ΔTS is related to the strength of the nocturnal inversion, which is stronger in 

 
 



high latitudes and weaker in the tropics.  Additionally, nighttime ΔTS is related to the relative 

amount of heat stored in forests and open lands during the day. 

Quantifying the biophysical effects of land cover change using global climate models has its own 

set of methodological challenges, including isolating the biophysical effects from model 

variability or other large-scale atmospheric changes.  We modify the sub-grid configuration of the 

Community Land Model (CLM4.5) such that each plant functional type (PFT) is independent 

from other PFTs in the same grid cell, allowing for direct comparison of their differing response 

to the same atmospheric forcing data.  In comparing this modified version to the default 

configuration where all PFTs are situated on a single soil column, we find that the soil column 

configuration has a significant effect on PFT-level air temperature and surface energy fluxes.  We 

examine the sub-grid difference in air temperature between grass and tree PFTs (ΔTGT), a 

measure of the effects of sub-grid deforestation and find that the magnitude and spatial pattern of 

ΔTGT agrees more closely with observations, ranging from -1.5 K in boreal regions to +0.6 in the 

tropics.  We conclude that the separate column configuration provides an opportunity to isolate 

the effects of land cover change from other forcings and feedbacks in climate model simulations.    

There is still substantial disagreement among models when it comes to the regional climate 

response to land cover change, and calls for rigorous evaluation of land surface models are 

ongoing.  We investigate the sub-grid differences in land surface climatology (e.g. ΔTS) between 

PFTs in CLM4.5 as a metric of model performance, and examine whether the accuracy in the 

representation of individual PFTs translates to the accurate simulation of the climate response of 

the transition between two land cover types.  Our results show that this is not the case, and that 

small biases in the surface processes of a single PFT can compound into larger errors when 

examined against different PFTs, highlighting the value of the sub-grid comparison as a model 

performance tool.  Additionally, our results show the importance of model evaluation at sub-daily 

scales, as daily mean values obscure information about model biases during the day and night.  

 
 



The modeling framework and metrics developed here can be used to evaluate future model 

developments.  Because CLM and other land surface models calculate surface processes at the 

PFT-level, model evaluation at this scale is able to identify potential biases at their source, 

thereby improving both sub-grid and grid-averaged output.  In this work, we highlight the utility 

of sub-grid data for understanding the biophysical effects of land cover change.  This sub-grid 

framework could be applied to future climate scenarios and used to understand how the 

biophysical effects of land cover change compare to other anthropogenic forcings.  Future work 

will focus on investigating the relative impacts of land cover change and rising greenhouse gas 

concentrations on local climate, and the response of different land cover types to extreme events.    
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Land cover change influences climate by altering the exchange of CO2 and other trace gases 

(biogeochemical effect), and through modifications to surface radiation and turbulent fluxes 

(biophysical effect).  The biogeochemical effects of land cover change are global in nature 

because greenhouse gases are well mixed in the atmosphere.  In contrast, the biophysical effects 

of land cover change, which include changes to the surface fluxes of radiation, heat, moisture, 

and momentum [Pielke et al., 1998], are highly localized, with the relative importance of 

competing biophysical effects varying with geographic location and regional climate.  While 

carbon sequestration and storage are important for global climate change, the biophysical effects 

of land cover change may be more important in influencing climate at local to regional scales.   

The effect of land cover change on climate can be quantified by changes in surface temperature 

[Bonan, 2008; Mahmood et al., 2014].  Generally, the biophysical effects of land cover change 

can be summarized by changes in (1) surface albedo, (2) surface roughness, and (3) 

evapotranspiration. Land cover change that leads to changes in these three biophysical processes 

affects surface temperature in competing ways.  Deforestation, a major driver of land cover, 

reduces evapotranspiration and surface roughness, which increases the surface temperature.  On 

the other hand, deforestation generally increases surface albedo which decreases the surface 

temperature.  The relative importance of these biophysical processes varies geographically, and 

may amplify or dampen changes in climate caused by greenhouse gas emissions.  According to 

published studies, the consensus is that tropical deforestation has a warming effect on local air 

temperatures due to the reduction of ET, while boreal deforestation has a cooling effect due to 

large increases in albedo [Bala et al., 2007; Betts, 2000; Bonan, 2008; Davin and de Noblet-

Ducoudré, 2010; Lee et al., 2011]. 

However, uncertainties regarding the spatial pattern and magnitude of the biophysical effects of 

deforestation remain.  In many regards, these uncertainties remain because of methodological 

constraints.  Due to the lack of suitable long-term datasets, many studies have adopted a paired-
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site approach to investigate the potential impacts of land cover change using in-situ or satellite 

observations [Juang et al., 2007; Lee et al., 2011; Li et al., 2015; N.M. Schultz et al., 2017; 

Teuling et al., 2010].  This type of methodology substitutes space for time, and compares the land 

surface response of different land cover types exposed to the same or similar atmospheric 

conditions.  This could be two flux towers situated in close proximity to each other, or satellite-

derived values of land surface climate from different land cover types within a defined 

geographical region.   

Utilizing global climate models to assess the biophysical effects of land cover change poses its 

own set of challenges.  Traditionally, modeling studies have used paired simulations to evaluate 

the biophysical effects of historical land cover change: the first simulation run with potential (pre-

industrial) vegetation cover and the second simulation with present day land cover.  The 

biophysical effects of land cover change are isolated by prescribing the same concentrations of 

atmospheric constituents (greenhouse gases and aerosols) with both sets of land cover maps.  

However, quantifying the impact of the biophysical effects as the difference between two model 

scenarios is complicated by the other factors, including unforced model variability or non-local 

effects of large-scale land cover change such as changes to atmospheric or ocean circulation 

[Pielke et al., 2011; Pitman et al., 2009].     

Sub-grid information from climate models can be a powerful tool for investigating the 

biophysical effects of land cover change, yet sub-grid data has been under-utilized in land cover 

change modeling studies, in favor of grid-averaged output.  The sub-grid approach can be 

considered analogous to the observational space-for-time methodology, in that the land cover 

change signal is calculated as the difference in climatology between two sub-grid land cover 

types (plant functional types, PFTs).  Utilizing sub-grid information from land surface models 

allows for the direct comparison of the land surface response of different PFTs to the same 

atmospheric conditions, either a prescribed atmospheric dataset or a dynamic atmosphere model.  
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By directing comparing the response of one land cover type to another within the same grid cell, 

the complicating factors that arise from multiple simulations are removed.  Further, the analysis 

of sub-grid data may be particularly useful in future climate projection simulations to understand 

how the local biophysical effects of land cover change compare to other large scale forcings, such 

as rising greenhouse gas concentrations.   

There is still substantial disagreement among models when it comes to the regional climate 

response to land cover change [Pitman et al., 2009].  In particular, in context of the Land Use and 

Climate, Identification of Robust Impacts (LUCID) project, de Noblet-Ducoundé et al. [2012] 

found that there was no consistency among land surface models in their representation of the 

partitioning of available energy between latent and sensible heat fluxes in response to land cover 

change. As such, rigorous evaluation of land surface models is needed to develop metrics and 

diagnostic protocols to quantify model performance when it comes to the simulated response to 

land cover change [Lawrence, D.M. et al., 2016]. 

This dissertation seeks to address unanswered questions about the biophysical drivers of the 

surface temperature response to deforestation in the present climate, and develop a sub-grid 

modeling framework by which to isolate the biophysical effects of land cover change within a 

changing climate system.  Additionally, it proposes a sub-grid methodology for evaluating the 

simulated effects of land cover change at a global scale.   

This dissertation is organized into three main chapters: 

Chapter 2 is guided by the question: What are the biophysical drivers of the day and nighttime 

surface temperature response to deforestation?  Global satellite observations, reanalysis data, and 

in-situ observations from flux tower sites are used to quantify and compare the relative strength 

of biophysical effects from a surface energy balance perspective.  With particular attention paid 

to the drivers of the nighttime surface temperature response to deforestation, two hypotheses that 
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have been proposed for nighttime forest warming are investigated: (1) turbulence in a stably 

stratified atmospheric boundary layer, and (2) heat release from daytime heat storage. 

Chapter 3 is focused on developing a sub-grid modeling framework by which to investigate the 

biophysical effects of land cover change.  The Community Land Model (CLM4.5) represents land 

surface heterogeneity as a mosaic of sub-grid land cover types.  The vegetated fraction of the grid 

cell contains up to 16 PFTs.  By default in CLM4.5, all PFTs share a single soil column, which 

does not allow the complete separation of the PFTs from one another.  Here, the sub-grid 

configuration of CLM4.5 is modified, so that each PFT is assigned to an individual soil column, 

making each PFT independent from the other PFTs within the grid cell.  The overall objectives of 

this chapter is to examine the effect of sub-grid configuration on sub-grid and grid-averaged 

surface air temperature and energy fluxes, and to examine if the modified configuration provides 

advantages for land cover change experiments. 

Chapter 4 proposes a new method for evaluating model performance of the biophysical effects of 

land cover change.  While land surface models are routinely evaluated for each PFT, this chapter 

proposes utilizing the sub-grid differences in land surface climatology between PFTs as a metric 

of model performance.  It specifically examines whether the accuracy in the representation of 

individual PFTs translates to the accurate simulation of the climate response of the transition 

between two land cover types.  Further, the model evaluation is conducted at sub-daily scales, and 

the ability of the model to reproduce the biophysical effects is investigated. 

The dissertation concludes with Chapter 5, summarizing the major results of this research and 

discussing future research directions.  Appendix A reports the preliminary results of the effect of 

sub-grid configuration on sub-grid land cover change in a coupled model environment, as well as 

the effects of sub-grid configuration on grid-averaged carbon fluxes and storage.      
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Chapter 2: Global satellite data highlights the diurnal asymmetry of the surface 

temperature response to deforestation 
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Abstract 

Uncertainties remain about the spatial pattern and magnitude of the biophysical effects of 

deforestation.  In particular, a diurnal asymmetry in the magnitude and sign of the surface 

temperature response to deforestation (ΔTS) has been observed, but the biophysical processes that 

contribute to day and nighttime ΔTS are not fully understood.  In this study, we use a space-for-

time approach with satellite and reanalysis data to investigate the biophysical processes that 

control the day and nighttime ΔTS.  Additionally, we incorporate flux-tower data to examine two 

hypotheses for nighttime forest warming relative to open lands: (1) that forests generate 

turbulence in the stable nocturnal boundary layer, which brings heat aloft down to the surface, 

and (2) that forests store more heat during the day and release it at night.  Our results confirm a 

diurnal asymmetry in ΔTS.  Over most regions of the world, deforestation results in daytime 

warming and nighttime cooling.  The strongest daytime warming is in the tropics, where the 

average ΔTS is 4.4 ± 0.07 K.  The strongest nighttime cooling is observed in the boreal zone, 

where open lands are cooler than forests by an average of 1.4 ± 0.04 K.  Daytime patterns of ΔTS 

are explained by differences in the latent heat flux (ΔLE) and absorbed solar radiation (ΔKa).  We 

find that nighttime ΔTS is related to the strength of the nocturnal temperature inversion, with 

stronger temperature inversions at high latitudes, and weak inversions in the tropics.  Forest 

turbulence at night combined with stored heat release drives nighttime ΔTS patterns.       

  

16 
 



Introduction 

Forests influence climate through the exchange of carbon dioxide, energy, and water vapor with 

the atmosphere [Bonan, 2008; Mahmood et al., 2014; Pielke et al., 1998].  Land cover change, in 

the form of deforestation, alters the terrestrial carbon cycle and surface biophysical processes 

[Bala et al., 2007].  In contrast to changes in the global carbon cycle, the climate impacts of 

changes in biophysical processes tend to be more important at the local or regional scale [Alkama 

and Cescatti, 2016; Bonan, 2008; Jackson et al., 2008].  The biophysical effects of deforestation 

influence surface temperature, and include changes in albedo, roughness, and evapotranspiration 

(ET) [Lee et al., 2011; Li et al., 2015].  On the one hand, forests have a low albedo compared to 

deforested or open lands, particularly in high latitudes where they can mask the high albedo of 

snow [Betts, 2000].  On the other hand, forests are more efficient at removing heat from the 

surface due to their larger surface roughness [Lee et al., 2011], and in humid climates, through a 

higher latent heat flux [Anderson et al., 2011].     

Until recently, much of our knowledge about the biophysical effects of deforestation came from 

sensitivity experiments with global climate models, with one simulation serving as a control 

against another with contrasting forest cover [e.g. Lawrence and Chase, 2010].  Model results 

tend to agree that the albedo effect dominates at high latitudes, resulting in a local cooling from 

deforestation, and that a reduction in ET from deforestation in the tropics results in local warming 

[de Noblet-Ducoudré et al., 2012].  However, there are inconsistencies in the sign, magnitude, 

and spatial distribution of the biophysical effects between models, some of which may be due to 

the differences in the parameterizations of different land cover types and the implementation of 

land cover change in land models [de Noblet-Ducoudré et al., 2012; Pitman et al., 2009].  In 

particular, the modeling results of deforestation tend to be inconsistent with observations in 

temperate forests.  In contrast to the observational study of Wickham et al. [2013], who showed 

that surface temperature declines as forest extent increases, most models show that temperate 

17 
 



forests are a source of heat relative to other types of land cover.  Additional uncertainties may 

result from the paired simulation approach, in which biophysical effects need to be distinguished 

from unforced model variability or the non-local effects of land cover change, such as changes to 

ocean or atmospheric circulation [Pielke et al., 2011].  To remove these additional uncertainties 

from paired simulations, a sub-grid modeling approach has been proposed as a means to isolate 

the biophysical effects of deforestation or other land use change within a global climate model 

[Malyshev et al., 2015; Schultz et al., 2016].  Winckler et al. [2017] used a complementary 

approach to distinguish local vs. non-local effects of land cover change on local climate by 

selectively changing land surface properties in selected grid cells, while leaving the surrounding 

grids unchanged.          

Observational methods of the biophysical effects are needed to constrain model results, and 

reduce the uncertainty of model ensembles [Alkama and Cescatti, 2016].  Global or regional 

observational studies of the biophysical effects of deforestation or land use change have used a 

space-for-time approach, comparing the surface temperature of different land cover types within 

close proximity to each other, assuming differences in the environmental or atmospheric 

conditions are negligible [Lee et al., 2011; Li et al., 2015; Peng et al., 2014; Zhang et al., 2014].  

An alternative approach was developed to investigate the biophysical climate effects of regions 

that had recent forest gains or losses [Alkama and Cescatti, 2016].       

In-situ measurements have shown that the biophysical effects of deforestation on surface air 

temperature follow a latitudinal pattern.  Across North and South America, the temperature effect 

from deforestation changes from net warming to net cooling around 35o N [Lee et al., 2011].   A 

similar pattern is observed in East Asia, with net cooling observed in site pairs north of 35.5o N 

[Zhang et al., 2014].  Interestingly, each of these studies found that a diurnal asymmetry exists in 

the biophysical effect, and that the diurnal temperature range (DTR) is reduced with forest cover.  

In northern sites (>45oN), the net cooling from deforestation is driven by minimum temperature 
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differences, with similar temperatures observed between the open and forest sites during mid-day 

[Lee et al., 2011; Zhang et al., 2014].  The opposite is true in the tropics (15oS to 20oN), where 

the net warming from deforestation is largely a result of a difference in maximum air temperature, 

with similar temperatures observed overnight [Zhang et al., 2014].   

One proposed hypothesis for the nighttime warming of forests in high latitudes is that the 

presence of trees causes turbulence, bringing heat from aloft to the surface during stable 

atmospheric conditions [Lee et al., 2011].  At night, as the surface cools due to longwave 

emission, an inversion develops, and the surface layer becomes stable, inhibiting vertical and 

horizontal mixing.  Strong nocturnal inversions are common in dry or desert environments 

because the radiative cooling is unrestricted, whereas weak inversions are expected under humid 

or cloudy conditions.  As a radiation inversion develops, turbulence is diminished in the mixed-

layer, and only roughness-generated turbulence persists near the surface [Oke, 1987].  Indeed, it 

has been shown that wind turbine-enhanced vertical mixing produces local nighttime surface 

warming [Zhou et al., 2012].                 

The spatial patterns of the biophysical effects of deforestation and afforestation from satellite data 

are in general agreement with the in-situ and modeled results [Li et al., 2015].  Satellite data 

analyses show that the daytime cooling by forests in low latitudes is driven by higher ET, while 

the daytime warming in high latitudes is driven by a lower albedo [Li et al., 2015; Peng et al., 

2014].  Nighttime warming of forests follows a latitudinal pattern, with strong warming in high 

latitudes, and minimal differences in nighttime temperature between forests and open lands in the 

tropics [Li et al., 2015].  During the nighttime, albedo is irrelevant and ET is generally negligible, 

yet observed annual mean nighttime land surface temperature differences are as large as 2 K [Li 

et al., 2015].  An alternative hypothesis to explain nighttime warming of forests is the release of 

heat energy stored during the day, related to the low albedo of the forests [Michiles and Gielow, 

2008; Peng et al., 2014].  Peng et al. [2014] found that there was reduced nighttime warming 
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where forests had a larger ET relative to the excess absorbed solar radiation, suggesting that 

nighttime warming reflects the release of daytime heat storage. 

In this study, our overall goal is to investigate the biophysical drivers of the day and nighttime 

surface temperature response to deforestation.  We extend the work of Li et al. [2015] by 

incorporating reanalysis datasets and in situ observations from flux tower sites into a satellite 

data-based analysis.  We quantify and compare the relative strength of biophysical effects from a 

surface energy balance perspective.  Additionally, as we are particularly interested in exploring 

the drivers of the nighttime response to deforestation, we investigate two complementary 

hypotheses that have been proposed for nighttime forest warming: (1) turbulence in a stably 

stratified atmospheric boundary layer, and (2) heat release from daytime heat storage.  To the best 

of our knowledge, the near surface inversion pattern across latitude, and its relation to land 

surface temperature, has not yet been investigated.  

Methods 

Data sources 

To investigate the biophysical drivers of the surface temperature response to deforestation, this 

analysis incorporates global satellite and reanalysis data, as well as measurements from a network 

of flux towers.  For our satellite data analysis, we utilized data products from the Moderate 

Resolution Imaging Spectroradiometer (MODIS), including MODIS-Collection 5 products of 

land surface temperature (TS), land cover classification, latent heat flux (LE), and white-sky 

albedo (α) from the years 2003-2013 at 1 km resolution.  For TS, we used the 8-day average 

product (MYD11A2) [Wan, 2008] from the Aqua satellite, which contains a daytime (~13:30 

local time) and a nighttime (~01:30 local time) measurement, approximating the times of daily 

maximum and minimum temperatures.  We limit our analysis to include only the data that the 

associated Quality Control (QC) flags indicated to have an average error of ≤ 1 K.  The MODIS 

evapotranspiration (ET) product (MOD16) is calculated as a combination of soil evaporation, 
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canopy evaporation, and plant transpiration [Mu et al., 2011].  While the land cover type does 

have a direct influence on the behavior of the MODIS ET, the ET is also strongly constrained by 

the MODIS fractional photosynthetically active radiation (FPAR), albedo, and leaf area index 

(LAI) products and by the meteorological inputs from the reanalysis data. White-sky albedo 

(MCD43B3) was obtained at 8-day intervals, a product from both Aqua and Terra satellites, 

which has a bias mostly less than 5% [Schaaf et al., 2002].  The MODIS land cover classification 

(MCD12Q1) is produced on an annual basis.  We used the primary classification scheme, defined 

by the International Geosphere Biosphere Programme (IGBP), which has a typical accuracy 

across all classes of 75% for a single year [Friedl et al., 2010], to distinguish forests from non-

forested pixels. From the 11 years of data, we created a single land cover map, selecting the 

dominant land cover type across all years as the primary land cover. 

Data from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) 

[Rienecker et al., 2011] include monthly 2 m air temperature and incoming solar radiation at the 

surface, as well as hourly surface temperature and 10 m air temperature for the years 2003-2013.  

The MERRA data were downloaded at a spatial resolution of 1/2o latitude by 2/3o longitude.  

From the hourly data, we used a single hour—01:30 local time, to agree with the overpass time of 

the satellite observations.  Similarly, for integration with the satellite data, the MERRA products 

were screened to include only clear-sky conditions. 

We collected observational data from 32 flux towers in the United States, Canada, Australia, 

Brazil, and Germany (Table 2.1) from the FLUXNET15 Tier 1 dataset 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) and the Ameriflux database [Baldocchi et 

al., 2001].  Flux tower sites were selected under the criteria that they had at least one year of 

available data, they had measurements of longwave radiation, and they were situated in a location 

classified as either grassland or forest.  Of these sites, 15 were classified as grassland, and 17 

were classified as forest (deciduous, conifer, or mixed forest).  With the exception of a single site 
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(site ID: US-MMS), which has hourly measurements, the flux tower data are reported at 30-

minute intervals.  From this half-hourly or hourly data, we selected an hour of data (01:00 local 

time) to coordinate with the satellite observations and reanalysis data.  From these 32 sites, we 

used the longwave radiation components to calculate radiative surface temperature (discussed in 

more detail in next section), and air temperature above the canopy.  Two site pairs, each 

consisting of adjacent forest and grassland towers, (US-Dk1 and US-Dk2 [Novick et al., 2004; 

Pataki and Oren, 2003]; US-Seg and US-Mpj [Anderson-Teixeira et al., 2011]), were included in 

these 32 flux sites  In addition to these 32 sites, we calculated the 01:00 (LST) above-canopy air 

temperature gradient for five tower sites (Table S2.1), where air temperature was measured at 

multiple heights above the canopy (3 forest, 2 grassland).   
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Site Name Site ID Lat (oN) Lon (oE) Land cover Γ (K) Reference 

Grasslands       

Rollesbroich DE-RuR 50.62 6.30 GRA -1.78 Post et al. [2015] 

Fort Peck US-FPe 48.31 -105.10 GRA -1.82 Thompson et al. [2011] 

KUOM Turfgrass Field US-KUT 45.00 -93.19 GRA -3.45 Hiller et al. [2010] 

Brookings US-Bkg 44.35 -96.84 GRA -1.36 Gilmanov et al. [2005] 

Canaan Valley US-CaV 39.06 -79.42 GRA -2.16 Wilson and Meyers [2007] 

Vaira Ranch US-Var 38.41 -120.95 GRA -1.98 Xu and Baldocchi [2004] 

Duke Forest - Open Field US-Dk1 35.97 -79.09 GRA -2.29 Novick et al. [2004] 

Sevilleta Grassland US-Seg 34.36 -106.71 GRA -2.43 Anderson-Teixeira et al. [2011] 

Goodwin Creek US-Goo 34.25 -89.87 GRA -2.81 Wilson and Meyers [2007] 

Walnut Gulch Kendall Grasslands US-Wkg 31.74 -109.94 GRA -2.99 Krishnan et al. [2012] 

Audubon Research Ranch US-Aud 31.59 -110.51 GRA -2.66 Krishnan et al. [2012] 

Santarem-Km77-Pasture BR-Sa2 -3.01 -54.54 CRO -0.11 Sakai et al. [2004] 

Fazenda Nossa Senhora cattle ranch n/a -10.75 -62.37 GRA -0.14 von Randow et al. [2004] 

Sturt Plains AU-Stp -17.15 133.35 GRA -1.22 Beringer [2013] 

Arcturus Emerald AU-Emr -23.86 148.47 GRA -1.71 Schroder [2014] 

Forests       

23 
 



Table 2.1. The details of the flux tower sites.  The surface inversion, Γ, was standardized to 10 m above the displacement height.  The Γ was 

calculated individually for each site, except for the Fazenda Nossa Senhora cattle ranch and the Rebio Jaru forest, where Γ was estimated using the 

values reported in von Randow et al. [2004].

Western Boreal - Mature Black Spruce CA-Obs 53.99 -105.12 ENF -0.20 Jarvis et al. [1997] 

Western Boreal - Mature Aspen CA-Oas 53.62 -106.2 DBF -0.70 Blanken et al. [1997] 

Eastern Boreal - Mature Black Spruce  CA-Qfo 49.69 -74.34 ENF -1.37 Bergeron et al. [2007] 

Groundhog River Mixedwood CA-Gro 48.21 -82.16 MF -1.30 Coursolle et al. [2006] 

Sylvania Wilderness Area US-Syv 46.24 -89.35 MF 0.12 Tang et al. [2008] 

Willow Creek US-Wcr 45.81 -90.08 DBF -0.68 Davis et al. [2003] 

Univ. of Mich. Biological Station US-UMB 45.56 -84.71 DBF -0.75 Schmid [2003] 

Howland Forest (Main Tower) US-Ho1 45.2 -68.74 ENF -0.97 Hollinger et al. [2004] 

Black Hills US-Blk 44.16 -103.65 ENF -1.00 Wilson and Meyers [2007] 

Silas Little - New Jersey US-Slt 39.91 -74.6 DBF -0.89 Clark et al. [2010] 

Morgan Monroe State Forest US-MMS 39.32 -86.41 DBF 0.19 Schmid et al. [2000] 

Missouri Ozark Site US-MOz 38.74 -92.2 DBF -0.84 Gu et al. [2006] 

Duke Forest - Hardwoods US-Dk2 35.97 -79.1 DBF -0.70 Pataki and Oren [2003] 

Walker Branch Watershed US-WBW 35.96 -84.29 DBF -0.50 Wilson and Meyers [2007] 

Chestnut Ridge US-ChR 35.93 -84.33 DBF -1.13 Wilson and Meyers [2007] 

Mountainair Pinyon-Juniper Woodland US-Mpj 34.44 -106.24 WSA -1.07 Anderson-Teixeira et al. [2011] 

Rebio Jaru forest n/a -10.07 -61.93 EBF 0.61 von Randow et al. [2004] 
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Analysis methodology 

We use the space-for-time approach, comparing TS and the biophysical drivers of the TS response 

to deforestation over geographical space, rather than over time (Figure 2.1).  We created 0.5o 

latitude × 0.5o longitude grids, calculating the average TS, LE, and albedo for both forests and 

open land pixels within each grid.  Using the IGBP land cover classification scheme, forests were 

defined using the five forest classes, while open lands were defined as one of three land cover 

classes: savanna, grasslands, and cropland/natural vegetation mosaic (Table S2.2).  The definition 

of open land and forest were chosen for ease of presentation of results, and to obtain a broader 

spatial distribution of grid cells than what would have been available for individual land cover 

classes.  The 0.5o analysis window was chosen as it provided the greatest number of analysis 

grids with useful data while ensuring similar meteorological influences. Smaller analysis 

windows reduced down the number of analysis grids that met all the criteria to be included in the 

final analysis.  

We calculated the space-for-time deforestation signal as Δ = open – forest.  For all 0.5o × 0.5o 

grids that contained both forest and open-land cover pixels, we obtained values for day and 

nighttime ΔTS (K), ΔLE (W m-2), and Δα (dimensionless).  We corrected any elevation biases 

using the Shuttle Radar Topography Mission (SRTM) Global Digital Elevation Model (DEM) at 

1km resolution (SRTMGL30). To remove temperature differences in the 1 km pixels due to 

elevation differences, all 1 km pixels in the 0.5 degree analysis grid were adjusted to the mean 

elevation of the analysis grid using an elevation correction. As the environmental temperature 

gradient with elevation of the analysis grid was unknown, the temperature to elevation 

relationships were calculated for each land cover type separately and then combined to give a 

single analysis grid temperature elevation gradient which was applied to each of the pixels for 

that time period. This prevented assumptions as to the environmental temperature gradients where 

inversions or complex topography deviated from average climate lapse rates.    
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Figure 2.1. A schematic of the data sources used to investigate the (a) daytime and (b) nighttime 

drivers of ΔTS, and (c) the geographic extent of the three broad climate zones defined using the 

MERRA 2 m air temperature data. 

  

26 
 



The MERRA data was resampled to 0.5o × 0.5o to correspond to the satellite data grid resolution.  

The incoming solar radiation data (K↓) was used to calculated the difference in absorbed solar 

radiation between forests and non-forested pixels (ΔKa = K↓(1 – Δα)).  This calculation allows us 

to directly compare the relative importance of albedo and latent heat flux on ΔTS.  We define a 

heating potential term as the difference in absorbed solar radiation and latent heat fluxes between 

open and forested lands (ΔHP = ΔKa – ΔLE).  The ΔHP combines two daytime drivers, and is a 

measure of the energy available to warm or cool the surface [Li et al., 2015].  Forests generally 

have a lower albedo than open lands, absorbing more solar radiation than adjacent non-forested 

areas.  Therefore, a positive ΔHP indicates that open lands have excess energy compared to 

forests, and a negative ΔHP indicates that open lands have a lower energy load compared to 

forests.  Although the ΔHP does not account for all terms of the surface energy budget, it allows 

us to directly compare the relative effects of albedo and latent heat flux differences on the surface 

temperature response to deforestation.   

MERRA 01:30 surface temperature and 10 m air temperature were used to calculate the nocturnal 

surface temperature inversion.  We define the surface temperature inversion as the difference 

between MERRA TS and 10 m Ta (Γ = TS – 10 m Ta).  The 10 m Ta is defined by MERRA as 10 m 

above the displacement height (d ≈ 2/3h), where h is canopy height.  We also use flux tower 

observations to calculate the nocturnal surface inversion, using measurements of air temperature 

above the canopy and surface temperature, calculated from the longwave radiation components,  

 𝑇𝑇𝑆𝑆 =  �
𝐿𝐿↑  − (1 −  𝜀𝜀) 𝐿𝐿↓

𝜀𝜀𝜎𝜎
�
�1 4� �

 (1) 

where L↑ and L↓ are the upward and downward longwave radiation fluxes, ε is the surface 

emissivity (assumed here to be 0.98), and σ is the Stefan-Boltzmann constant (5.67 × 10-8 W m-2 

K-4).  As the measurement height of air temperature at the tower sites varied, we standardized the 
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air temperature to 10 m above  d  using the average nocturnal air temperature gradient from the 

sites in Table S2.1 (for further details, see Supporting Information).  The correction of Γ to 10 m 

above d was small, averaging -0.39 K for grassland sites and 0.34 K for forest sites (Tables S2.3-

S2.4).   

Finally, as it has been shown that the local response to deforestation depends on background 

climate [Li et al., 2016; Li et al., 2015; Pitman et al., 2011], we used the monthly 2 m air 

temperature from MERRA to define three general climate zones (Figure 2.1).  We define the 

boreal zone as grids that have an 11-year average of 2 m Ta < 3.5 oC.  The tropical region is 

defined with annual 2 m temperatures > 24.0 oC.  The temperate region is defined as the 

transitional zone between the tropical and boreal regions, with average annual between 3.5 and 

24.0 oC.  The temperature thresholds were chosen to highlight the differences in the surface 

temperature response to deforestation across distinct geographical regions, in an analogous 

method to previous studies that summarize geographical patterns using latitudinal bands [Lee et 

al., 2011; Li et al., 2015; Zhang et al., 2014].  Our tropical and boreal regions are in general 

agreement with the tropical (A) and cold (D) climate zones from the Köppen-Geiger climate 

classification system [Peel et al., 2007].  Although our tropical and boreal zones are farther 

reaching than the Köppen zones in some regions such as northern Africa and the Tibetan Plateau, 

we do not include satellite data from those regions because the land cover types that we are 

examining in this study do not coexist.          

Results 

Patterns and drivers of daytime ΔTS 

Over most regions of the world, open lands are warmer than forests during mid-day (13:30), with 

the strongest warming in dry regions (western United States) and in the tropics, where ΔTS can 

reach 6 K and above (Figure 2.2a).  At high latitudes (> ~50oN) in western North America and 
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central Asia, open lands are cooler than forests by up to 2 K.  The magnitude of zonal mean ΔTS 

follows a latitudinal pattern, with strong warming in low latitudes and slight cooling in high 

latitudes in the northern hemisphere (Figure 2.3a).  Averaged across climate zones, the average 

daytime ΔTS for the tropical, temperate, and boreal zones is 4.4 ± 0.07, 3.1 ± 0.06, and 1.4 ± 0.10 

K, respectively.  The parameter bounds here and following represent the 95% confidence 

intervals of the mean difference in each climate zone.  The ΔHP follows a similar pattern to ΔTS, 

with large positive values in tropical regions and negative values at high latitudes (Figure 2.2b).  

However, the sign of ΔTS and ΔHP do not agree in all regions.  First, ΔTS only becomes negative 

at high latitudes (> ~50oN), whereas ΔHP changes sign from positive to negative in the temperate 

region, as low as 20-30oN (Figure 2.3b).  Second, in arid or semi-arid regions (i.e. western United 

States, southern Europe, and the Middle East), there is a large positive ΔTS, while the ΔHP is 

negative.     
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Figure 2.2. The 11-year annual differences (open – forest) in the (a) daytime surface temperature (ΔTS), and the (b) heating potential (ΔHP). 

 

 

 

 

 

  

30 
 



 

 

 

Climate zone 
13:30 ΔTS (K)  ΔKa (W m-2)  ΔLE (W m-2)  ΔHP (W m-2) 

annual JJA DJF  annual JJA DJF  annual JJA DJF  annual JJA DJF 

Boreal 1.4 3.1 -0.9  -13.2 -8.9 -15.9  -6.0 -11.7 0.0  -7.2 2.8 -15.9 

Temperate 3.1 3.7 2.0  -7.8 -8.2 -7.9  -14.0 -19.6 -7.3  6.2 11.4 -0.6 

Tropical 4.4 4.0 4.2  -5.4 -4.5 -5.9  -38.2 -31.7 -38.1  32.8 27.2 32.2 

Table 2.2. Annual mean and seasonal statistics for daytime ΔTS and drivers. 
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We can further investigate the pattern of ΔHP by examining the magnitude and spatial pattern of 

the difference in absorbed shortwave radiation (ΔKa) and latent heat flux (ΔLE) separately.  

Comparing the magnitudes of ΔKa and ΔLE allows us to determine the relative importance of 

each biophysical process to the surface energy budget (Figure 2.3c, Figure S2.1).  Over most 

latitudes, the magnitude of ΔLE is larger than that of ΔKa, showing that although open lands 

absorb slightly less solar radiation, which would result in relative cooling, their surface cooling 

through latent heat release is much smaller, resulting in overall warming.  The largest contrast 

between these two biophysical processes is in the tropics, and that difference gradually decreases 

with latitude.  At high latitudes (~50o N/S) ΔKa becomes more important than ΔLE.  Here, the 

reduction in absorbed solar radiation is the dominant process, leading to a local cooling response 

to deforestation.  Averaged across the climate zones, the annual ΔKa for the tropical, temperate, 

and boreal regions is -5.6 ± 0.17, -7.8 ± 0.11, and -13.2 ± 0.22 W m-2, respectively.  In the 

temperate and boreal zones, these differences are amplified during the winter season, because 

forests mask the high albedo of snow (Table 2.2).  The annual ΔLE for the tropical, temperate, 

and boreal regions is -38.2 ± 0.71, -14.0 ± 0.29, and -6.0 ± 0.17 W m-2.  A seasonal cycle exists in 

ΔLE in the temperate and boreal zones, where the contrast is larger during summer months (Table 

2.2).   
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Figure 2.3. The 11-year annual zonal mean of the differences in the (a) daytime surface 

temperature (ΔTS), (b) heating potential (ΔHP), and (c) the absorbed shortwave radiation (ΔKa) 

and the latent heat flux (ΔLE).  The shaded regions represent the 95% confidence intervals, and 

for clarity, the thick lines show the running mean of the zonal data. 
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It is clear that both biophysical processes contribute to ΔTS, although their relative importance 

varies geographically.  As ΔKa is a surface warming process and ΔLE is a cooling process, we 

find that ΔTS is positively correlated (R2 = 0.17, p < 0.001) with ΔKa (Figure S2.2a) and 

negatively correlated (R2 = 0.22, p < 0.001) with ΔLE (Figure S2.2b).  Combining these processes 

into the single ΔHP term (ΔHP = ΔKa – ΔLE) allows us to compare the net effect of these two 

competing processes.  We find that there is a positive relationship between ΔHP and ΔTS (R2 = 

0.27, p < 0.001; Figure 2.4), and it explains the spatial variance in ΔTS better than ΔKa or ΔLE 

alone.   

If ΔTS was only influenced by ΔKa and ΔLE, then ΔTS should exactly follow the pattern of ΔHP: 

ΔTS would always be positive where ΔHP is positive (and vice versa), and the intercept of the 

regression would go through the origin point.  While this significant relationship shows that ΔKa 

and ΔLE are major drivers of ΔTS, the offset of the y-intercept of nearly 2 K from zero indicates 

the contribution of other surface processes to ΔTS.  Surface roughness is the third biophysical 

process that is known to influence the surface temperature response to deforestation.  The larger 

aerodynamic roughness of forests allows them to more effectively dissipate sensible heat from the 

surface to the atmosphere.  The 2 K of warming above what the ΔHP predicts is likely due to 

differences in surface roughness between the open lands and forests.   
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Figure 2.4. The daytime ΔTS is positively correlated with heating potential ΔHP (= ΔKa – ΔLE): y 

= 0.140 (±0.002) x + 1.973 (±0.01) (R2 = 0.27, p < 0.001).  Parameter bounds in the regression 

are for the 95% confidence intervals.  As ΔHP is a measure of the energy available to heat the 

surface, a positive ΔHP indicates that grasslands have more energy to warm the surface than trees 

(and vice-versa for a negative ΔHP).  If ΔTS were influenced only by ΔKa and ΔLE, the intercept 

of the regression should go through the origin point.  The offset of nearly 2 K likely points to the 

contribution of differences in roughness/convection efficiency between open lands and trees. 
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Patterns and drivers of nighttime ΔTS 

In contrast to daytime ΔTS, the nighttime (01:30) ΔTS is negative over most regions, indicating 

that open lands are cooler than forests overnight (Figure 2.5a).  The strongest cooling is observed 

at high latitudes (Figure 2.6a).  In contrast to high latitudes, a slight warming occurs the tropics.  

The average ΔTS across the entire tropical zone is 0.2 ± 0.05 K, while the average nighttime 

cooling in the temperate and boreal zones is -0.7 ± 0.03 K and -1.4 ± 0.04 K, respectively (Table 

2.3).  During the night, with no solar radiation and negligible ET, we examine the hypothesis that 

forests may be warmer at because their larger roughness can generate turbulence in the stable 

atmosphere, bringing warmer air aloft down to the surface.  The nighttime ΔTS does follow a 

similar pattern of the surface temperature inversion, Γ (Figure 2.5b, Figure 2.6a).  The strength of 

the inversion ranges from -0.9 ± 0.02 K in the tropical zone to -1.5 ± 0.02 K and -2.3 ± 0.02 K in 

the temperate and boreal zones, respectively.  Nighttime ΔTS and Γ are enhanced in mid to high 

latitudes during winter months, with the average ΔTS reaching -1.9 K and Γ reaching -2.9 K in the 

boreal zone. 
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Figure 2.5. The 11-year annual (a) nighttime ΔTS and (b) surface temperature inversion (Γ, MERRA TS – 10 m Ta). 
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Climate zone 

01:30 ΔTS (K)   Γ (K)   Rn (W m-2) 

annual JJA DJF  annual JJA DJF   annual JJA DJF 

Boreal -1.4 -0.8 -1.9  -2.3 -2.0 -2.9  -38.3 -41.9 -32.2 

Temperate -0.7 -0.5 -0.9  -1.5 -1.5 -1.6  -48.8 -49.5 -47.6 

Tropical 0.2 0.3 0.2   -0.9 -0.8 -1.1   -43.0 -42.0 -44.6 

Table 2.3. Annual mean and seasonal statistics for nighttime ΔTS and drivers. 
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In-situ measurements support the latitudinal pattern of Γ (Figure 2.6a).  Calculated from flux 

tower measurements of TS and Ta (standardized to 10 m above d), the Γ above open lands is 

stronger in high latitudes than it is in the tropics.  We choose the sites classified as grassland or 

cropland for comparison with MERRA in Figure 2.6a because they represent the larger spatial 

pattern of the nocturnal inversion, unlike forest sites, which according to our hypothesis, may 

generate turbulence under stable nighttime conditions, thus affecting the nocturnal vertical 

temperature profile.  With the exception of a tower site (US-KUT, lat = 45.0oN, Γ = -3.45 K), the 

observations of Γ agree relatively well with the MERRA data.  However, this outlier may be 

partially explained by the fact that the measurements were taken over a turfgrass field within a 

first-ring suburb of a major metropolitan area (Minneapolis – St. Paul, MN, USA) [Hiller et al., 

2010].  Surface and air temperature at this site may have been influenced by anthropogenic heat 

sources including vehicle exhaust and residential heating and cooling systems.  The strength of 

the inversion across these open sites ranges from -0.14 to -2.99 K, if excluding the suburban 

outlier (Table 1), resulting in a mean Γ of -1.93 K across all sites.  In contrast, the surface 

inversion was much weaker over 17 forest sites, ranging from -1.37 to 0.61 K, resulting in a mean 

Γ of -0.66 K (Table 2).  This shows that averaged across similar latitudes, site measurements 

support the hypothesis of forest warming via enhanced vertical mixing of a stable nighttime 

atmosphere.  Further, within this network of flux towers, we collected two “site pairs”, each 

consisting of a set of a forest site and a grassland site, situated in close proximity of each other.  

Each of these site pairs can be expected to be exposed to similar atmospheric conditions.  For the 

site pair in North Carolina, USA (Dk1 and Dk2), we found that the Γ (standardized to 10 m above 

d) above the open and forested sites was -2.52 and -0.73 K, respectively.  For the pair in New 

Mexico, USA (Seg and Mpg), the Γ for the open and forested sites were -2.62 and -1.07 K 

(Figure S2.3).  
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Figure 2.6. Annual (11-year) zonal means for (a) nighttime ΔTS and inversion strength Γ, and (b) 

net radiation, Rn =  L↑ - L↓  The shaded regions represent the 95% confidence intervals, and the 

thick lines show the running mean of the zonal data.  The red squares in (a) display the Γ, 

standardized to 10 m above the displacement height, from the grassland flux tower sites. 
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There is a positive relationship (R2 = 0.14, p < 0.001) between Γ and nighttime ΔTS (Figure 2.7a).  

That the most pronounced surface cooling from deforestation is correlated with strong nighttime 

surface temperature inversions supports the hypothesis that forests are warmer at night because of 

enhanced turbulence over forest canopies.  The contrast between the magnitudes of warming 

observed in the tropics compared to higher latitudes relates to the relative strength of the 

temperature inversion between those regions.  The zonal pattern of the nighttime net longwave 

flux (Rn – the difference between outgoing longwave radiation at the surface and incoming 

longwave radiation) indicates increased radiative cooling in the sub-tropics (~30-40o N/S) (Figure 

2.6b).  The zonal mean pattern of nighttime Rn follows that of the Hadley cell circulation.  We 

hypothesized that patterns of Rn would drive the nighttime temperature inversion and ΔTS, and 

although there is a positive relationship between Rn and ΔTS (geometric mean regression: y = 

0.122x (±0.002) + 4.602 (±0.08), p < 0.001), there is significant scatter around the regression line, 

resulting in an R2 of < 0.01 (Figure S2.4).       

There is also a positive relationship (R2 = 0.19, p < 0.001) between ΔHP and nighttime ΔTS 

(Figure 2.7b).  While ΔHP is only a proxy of heat storage, this significant correlation indicates 

that heat storage during the day contributes to nighttime warming of the land surface.  Forests in 

the boreal region absorb and store more energy than open lands, and the release of this heat 

during the night causes the forests to be warmer than the open lands.  However, the amount of 

excess heat stored in open lands in the tropics is larger than the heat storage deficit of open lands 

in the boreal zone.  Despite this, nighttime ΔTS in the tropics in minimal.  This shows that 

daytime heat storage alone cannot fully explain the spatial patterns of nighttime ΔTS, and 

highlights the additional influence of forest-generated turbulence on nighttime ΔTS patterns.  

Together, using multiple linear regression, Γ and ΔHP explain 26% of the spatial variance in 

nighttime ΔTS (R2 = 0.26, p < 0.001). 
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Figure 2.7. The nighttime ΔTS is positively correlated with (a) the inversion strength Γ and (b) 

the heating potential ΔHP.  All data points in (a) and (b) are shown as the gray dots, while the 

zonal means of each climate zone are shown as the red circles (tropical), green squares 

(temperate), and blue diamonds (boreal).  The black solid lines in (a) y = 0.941 (±0.014) x - 

0.806(±0.023) (R2 = 0.14, p < 0.001) and (b) y = 0.068 (±0.001) x – 1.208 (±0.006) (R2 = 0.19, p 

< 0.001) represent the geometric mean regression for all sample grids (gray dots) Parameter 

bounds in the regression are for the 95% confidence intervals. 
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Discussion 

This study builds upon the works of others who have used regional and global satellite 

observations to explore the surface temperature response to deforestation or afforestation [Alkama 

and Cescatti, 2016; Li et al., 2015; Peng et al., 2014].  Our goal was to examine the biophysical 

processes that drive day and nighttime ΔTS, using global satellite data in coordination with 

reanalysis and flux tower observations.  Of particular interest in this study was to investigate two 

hypotheses for the relative nighttime warming of forests compared to open lands: (1) that the 

larger roughness of forests generates turbulence which brings warm air aloft down to the surface, 

and (2) that the lower albedo of forests contributes to increased heat storage, which is then 

released at night.  This is the first study to investigate the global pattern of the nocturnal surface 

inversion, and its relation to surface temperature and nighttime ΔTS.   

Our results highlight the diurnal asymmetry in the magnitude and sign of the surface temperature 

response to deforestation.  In the tropics, daytime warming dominates the overall warming signal 

from deforestation, with minimal difference in surface temperature at night.  In contrast, the 

nighttime ΔTS dominates the overall pattern of the surface cooling response to deforestation in the 

boreal zone.  These results show the importance of both daytime and nighttime measurements to 

understand the drivers behind the surface temperature response to deforestation.  

Although tropical forests have a lower albedo and therefore absorb more solar radiation than 

adjacent open lands, they are able to access soil water and maintain a consistent latent heat flux 

even during a prolonged dry season [von Randow et al., 2004], which results in lower surface 

temperatures.  Our results are in general agreement with Li et al. [2015], who showed that the ET 

of tropical forests is greater than that of open areas by up to 500 mm/year.  Climate models tend 

to agree that deforestation in the tropics results in a reduction in the latent heat flux [Lawrence 

and Chase, 2010; Snyder et al., 2004]; however, due to the varying implementation and physical 

representation of land use and land cover change in models, there are inconsistencies in the 
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partitioning of energy into latent and sensible heat fluxes across the annual cycle [de Noblet-

Ducoudré et al., 2012].     

Previous work has suggested that nighttime warming of forests is largely due to the release of 

daytime heat storage [Peng et al., 2014].  The energy storage rates of forests can comprise a 

significant portion of net radiation; however, the largest energy storage rates occur during sunrise 

and sunset, and during rainy or cloudy periods [Michiles and Gielow, 2008].  The larger biomass 

and moisture content of forest canopies would increase the heat capacity of forests, slowing down 

their cooling rate overnight.    However, comparative measurements over a tropical forest and 

pasture showed that storage rates between a tropical forest and pasture were similar at 

approximately 01:30 (the time of MODIS overpass) [von Randow et al., 2004].  These results are 

in line with Bastable et al. [1993], who compared the available energy at a tropical forest and 

clearing site, finding that the difference in available energy (including the change in heat storage) 

between the sites at 01:00 was approximately 10 W m-2 during the dry season and negligible 

during the wet season.  While forest canopies may have a higher moisture content than 

grasslands, soil water storage is higher in tropical grasslands than under forest canopies.  von 

Randow et al. [2004] found that in the upper 2 m of soil, water storage was similar under the 

tropical forests and pasture sites.  In the deeper layers (2-3.4 m), forest soil water storage 

decreased during the dry season, while the water content under the pasture remained relatively 

constant.  Further, measurements show nighttime canopy heat storage rates in a boreal aspen 

forest of less than 10 W m-2 [Blanken et al., 1997], and nighttime storage rate differences of only 

3.1 W m-2 between forests and open lands at a boreal site cluster in Saskatchewan [Lee et al., 

2011].     

Our results here show that despite a large positive ΔHP in the tropics (32.8 W m-2), the nighttime 

surface temperature difference between open lands and forests is close to zero.  In the boreal 

zone, the ΔHP is negative (-7.2 W m-2), although to a lesser magnitude than the tropical ΔHP.  Yet, 
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the open lands are 1.4 oC cooler than forests at night.  All together, these results indicate that the 

daytime surface energy load is not the only process contributing to nighttime ΔTS patterns.  We 

found a statistically significant relationship between the nocturnal surface inversion strength and 

nighttime ΔTS.  This suggests that forests are able to generate turbulence in the stable nighttime 

atmosphere, bringing heat aloft to the surface, as was shown for wind turbines in Texas [Zhou et 

al., 2012].  It should be noted that our results here only examine the relationship between ΔTS and 

Γ under clear-sky conditions.  The presence of clouds would result in increased downwelling 

longwave radiation, heating the surface and the overlying air.  Thus, we would expect to see a 

reduction in the relative nighttime warming of forests under cloudy conditions.  However, 

additional research would be needed to examine this hypothesis.  In situ measurements from flux 

tower sites also show that the surface inversion is weaker over forest canopies and stronger over 

grassland sites.  We found a statistically significant relationship between the nighttime ΔTS and 

net radiation (Rn = L↑ - L↓).  We hypothesized that the latitudinal surface inversion pattern is 

related to the zonal pattern of L↓.  This theory is supported by the results of Li et al. [2016] who 

showed a decreasing pattern of L↓ from the tropics to higher latitudes, where L↓ was 

approximately 50 W m-2 near the equator and 25 W m-2 at 60oN.  Indeed, the combination of both 

daytime heating and the surface inversion strength was able to better explain the spatial variations 

in nighttime ΔTS than either of these drivers alone.          

It is interesting to note that while increased vertical mixing and heat release are both processes 

that contribute to the warmer nighttime temperature of forests, tropical forests are actually 

slightly cooler than open lands in some tropical areas (~10 – 20oN).  Although over mid to high 

latitudes, the nighttime ET flux and the difference in ET between forests and open lands is 

minimal, Li et al. [2015] showed that tropical forests maintain a higher ET than open lands at 

night on average by approximately 50 mm year-1.  While this is an order of magnitude less than 

the daytime difference in ET (~500 mm year-1), the location of the increased nighttime ET flux 
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occurs directly within the region where we observe the nighttime cooling of forests relative to 

open lands.  This persistent nighttime ET flux may be a potential reason why we observe that 

open lands are actually warmer than some tropical forests at night.                

Our results underscore the importance of the biophysical effects of land cover change on climate. 

The spatial pattern and magnitude of ΔTS are largely in agreement with previous empirical 

satellite data studies [Li et al., 2015; Peng et al., 2014].  It should be noted, however, that this 

study focuses on the “potential” impact of deforestation.  As these results represent a slice of 

time, they present the impacts from hypothetical land use change around the world.  A recent 

study by Li et al. [2016] compared the potential impacts of deforestation on surface temperature 

(using a methodology similar to the one used in this study) with the actual impacts, finding that 

the actual impact of deforestation in most regions is very similar to the potential impact, both in 

terms of sign and latitudinal pattern.  Alkama and Cescatti [2016] examined the effects of actual 

deforestation on surface air temperature, inferred from MODIS LST, between 2003 and 2012, and 

found that the biophysical effects of forest clearing produced large increases in the annual mean 

maximum air temperature, and slight changes to minimum temperatures.  Overall, mean warming 

occurred across most regions, with the exception of high latitudes.  They also found that the 

sensitivity of surface temperature to land cover change (i.e. forest loss) was 50% greater than it 

was for air temperature, likely due to the satellite retrievals being limited to clear sky conditions 

[Alkama and Cescatti, 2016]. 

To the best of our knowledge, the role of vertical mixing in the nighttime warming of forests has 

not been investigated using a modeling approach, although a similar mechanism has been 

reported for the urban environment [Wouters et al., 2013].  The results of climate modeling 

studies regarding the role of land cover change on local climate are generally averaged over daily 

timescales or longer.  Vanden Broucke et al. [2015] highlight the importance of distinguishing 

between day and nighttime climate when evaluating the effects of land cover change in a regional 
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climate model, finding that the nighttime warming of forests in Europe is underestimated.  As 

observations demonstrate the asymmetric diurnal response to land cover change, continued 

investigations into the representation of land cover change in climate models should differentiate 

between day and nighttime climate.   

Conclusions 

In this study, we examine the patterns and drivers of the day and nighttime surface temperature 

response to deforestation (ΔTS) using global satellite observations, reanalysis data, and in situ 

observations from flux towers.  We find that a diurnal asymmetry exists in both the magnitude 

and sign of ΔTS.  In terms of magnitude, there is a larger ΔTS signal over most regions during 

mid-day than compared to at night.  The sign of ΔTS changes from positive to negative in many 

places around the world, with most regions showing daytime warming and nighttime cooling.   

There are distinct differences in the diurnal patterns of ΔTS across different climate zones.  In the 

tropical region, deforestation results in strong warming during the day, but has minimal influence 

on nighttime ΔTS.  In contrast, deforestation in high latitudes produces a large cooling signal at 

night, with relatively smaller cooling during the day. The temperate region is a transitional zone, 

showing moderate warming during the day and moderate cooling at night.  The combination of 

satellite and reanalysis data allowed us to compare the relative importance of two competing 

biophysical processes: differences in absorbed solar radiation and the latent heat flux.  We also 

provide empirical evidence of the importance of surface roughness on both daytime and nighttime 

ΔTS.    

We find that daytime ΔTS is driven by differences in absorbed shortwave radiation (ΔKa) and 

latent heat flux (ΔLE).  While open lands have a higher albedo, and thus lower Ka, the magnitude 

of ΔLE generally dominates the spatial pattern of ΔTS resulting in surface warming from 

deforestation.  In high latitudes, the magnitude of ΔKa overtakes that of ΔLE, resulting in a 
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surface cooling response to deforestation.  There is a positive relationship between the heating 

potential (ΔHP = ΔKa – ΔLE) and daytime ΔTS.  From this relationship, we estimate that 

approximately 2 K is not explained by ΔKa and ΔLE, and is likely due to the difference in surface 

roughness between forests and open lands.  The magnitude and spatial pattern of nighttime ΔTS is 

related to the strength of the nocturnal temperature inversion, which is stronger in high latitudes 

and weaker in the tropics.  Therefore, the roughness of forests is responsible for daytime cooling 

(dissipating heat away from the surface) and nighttime warming (bringing warm air aloft down to 

the surface).  Additionally, nighttime ΔTS is positively related to the relative amount of heat 

stored in forests and open lands during the day.   

The role of forests, including the biophysical effects deforestation and reforestation, are 

increasingly being discussed in terms of climate change mitigation.  Because of forests’ important 

role in the global carbon cycle, international climate agreements account for land-based climate 

mitigation strategies including reforestation and afforestation.  However, the biophysical effects 

of such strategies are not yet taken into account.  This study and many others show that forest 

management strategies for the purpose of climate change mitigation need to consider the 

biophysical effects, as they have a strong influence on local climate.  The growing body of 

evidence suggests that it is necessary to consider where to implement re/afforestation as a climate 

mitigation strategy.  Avoided deforestation and afforestation in the tropics are the most effective 

from a climate perspective, as they have the strongest cooling effects. 
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Supporting Information 

In this supplement, additional information on our methods and supplementary figures and data to 

support the conclusions in the main text are provided.  The method we used to standardize the 

flux tower nocturnal gradient measurements to 10m above displacement height is discussed first.  

The data used to make these corrections to the original gradient measurements are provided in 

Tables S2-S4.  Table S2.1 shows the land cover classes from the IGBP land cover classification 

scheme that were used in this analysis to defined “open” and “forested” land.  We include two 

figures (Figures S2.1-S2.2) that that illustrate the spatial patterns of the drivers of daytime ΔTS, as 

well as ΔKa and ΔLE, the two terms used to calculate ΔHP.  In addition, the relationships between 

ΔKa and ΔLE and ΔTS are presented here. Figure S2.3 shows the difference in the nocturnal 

surface inversion at two site pairs of flux towers, and Figure S2.4 presents the relationship 

between Rn and ΔTS. 

Standardizing Ta at 10m 

The air temperature measurement height at the flux towers varied anywhere from 1.5 to 30.6 m 

above displacement height, d. For direct comparison with the MERRA nocturnal temperature 

inversion, we standardized the flux tower inversion calculation (Γ) to 10 m above the d using: 

 

 Γ = Γ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 +
Δ𝑇𝑇
Δ𝑧𝑧

(𝑧𝑧 − 10) (S1) 

 

where Γorig is the original inversion calculation (TS – Ta), Δ𝑇𝑇/Δ𝑧𝑧 is the average nocturnal air 

temperature gradient (0.07 K/m for grasslands and 0.03 K/m for forests) (Table S2.2), and z is the 

measurement height above d (Tables S2.3-S2.4).   
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As most grassland sites reported the average canopy height as < 1m, we made the simplification 

that the measurement height was equal to the height above d.  For forest tower sites, we 

calculated d as 2/3 of the canopy height (Table S2.3).  For the grassland tower sites, standardizing 

to 10 m on average changed the Γorig values by -0.39 K, ranging from -0.52 to 0.09 K (Table 

S2.3).  For the forest tower sites, this standardization resulted in an average correction of 0.34 K, 

ranging from 0.02 to 0.62 K (Table S2.4).    
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Figure S2.1. The 11-year annual mean (a) ΔKa and (b) ΔLE
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Figure S2.2. The dominant drivers of ΔTS are (a) ΔKa and (a) ΔLE.  All sample grids are shown 

as the gray dots, while the zonal means of each climate zone are shown as the red circles 

(tropical), green squares (temperate), and blue diamonds (boreal).  The black solid lines in (c) y = 

0.417 (±0.006) x + 6.649 (±0.06) (R2 = 0.17, p < 0.001) and (d) y = -0.160 (±0.002) x + 0.272 

(±0.04) (R2 = 0.22, p < 0.001) indicate the geometric mean regression for all sample grids (gray 

dots).  Parameter bounds in the regressions are for the 95% confidence intervals. 
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Figure S2.3. Two site pairs of flux towers used to compare the surface inversion between 

adjacent forested and open lands.  Panels (a) and (c) show the surface inversion 𝚪𝚪, standardized to 

10 m above the displacement height and the temperature gradient 𝚫𝚫𝑻𝑻/𝚫𝚫𝒛𝒛, calculated as (TS – 

Ta)/z, where z is measurement height for the site pair in North Carolina.  Panels (b) and (d) show 

the same data for a site pair in New Mexico. 
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Figure S2.4. There is a positive relationship between Rn and ΔTS (geometric mean regression: y = 

0.122x (±0.002) + 4.602 (±0.08) (p < 0.001). 
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Site Name Site ID Land 
cover h (m) Ta low 

(m) 
Ta high 

(m) 
ΔTa 
(K) 

Δ𝑇𝑇/
Δ𝑧𝑧 (K) Dates Reference 

Grasslands          

ARM Lamont, 
OK n/a GRA < 1 2 25 -2.36 0.103 2003-2013 Turner et al.  

[2016] 

Santarem-
Km77-Pasture BR-Sa2 CRO < 1 2.2 11.3 -0.325 0.036 2001-2005 Sakai et al. 

[2004] 

Forests          

Western Boreal 
– Mature Aspen CA-Oas ENF 18 18 37 -3.86 0.020 1996-2006 Blanken et 

al. [1997] 

Great Mountain 
Forest 

US-
GMF MF 18.7 19.1 31.7 -0.165 0.013 1999-2000 Lee and Hu 

[2002] 

Santarem-
Km67-Primary 
Forest 

BR-Sa1 EBF 40 49.75 61.94 -0.565 0.046 2002-2006 Hutyra et al. 
[2007] 

Table S2.1. The average air temperature gradient, as measured from different heights at four sites (one grassland, three forested).  These data were 

used to standardize the flux tower nocturnal inversion (TS – Ta) measurements to 10 m above the displacement height.  A gradient of 0.07 K/m was 

used for all grassland sites (average of grassland gradients), and a gradient of 0.03 K/m (average of the forest gradients) was used for forest sites. 
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Value Label 

0 Water 

1 Evergreen needleleaf forest 

2 Evergreen broadleaf forest 

3 Deciduous needleleaf forest 

4 Deciduous broadleaf forest 

5 Mixed forest 

6 Closed shrublands 

7 Open shrublands 

8 Woody savannas 

9 Savannas 

10 Grasslands 

11 Permanent wetlands 

12 Croplands 

13 Urban and built-up 

14 Cropland/natural vegetation 
mosaic 

15 Snow and ice 

16 Barren or sparsely vegetated 

254 Unclassified 

255 Fill Value 

Table S2.2. The land cover classes from the MODIS (MCD12Q1) IGBP land cover classification 

scheme.  We use IGBP classes 1-5 as representative of the “forest” land cover category (shaded 

green in the above table), and IGBP classes 9, 10, and 14 for the “open” land cover category 

(shaded orange in the table). 
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Site ID measurement 
dates 

original 
Γ (K) 

gradient 
(K/m) 

measurement 
height (m) 

final Γ 
(K) 

DE-RuR 2013 - 2014 -1.26 0.07 2.6 -1.78 

US-FPe 2000 - 2008 -1.34 0.07 3.2 -1.82 

US-KUT 2006 - 2007 -2.89 0.07 2 -3.45 

US-Bkg 2008 - 2009 -0.91 0.07 3.5 -1.36 

US-CaV 2009 - 2009 -1.7 0.07 3.5 -2.16 

US-Var 2007 - 2014 -1.39 0.07 1.5 -1.98 

US-Dk1 2004 - 2005 -1.8 0.07 3 -2.29 

US-Seg 2012 - 2013 -1.97 0.07 3.5 -2.43 

US-Goo 2004 - 2006 -2.36 0.07 3.5 -2.81 

US-Wkg 2008 - 2015 -2.74 0.07 6.4 -2.99 

US-Aud 2009 - 2010 -2.21 0.07 3.5 -2.66 

BR-Sa2 2001 - 2005 -0.12 0.07 11.3 -0.11 

FSM 
ranch 1999 - 2002 -0.02 0.07 8.3 -0.14 

AU-Stp 2010 - 2011 -0.87 0.07 5 -1.22 

AU-Emr 2012 - 2012 -1.36 0.07 5 -1.71 

Table S2.3. The measurement details of each grassland flux tower site.  The measurement height 

(z) was used to standardize the surface inversion to 10m above the displacement height.  Because 

the canopy height of most sites was reported as < 1m, we approximated d as 0 m.  The final Γ 

here are what are reported in the main text (Table 2.1). 
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Site ID measurement 
dates 

original 
Γ (K) 

gradient 
(K/m) 

canopy h 
(m) d (m) measurement 

height (m) 
final Γ 

(K) 

CA-Obs 2006 - 2010 -0.45 0.03 10 6.67 18.33 -0.20 

CA-Oas 2005 - 2010 -1.14 0.03 21.5 14.33 24.67 -0.70 

CA-Qfo 2006 - 2010 -1.51 0.03 13.8 9.20 14.8 -1.37 

CA-Gro 2007 - 2011 -1.79 0.03 21.6 14.4 26.6 -1.30 

US-Syv 2003 - 2005 -0.22 0.03 22 14.67 21.33 0.12 

US-Wcr 2003 - 2005 -0.78 0.03 25 16.67 13.33 -0.68 

US-
UMB 2007 - 2014 -1.39 0.03 22 14.67 31.33 -0.75 

US-Ho1 2008 - 2011 -1.14 0.03 20 13.33 15.67 -0.97 

US-Blk 2007 - 2008 -1.34 0.03 21.4 14.27 20.82 -1.00 

US-Slt 2005 - 2006 -0.91 0.03 20 13.33 10.67 -0.89 

US-
MMS 2007 - 2013 -0.36 0.03 26 17.33 28.37 0.19 

US-MOz 2011 - 2013 -1.16 0.03 17 11.33 20.67 -0.84 

US-Dk2 2004 - 2005 -1.10 0.03 25 16.67 23.13 -0.70 

US-
WBW 2003 - 2003 -0.76 0.03 17 11.33 18.67 -0.50 

US-ChR 2008 - 2010 -1.53 0.03 25 16.67 23.33 -1.13 

US-Mpj 2012 - 2013 -1.39 0.03 21.4 14.27 20.82 -1.07 

RJ forest 1999 - 2002 -0.04 0.03 35 23.33 31.67 0.61 

Table S2.4. The measurement details of each forest flux tower site.  The measurement height (z) 

reported here is the measurement height above the displacement height.  This height was used to 

standardize the original inversion values to 10 m above the displacement height.  The final Γ here 

are what are reported in the main text (Table 2.1). 
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Abstract 

 

Sub-grid information from land models has the potential to be a powerful tool for investigating 

land-atmosphere interactions, but relatively few studies have attempted to exploit sub-grid output.  

In this study, we modify the configuration of the Community Land Model version CLM4.5 so 

that each plant functional type (PFT) is assigned its own soil column.  We compare sub-grid and 

grid cell-averaged air temperature and surface energy fluxes from this modified case (PFTCOL) 

to a case with the default configuration—a shared soil column for all PFTs (CTRL), and examine 

the difference in simulated surface air temperature between grass and tree PFTs within the same 

grid cells (ΔTGT). The magnitude and spatial patterns of ΔTGT from PFTCOL agree more closely 

with observations, ranging from -1.5 K in boreal regions to +0.6 K in the tropics.  We find that 

the column configuration has a large effect on PFT-level energy fluxes.  In the CTRL 

configuration, the PFT-level annual mean ground heat flux (G) differs substantially from zero. 

For example, at a typical tropical grid cell, the annual G is 31.8 W m-2 for the tree PFTs and -14.7 

W m-2 for grass PFTs. In PFTCOL, G is always close to zero.  These results suggest that care 

must be taken when assessing local land cover change impacts with sub-grid information.  For 

models with PFTs on separate columns, it may be possible to isolate the differences in land 

surface fluxes between vegetation types that would be associated with land cover change from 

other climate forcings and feedbacks in climate model simulations. 

 

  

70 
 



Introduction 

Land cover change influences global and local climate by altering terrestrial carbon storage and 

atmospheric CO2 concentrations (biogeochemical effect) and by modifying surface radiation and 

turbulent fluxes (biophysical effect) [e.g. Bala et al., 2007; Bonan, 2008; Ciais et al., 2013; 

Mahmood et al., 2014]. The biophysical effects of land cover change, which include changes to 

surface fluxes of radiation, heat, moisture, and momentum [Pielke et al., 1998], are especially 

important for regional and local surface climate [de Noblet-Ducoudré et al., 2012; P J Lawrence 

and Chase, 2010].  The biophysical effects of land cover change can be summarized by changes 

in (1) surface albedo, (2) evapotranspiration, and (3) roughness length and turbulent exchange, 

with their contribution on local climate quantified by changes in surface air temperature [Bonan, 

2008; Mahmood et al., 2014].  The relative importance of these three competing effects varies 

geographically, and may amplify or dampen changes in surface climate caused by rising 

atmospheric greenhouse gas concentrations. 

Understanding and quantifying the biophysical effects of land cover change on local climate are 

important for distinguishing between different anthropogenic forcings, but this understanding is 

hindered by a number of methodological challenges.  Observational and modeling studies tend to 

agree on the latitudinal pattern of the temperature response to deforestation, with cooling in high 

latitudes and warming in low latitudes [e.g. Davin and de Noblet-Ducoudré, 2010; P J Lawrence 

and Chase, 2010; Lee et al., 2011; Zhang et al., 2014].  However, while observational methods 

have helped answer some major questions, they are limited by relatively short and sporadic 

measurement periods.  Data that can be used to robustly and directly quantify the relative impact 

of the various biophysical processes on temperature differences for different land cover types is 

sparse, and frequently suffers from some limitations such as differing underlying atmospheric 

conditions [Lee et al., 2011; Pielke et al., 2011].   
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Utilizing global climate models (GCMs) to assess the impact of biophysical land cover changes 

poses its own set of challenges [de Noblet-Ducoudré et al., 2012; Pielke et al., 2011; Pitman et 

al., 2009].  Most modeling studies use two sets of simulations to evaluate the biophysical effects 

of historic land cover change: one with pre-industrial or potential vegetation land cover and the 

other with present-day land cover, isolating the biophysical effects of land cover by prescribing 

the same atmospheric concentrations of CO2 and other greenhouse gases with both sets of land 

cover conditions [e.g. P J Lawrence and Chase, 2010].  Other modeling studies have taken it a 

step farther and applied the so-called “scorched Earth” strategy [Pielke et al., 2011] in which the 

biophysical effects from a completely deforested world are compared to a fully forested world 

[e.g. Davin and de Noblet-Ducoudré, 2010].  Identifying and evaluating the biophysical effects of 

land cover change as the difference between two modeling scenarios is complicated by the need 

to properly establish that modeled land cover change climate signals cannot be simply explained 

as unforced model variability or non-local effects of land cover change such as changes to 

atmospheric or ocean circulation [Pielke et al., 2011; Pitman et al., 2009].  In addition, 

differences in the parameterization of vegetation types and the implementation of land cover 

change among land models leads to inconsistencies in biophysical effects of historical land cover 

change between different GCMs [de Noblet-Ducoudré et al., 2012; Pitman et al., 2009].   

While some modeling studies have implemented land cover change as a fractional change in the 

distribution of vegetation within a grid cell, analyses have still focused on the grid cell-averaged 

difference of surface variables such as air temperature and energy fluxes [P J Lawrence and 

Chase, 2010; Pitman et al., 2009].  Many terrestrial models represent land cover heterogeneity 

within a grid cell as a mosaic of sub-grid tiles with distinct physical, biogeochemical, and 

ecological properties.  However, few studies have attempted to utilize the sub-grid information to 

assess the biophysical effects of land cover change.  A notable exception is the recent study by 

Malyshev et al. [2015].  Their treatment of land cover tiles in the land component, LM3.0, of the 
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Geophysical Fluid Dynamics Laboratory (GFDL) Earth System Model, ESM2Mb, captures the 

above and below-ground heterogeneity of land cover types within a grid cell, allowing for the 

comparison of the response of different land cover types to the same atmospheric forcing.   

Representing sub-grid land surface heterogeneity in global climate models has long been a 

challenging problem.  In early versions of GCMs, land-surface parameters were often set to those 

of the dominant vegetation type within a grid cell [Arain et al., 1999].  However, recognizing that 

significant spatial variability in vegetation and other features exist within the spatial area of a 

single model grid cell, new strategies for representing sub-grid land surface heterogeneity were 

developed.  At the two extremes are the “mixture” and “mosaic” approaches.  At one end of the 

spectrum is the “mixture” strategy, which assumes that the different vegetation types are 

homogenously mixed within a grid cell, and the average of the structural, ecological, and 

physiological attributes of the vegetation types within the grid cell are used for surface 

calculations.  The atmospheric model then interacts with the surface fluxes computed from this 

vegetation composite [Koster and Suarez, 1992].  At the other end of the spectrum is the 

“mosaic” strategy, which represents different land cover types as geographically distinct regions, 

each interacting with the atmospheric model separately, with no interaction between the tiles.  In 

a full mosaic approach, in addition to surface energy and water fluxes computed for each 

individual tile, soil temperature, moisture, and snow cover evolve independently for each 

vegetation tile [Koster and Suarez, 1992; Li and Arora, 2012; Molod, 2002].   

Many current versions of GCMs use land surface heterogeneity strategies that lie between the 

“mixture” and the “full mosaic” approaches described above.  The land surface representation 

within the Community Land Model (CLM), the land component of the Community Earth System 

Model (CESM) consists of up to 15 plant functional types (PFTs) within the vegetated “land unit” 

of the grid cell [Oleson et al., 2013].  Biogeochemical and biophysical fluxes are computed at the 

PFT-level, and then aggregated (area-weighted) to the column level, in CLM nomenclature.  
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While the PFTs within CLM can be thought of as a tile or mosaic surface configuration, all PFTs 

within the naturally vegetated land unit of the grid cell share a single soil column, with shared soil 

(temperature, moisture) and snow properties (see Methods for more details).  A single 

atmospheric forcing is applied to all PFT tiles within a grid cell. This type of land surface 

representation is consistent, at least broadly, with many other models in the phase 5 of the 

Coupled Model Intercomparison Project (CMIP5) [Malyshev et al., 2015].  

Sub-grid information from climate models can be a powerful tool for investigating land-

atmosphere interactions, yet PFT-level output from land models has been under-utilized in land 

cover change studies in favor of grid cell-averaged output.  In contrast, sub-grid information from 

non-vegetated land surface tiles has been used in CLM modeling experiments.  For example, 

urban tiles within a grid cell have been used to investigate the contribution of local background 

climate to urban heat islands [Zhao et al., 2014], and the sub-grid lake model has been used to 

study lake-atmosphere interactions and the modulating effects of lakes on regional climate [Deng 

et al., 2013; Subin et al., 2012].   Perhaps part of the reason that individual PFT tiles have not 

been frequently used in GCM experiments is because of the common characteristic of a shared 

soil column, which does not allow for the complete separation of each PFT from the others. 

It is debatable whether the mixture or full mosaic strategy is a more “realistic” representation of 

the natural landscape in a model grid cell. The mixture approach is perhaps more appropriate for 

savanna-like landscapes where trees and grasses are interspersed and competing for water and 

nutrients. The mosaic approach may be more appropriate for regions with distinct areas of 

different land cover types.  A potential advantage of the full mosaic approach is that it may be 

able to more clearly isolate the role and response of different vegetation types.  Using CESM as 

an example, since the same atmospheric forcing is applied to PFT-tiles, the differing responses of 

each vegetation type to the same atmospheric forcing can be examined.  By directly comparing 

the response of one land cover type to another within the same grid cell, the complicating factors 
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that arise from multiple simulations, unforced variability or non-local effects of land cover 

change, are no longer relevant.  Additionally, analysis of sub-grid information may be useful in 

future climate projection simulations to help understand how local biophysical effects of land 

cover change compare to other large-scale forcings, like a doubling of CO2 for example.         

In this study, we modify the sub-grid PFT configuration of CLM4.5 so that it may be used to 

isolate the effects of land cover and land cover change on local climate.  We compare the default 

(multiple vegetation types on a shared soil column) version to a modified version in which each 

PFT is given an individual soil column.  Our specific objectives are to: (1) examine the effect of a 

shared soil column versus individual soil column configuration on sub-grid (PFT-level) and grid 

cell-averaged output of surface air temperature and energy fluxes, and (2) perform preliminary 

evaluation of the individual PFT-column configuration to determine whether it may provide an 

advantage over the shared-column configuration in land cover change experiments. 

Methods 

Model description 

The Community Land Model (CLM) [D M Lawrence et al., 2011; Oleson et al., 2013] is the land 

component of the Community Earth System Model (CESM) [Hurrell et al., 2013].  In CLM4.5, 

the latest version of CLM, the land surface is represented as a nested hierarchy of sub-grid levels.  

At the broadest level, the land unit, each grid cell may be divided into fractions of natural 

vegetation, lakes, urban areas, glaciers, and crops.  The second sub-grid level for the vegetated 

land unit is the column, which captures variations in soil and snow variables within the land unit.  

The soil profile in the vegetated land unit in CLM4.5 is represented as 15 discrete layers (to a 

depth of 35 m, with more soil layers near the surface).  Hydrology calculations are done for just 

the top ten layers (from the surface to the depth of 2.9 m), while soil temperature is calculated for 

all 15 layers.  Up to five additional layers may be added for snow, depending on snow depth.  The 
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vegetated land unit is assigned a single column, with fractional areas of all the relevant plant 

functional types (PFTs) for that grid cell sharing the column.  

The PFT-level, or third sub-grid level, specifies the differences in the biophysical and 

biogeochemical processes across different vegetation types.  In addition to bare ground, the 

vegetated land unit may be comprised of up to 15 different PFTs.  PFTs differ in their optical 

properties, as well as their water uptake, aerodynamic, and photosynthetic parameters.  The PFT 

parameterizations control the surface energy and biogeochemical fluxes from the vegetated 

surface.  Fluxes from the land surface are computed at the PFT-level, and then area-weighted to 

the column, land unit, and then grid cell level before being passed to the atmosphere model. The 

same atmospheric forcing is used to force all PFTs within the grid cell.           

Experimental setup 

Two CLM4.5 simulations were run to investigate the effects of a shared soil column versus 

individual PFT columns on both the PFT-level and grid-cell level output of surface state variables 

and fluxes.  The first simulation (CTRL) was run using the default configuration of CLM4.5, 

where all PFTs within a grid cell shared a single soil column.  The second simulation (PFTCOL) 

was run using a modified version of CLM4.5, where each PFT within the vegetated land unit was 

assigned to its own soil column (Figure 3.1).  Both the CTRL and PFTCOL simulations were run 

with present-day land cover conditions, with vegetation phenology [leaf area index (LAI), stem 

area index (SAI)] prescribed by satellite observations [P J Lawrence and Chase, 2007; Myneni et 

al., 2002].  In both simulations, CLM4.5 was run offline forced with 1991-2010 CRUNCEP 

atmospheric forcing data [Viovy, 2011].  Each case was run for 81 years, with the first 60 years 

devoted to spinup of soil temperature and moisture. PFT-level output and grid cell averages were 

archived for all surface and below ground state and flux variables at monthly intervals for the first 

80 years, and then at hourly intervals for the final year.  
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Figure 3.1. Schematic diagram illustrating the above and below-ground configuration of CLM4.5 

in the (a) CTRL and (b) PFTCOL simulations.  A hypothetical grid cell may contain multiple 

land units (G – glacier, L – lake, U – urban, V – vegetated, C – crop).  By default, natural PFTs 

share a single soil column (CTRL).  In the modified configuration (PFTCOL), each natural PFT 

is assigned its own soil column. For both the CTRL and PFTCOL cases, atmospheric inputs 

(incoming solar and longwave radiation, temperature, specific humidity, wind, pressure, and 

precipitation) are the same for all tiles within the grid cell. 
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Comparative analysis 

We conducted a comparative analysis of air temperature and surface energy fluxes at both the 

PFT-level and grid cell-level between the PFTCOL and CTRL simulations.  The purpose of this 

comparison was to quantify the effect of the column configuration on sub-grid and grid cell-

averaged surface climate variables.  For the PFT-level comparisons, we area-weighted the grass 

and tree PFTs within each grid cell into a single value for each of these respective land cover 

categories.  Although some grid cells contained other PFTs, including bare soil and shrubs, our 

analysis focuses on tree and grass PFTs for two reasons.  First, we were interested in comparing 

how PFTs from distinct land cover classes responded to the change in column configuration.  

Second, these two broad classes had the widest spatial distribution across the globe (i.e. there 

were more grid cells that contained both tree and grass PFTs).  It should be noted that the grid cell 

averaged values do contain all PFTs within each grid cell, because in addition to examining PFT-

level differences, we wanted to investigate whether this new configuration could affect 

atmospheric processes when coupled to the atmosphere model.  We present the comparison as the 

difference (Δ) in surface climate variables between the PFTCOL and CTRL simulations 

(PFTCOL – CTRL).  For example, ΔTa is the difference in air temperature between the PFTCOL 

and CTRL cases.  We also examined the difference in each term in the surface energy balance 

equation (Eq 1).   

𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛 =  𝐾𝐾 ↓  − 𝐾𝐾 ↑  + 𝐿𝐿 ↓  − 𝐿𝐿 ↑ = 𝐻𝐻 +  𝜆𝜆𝜆𝜆 + 𝐺𝐺  (1) 

Incoming shortwave (K↓) and longwave (L↓) were prescribed by the atmospheric forcing data, 

and therefore did not vary between the PFTCOL and CTRL cases.  We compared the differences 

in reflected shortwave (K↑) and emitted longwave (L↑) radiation, net radiation (Rnet), as well as 

the sensible heat (H), latent heat (λE), and ground heat (G) fluxes.  Our sign convention is that a 

flux away from the surface is positive and a flux towards the surface is negative. We first 

compared the PFT-level (tree and grass PFTs) and grid cell-averaged values of these surface 
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variables at the global scale. For a closer investigation into the temporal differences between the 

PFTCOL and CTRL simulations, three grid cells were selected; one grid cell from each of three 

distinct climate regions: tropical (grid center at 6.13oN, 288.75oE), temperate (35.34oN, 282.5oE), 

and boreal (66.44oN, 222.5oE).  In each of these grid cells, the sum of tree and grass PFT area 

took up the majority of the grid cell; however, smaller percentages of other PFTs (bare soil or 

shrubs) did exist in each of these grid cells (Table S3.1).  These other PFTs are ignored from the 

PFT-level comparisons, but are taken into account in the grid cell-averaged values.  For each of 

these three grid cells, monthly and hourly output from the two cases was compared.   

Finally, we conducted a comparison of surface air temperature between different land cover types 

(grass and tree PFTs) within the same grid cell in each simulation.  For both the CTRL and 

PFTCOL cases, the 20-year mean difference in air temperature between grass and tree PFTs 

(grass air temperature minus tree air temperature, both at the screen height) was calculated.  This 

air temperature difference (ΔTGT) can be thought of as a proxy for a local-scale deforestation 

signal (i.e. the effect of local-scale deforestation on surface air temperature).  While this is not a 

true deforestation signal, because our offline simulations do not allow the atmosphere to respond 

to land cover change and do not account for the variations in land cover after deforestation 

occurs, this method, which substitutes space for time, allows for the comparison of the land 

surface response of different vegetation types to the same atmospheric conditions.  We chose air 

temperature for this initial comparison of sub-grid surface climate because the magnitude and 

spatial pattern of ΔTGT has been relatively well established in previous observational and 

modeling studies [e.g. Davin and de Noblet-Ducoudré, 2010; Lee et al., 2011; Zhang et al., 

2014].  This comparison of air temperature between different land cover types within the same 

grid cell allows a preliminary assessment of whether the modified sub-grid configuration in the 

PFTCOL simulation improves the land cover change signal.     
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In this paper, we first present the global (zonal average) differences in surface variables between 

the PFTCOL and CTRL simulations.  The zonal average is calculated as the arithmetic mean of 

the difference between tree or grass PFTs across each latitude, including only grid cells that 

include a fraction of the PFT being averaged.  We then discuss the monthly and hourly 

differences in surface climate variables from the three selected grid cells.  The differences are 

shown in figures in the main text, while the monthly and hourly variations of the actual air 

temperature and surface energy fluxes are presented in the Supplemental Information (Figures 

S3.1-S3.6).  Lastly, we show ΔTGT for both the CTRL and PFTCOL simulations. 

Results 

Zonal patterns 

Figure 3.2 presents the zonally-averaged difference in 2-m air temperature (ΔTa) at the PFT-level 

(grass and tree PFTs) and grid cell-level between the PFTCOL and CTRL simulations (PFTCOL 

– CTRL).  At the grid cell-level, zonal mean ΔTa is relatively small, ranging from -0.10 K to 0.10 

K.  At the sub-grid or PFT-level, however, ΔTa is an order of magnitude larger and exhibits 

distinct latitudinal patterns.  Generally, the individual PFT columns produce lower air 

temperatures over grass PFTs and higher temperatures over tree PFTs in high latitudes, while the 

reverse is observed in middle to low latitudes (between 40oN and 40oS).  The largest differences 

in Ta between the PFTCOL and CTRL cases for both grass and tree PFTs are observed above 

40oN.  Above 40oN, the ΔTa of tree PFTs reaches 2.25 K, while the ΔTa of grass PFTs reaches -

0.79 K.  However, it should be noted that the large differences at highest latitudes (> 75oN) result 

from averaging across a low number of grid cells.  Global maps of ΔTa are presented in Figure 

S3.1. This warming and cooling pattern for tree and grass PFTs in high latitudes is dominated by 

changes in air temperature during winter months, resulting from snow cover and albedo changes, 

as will be discussed in more detail in later sections.   
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The configuration of columns, either shared as in the CTRL case or individual as in the PFTCOL 

case, has a considerable effect on how surface energy is partitioned between radiative, turbulent, 

and ground heat fluxes at the PFT level, while only minimally affecting the grid cell-averaged 

values of surface energy fluxes.  Figure 3.3 presents the zonally-averaged PFTCOL – CTRL grid 

cell-level and PFT-level differences in surface energy fluxes: net radiation (ΔRnet), sensible heat 

flux (ΔH), ground heat flux (ΔG), and latent heat flux (ΔλE).  Global maps of these data are given 

in Figure S3.2.  Because CLM4.5 in both the PFTCOL and CTRL cases is forced by the same 

atmospheric data, changes in net radiation between the two cases are due only to changes in 

emitted longwave and reflected shortwave radiation from the land surface.  The overall zonal 

patterns in ΔRnet for tree and grass PFTs are dominated primarily by changes in emitted longwave 

radiation.  At high latitudes, changes in albedo, and therefore reflected solar radiation, are an 

important contributor to ΔRnet, particularly for grass PFTs.  The magnitude of ΔRnet is similar for 

both grass and tree PFTs.  Across all latitudes, ΔRnet for tree PFTs ranges from is -8.6 Wm-2 to 4.3 

Wm-2, while ΔRnet for grass PFTs ranges from -8.6 Wm-2 to 7.3 Wm-2 for grasses.  At the grid 

cell-level, ΔRnet is relatively small, ranging from -1.3 Wm-2 to 0.3 Wm-2. 
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Figure 3.2. The zonal mean of the difference in 2-m air temperature between the two cases 

(PFTCOL – CTRL), shown at the grid cell level and PFT-level (PFTs area-weighted into “trees” 

and “grasses”.  Shown as the average of 1991-2010. 
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Changes in the turbulent fluxes are evident at the PFT-level, but are relatively small at the grid-

cell level.  Below 60oN, ΔH for tree PFTs is negative, with the largest decrease (-36 Wm-2) 

occurring in mid-latitudes.  North of 60oN, ΔH is positive for tree PFTs, reaching of 37 Wm-2.  

The ΔH of grass PFTs is positive (up to 22 W m-2) over most latitudes, becoming slightly 

negative at high latitudes.  Compared to ΔH at the PFT-level, ΔH at the grid cell-level is quite 

small (less than 1 W m-2 in magnitude) over all latitudes.  The PFT-level ΔλE follows a similar 

pattern to ΔH, with the exception of the tropics, where there was a large increase in λE in the 

PFTCOL relative to the CTRL case.  It was unexpected that ΔH and ΔλE from each of the two 

PFT categories did not offset each other.  Where ΔH was positive, we expected ΔλE to be 

negative, and vice versa, particularly because the magnitude of ΔRnet for each of the PFT classes 

was less than ±10 Wm-2.  However, after accounting for ΔG, the surface energy budget for tree 

and grass PFTs was balanced.   

Examining PFT-level ΔG reveals the influence of the shared versus individualized soil columns 

on the surface energy budget of PFTs, and why PFT-level data may be biased in the shared 

column configuration.  The ground heat flux exhibited the largest difference of all surface energy 

fluxes between the PFTCOL and CTRL cases.  Notably, the large ΔG at the PFT-level is due to 

the fact that the annual PFT-level G in the CTRL case is strongly negative or positive, by up to 

50Wm-2 in magnitude at some latitudes, while the annual PFT-level G is the PFTCOL case is 

approximately zero.  For tree PFTs, ΔG ranges from -71.8 Wm-2 to 41.7 W m-2, while for grass 

PFTs, ΔG ranges from -47.8 Wm-2 to 3.0 W m-2.  The grid cell-averaged ΔG is very small (± 0.1 

W m-2) between the two cases.   
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Figure 3.3. The zonal mean of the differences in (a) net radiation, (b) sensible heat flux, (c) 

ground heat flux, and (d) latent heat flux between the PFTCOL and CTRL cases (1991-2010). 
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Temporal 

Here, we compare the PFT-level monthly 2-m air temperature and energy fluxes between the 

PFTCOL and CTRL cases for each of the three grid cells in the tropical, temperate, and boreal 

regions.  For diurnal differences, we focus on the diurnal patterns of ΔTa and ΔG for each of the 

three grid cells.  A summary of the annual differences in Ta and surface energy fluxes for each of 

these three grid cells is presented in Table 1.  The seasonality of the monthly atmospheric forcing 

data for each of these three grid cells is shown in Figure S3.3. 

Seasonal 

Figure 3.4 presents the monthly differences in 2-m air temperature and surface energy fluxes for 

tree and grass PFTs between the PFTCOL and CTRL simulations for the tropical grid cell.  For 2-

m air temperature and the radiative fluxes, the differences between the two cases exhibit little 

seasonality.  The ΔTa is negative for tree PFTs and positive for grass PFTs over all months, with 

seasonal variations in the range of only 0.15 to 0.25 K.  Across all seasons, PFT-level ΔRnet is 

driven by changes to emitted longwave radiation (ΔL↑).  The ΔL↑ for tree and grass PFTs follows 

ΔTa: a cooling of tree PFTs in the PFTCOL case results in reduced L↑ and thus a higher Rnet, 

while the opposite is true for grass PFTs.  The ΔRnet for tree PFTs peaked at 5.4 Wm-2, ΔRnet for 

grass PFTs reached -4.8 Wm-2.   
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Figure 3.4. The monthly differences of (a) 2-m air temperature, (b) net radiation, (c) emitted 

longwave radiation, (d) albedo, (e) sensible heat flux, (f) latent heat flux, and (g) ground heat flux 

at the tree and grass PFT-level and grid cell-level for the tropical grid cell (6.13oN, 288.75oE).  

The monthly differences are averaged over 20 years (1991-2010). 
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There is some seasonality to the H and λE (Figure S3.4), due to a dry season from January to 

March and relatively wetter conditions from April to December.  Although the sign of ΔH for 

both tree and grass PFTs does not change over the year, ΔH is largest in magnitude during the dry 

season (-31.5 Wm-2 for tree PFTs and13.0 Wm-2 for grass PFTs).  In contrast to ΔH, the largest 

differences in λE for both tree and grass PFTs between the PFTCOL and CTRL simulations are 

observed during the wet season.  The PFTCOL configuration results in a reduction of λE for tree 

PFTs and an increase in λE for grass PFTs over most of the year (March – December).  The 

largest reduction in λE for tree PFTs between the PFTCOL and CTRL cases occurs in May: from 

138.1 Wm-2 in the CTRL case to 118.5 Wm-2 (Figure S3.4) in the PFTCOL case.  For grass PFTs, 

the ΔλE peaked in September at 10.9 W m-2.    

In this tropical grid cell, large differences in the ground heat flux are observed between the two 

cases.  In the CTRL case, G is positive (into the soil) year-round for grass PFTs (11.3 Wm-2 to 

17.9 Wm-2) and negative year-round for tree PFTs (-39.0 Wm-2 to -22.8 Wm-2) (Figure S3.4).  In 

the PFTCOL case, however, the monthly G for tree and grass PFTs ranges from -2.0 Wm-2 to 2.5 

Wm-2.  Averaging over the entire year, the PFTCOL PFT-level G is nearly zero, while the CTRL 

case produces annual averages for G of -31.8 Wm-2 and 14.7 Wm-2 for tree and grass PFTs, 

respectively (Table 3.1).  The largest differences are observed in April, with ΔG reaching 38.4 W 

m-2 for tree PFTs and -17.9 Wm-2 for grass PFTs.  
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Figure 3.5. The same as Figure 3.4 except for the temperate grid cell (35.34oN, 282.5oE). 
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There is a distinct seasonality to the monthly differences between the PFTCOL and CTRL cases 

for the temperate grid cell, with the largest differences in all surface variables occurring during 

summer months (June – August; Figure 3.5).  The magnitude of the differences tends to follow 

the seasonality of Ta and surface energy fluxes (Figure S3.5).  The ΔTa for tree PFTs is negative 

across all months, reaching -0.27 K in June, while ΔTa for grass PFTs is positive for all months 

except December, peaking at 0.24 K.  The seasonal pattern of PFT-level ΔRnet is driven primarily 

by ΔL↑, as at this latitude, snow cover is not yet a significant contributor to Rnet in winter months.   

The largest differences in the sensible heat, latent heat, and ground heat fluxes between the 

PFTCOL and CTRL cases in the temperate grid cell occur during spring and summer months, 

when fluxes are highest.  During summer months, there was a 12 Wm-2 decrease in H for tree 

PFTs and a 10 Wm-2 increase for grass PFTs in the PFTCOL case relative to the CTRL case 

(Figure S3.5).  The ΔλE at the PFT-level is in the range of ±1 W m-2 to 11 W m-2 for both grass 

and tree PFTs.   

The magnitude of ΔG is nearly double those of ΔH and ΔλE for both tree and grass PFTs.  In the 

CTRL case, the ground heat flux for tree PFTs is negative over the entire year, while G for grass 

PFTs is positive nine months out of the year (Figure S3.5), resulting in annual averages of -16.4 

W m-2 and 14.0 W m-2 (Table 3.1).  In contrast, G for each of the PFTs in the PFTCOL case 

exhibits a seasonal cycle (positive flux during summer months, negative flux during winter 

months) which averages out on an annual basis to be approximately zero (Figure S3.5, Table 3.1).  

Because of these differences in the seasonality of G between the PFTCOL and CTRL cases, ΔG 

is large, reaching 25.0 Wm-2 for grass PFTs and -21.2 Wm-2 for tree PFTs during the summer.  
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Figure 3.6. The same as Figure 3.4 except for the boreal grid cell (66.44oN, 222.5oE). 
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In the boreal grid cell, the seasonal patterns of air temperature and surface energy fluxes show 

two interesting differences compared to the temperate and tropical grid cells (Figure 3.6).  First, 

the largest changes in air temperature between the PFTCOL and CTRL cases occur during winter 

months.  In the PFTCOL case, tree PFTs become cooler during the spring/summer, and warmer 

during the fall and winter, with ΔTa reaching 1.50 K in February.  The ΔTa for grass PFTs 

displays an opposite seasonal pattern of the tree PFTs, with slightly positive values from May 

through August, and negative values during the colder months of the year.  The warming of grass 

PFTs during summer months in the PFTCOL case is minimal, but the cooling is substantial, with 

ΔTa reaching -1.79 K in April.   

Second, ΔK↑ becomes important to ΔRnet in the boreal grid cell.  In particular, ΔK↑ of grass PFTs 

contributes significantly to ΔRnet in late spring.  The ΔRnet for grass PFTs in May is -29.0 Wm-2, 

resulting from a ΔL↑ of -13.0 W m-2 and a ΔK↑ of 42.0 Wm-2 (Figure S3.6).  To put ΔK↑ in 

context with incoming shortwave radiation, the albedo of grass PFTs in May increased from 0.16 

in the CTRL case to 0.27 in the PFTCOL case.  Dividing the shared soil column into separate 

columns for each PFT affects snow depth and subsequently the vertical burial of vegetation by 

snow, since snow is a column-level variable.  In the month of May in particular, deeper snow 

reduces the exposed leaf area index (LAI) of grass PFTs by 0.38 m2 m-2, while there is no change 

in the exposed LAI of tree PFTs.  

A seasonal cycle exists for ΔH, ΔλE, and ΔG for tree and grass PFTs.  Again, the largest change 

to the surface energy budget between the two cases is to the ground heat flux, with monthly ΔG 

for tree PFTs and grass PFTs reaching 24.3 W m-2 and 20.0 W m-2, respectively.  On an annual 

basis, however, ΔG is relatively small compared to the other two grid cells: 3.4 Wm-2 for grass 

PFTs and 0.5 Wm-2 for tree PFTs (Table 3.1).            
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Table 3.1. A summary of the annual 2-m air temperature (K) and surface energy fluxes (Wm-2) for each of the three grid cells.  The 20-year annual 

averages for the PFTCOL and CTRL simulations are shown, as well as the difference (Δ) between the two runs (PFTCOL – CTRL).

    Grass PFTs    Tree PFTs 

grid location case name Ta K↓ K↑ L↓ L↑ H λE G   Ta K↓ K↑ L↓ L↑ H λE G 

Boreal            

(66.44N, 

222.5E) 

PFTCOL 261.8 111.2 41.4 218 266.6 5.7 14.7 0.8  262.3 111.2 11.1 218 274.5 27.7 15.3 0.7 

CTRL 262.5 111.2 37.4 218 271.2 7.6 15.7 -2.6  261.7 111.2 11.2 218 272.2 28.6 17 0.2 

Δ -0.7 -- 4 -- -4.6 -1.9 -1 3.4  0.6 -- -0.1 -- 2.3 -0.9 -1.7 0.5 

Temperate            

(35.34N, 

282.5E) 

PFTCOL 288.5 192.7 29.2 337.8 398.4 29.4 73.4 0.06  288.1 192.7 18 337.8 394.3 47.5 70.8 -0.02 

CTRL 288.3 192.7 29.2 337.8 396.4 22.5 68.5 14  288.3 192.7 18 337.8 395.7 55.7 77.6 -16.4 

Δ 0.2 -- 0 -- 2 6.9 4.9 -13.94  -0.2 -- 0 -- -1.4 -8.2 -6.8 16.38 

Tropical             

(6.13N, 

288.75E) 

PFTCOL 300.6 207.3 30.7 429.2 470.8 31.7 103.3 -0.04  299.8 207.3 26.4 429.2 459.3 45.2 105.6 -0.03 

CTRL 300.5 207.3 30.7 429.2 468.4 26.2 96.5 14.7  300.2 207.3 26.4 429.2 463 61.2 117.7 -31.8 

Δ 0.1 -- 0 -- 2.4 5.5 6.8 -14.74  -0.4 -- 0 -- -3.7 -16 -12.1 31.77 

92 
 



Diurnal 

We focus on the diurnal patterns of ΔTa and ΔG for each of the tropical, temperate, and boreal 

grid cells (Figures 3.7-3.8). The diurnal patterns and differences of these and other surface 

variables are given in Supplementary Figures S3.7-S3.12.  The diurnal ΔTa patterns are similar in 

the tropical and temperate grid cells, although they are more pronounced in the tropical grid cell 

(Figure 3.7).  In the tropical grid cell, ΔTa for tree PFTs is always negative, reaching -0.82 K 

during the night, while ΔTa for grass PFTs is always positive, peaking at 0.25 K overnight.  For 

the temperate grid cell, ΔTa ranges from -0.40 K for tree PFTs and 0.32 K for grass PFTs.  In the 

boreal grid cell, the hourly ΔTa is always positive for tree PFTs (up to 0.73 K) and always 

negative for grass PFTs (up to -0.87 K). 

The largest ΔG occurs during midday, when fluxes are the highest (Figure 3.8).  The magnitude 

of ΔG overshadows those of the other surface energy fluxes, approximately double ΔH and ΔλE 

and nearly ten times larger than ΔRnet (Figures S3.7-S3.12).  In all three grid cells, midday G for 

tree PFTs is higher in the PFTCOL case relative to the CTRL case, while midday G for grass 

PFTs is reduced.  For tree PFTs, midday ΔG peaks at 98.1 Wm-2, 49.9 Wm-2, and 12.4 Wm-2 for 

the tropical, temperate, and boreal grid cells, respectively.  For grass PFTs, midday ΔG reaches -

39.3 Wm-2, -44.8 Wm-2, and -2.9 Wm-2.       
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Figure 3.7. The hourly difference in 2-m air temperature for tree and grass PFTs for the (a) 

tropical, (b) temperate, and (c) boreal grid cells.  The hourly differences are averaged over a 

single year (2010). 
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Figure 3.8. The hourly difference in the ground heat flux for tree and grass PFTs for the (a) 

tropical, (b) temperate, and (c) boreal grid cells.  The hourly differences are averaged over a 

single year (2010). 
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Sub-grid land cover change comparison 

Figure 3.9 presents the 20-year average (1991-2010) of the 2-m air temperature difference (ΔTGT) 

between grass and tree PFTs within each grid cell for the CTRL and PFTCOL simulations.  As 

previously stated, the ΔTGT can be thought of as the effect of local-scale deforestation on surface 

air temperature.  The PFTCOL simulation produces a latitudinal pattern of ΔTGT, with a sub-grid 

cooling of more than 1.5 K in boreal regions and an average sub-grid warming in the tropics of 

approximately 0.6 K.  The CTRL simulation produces a spatial pattern of ΔTGT that is nearly 

opposite to that of the PFTCOL simulation.  In the CTRL case, “deforestation” produces the 

largest warming in high latitudes, with regions of mild cooling scattered across the globe.   
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Figure 3.9. The 20-year (1991-2010) difference in 2-m air temperature (grass PFTs – tree PFTs) 

for the CTRL case (top) and the PFTCOL case (bottom). 
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Discussion 

Soil column effect on sub-grid temperature 

Land models typically produce a great amount of sub-grid information.  The utility of PFT-level 

data in CLM and possibly other land models is hindered by the implicit transfer of energy through 

the shared soil column, and thus the inability to completely separate a single PFT from the others.  

By modifying the land surface configuration of CLM in such a way so that each PFT within the 

vegetated land unit was assigned its own soil column, we showed that each PFT is isolated from 

the others, allowing for analysis at the PFT-level.   

The ΔTGT results from the PFTCOL simulation differ substantially from the CTRL simulation, 

but agree closely with previous studies in both magnitude and latitudinal pattern.  The PFTCOL 

results are in agreement with the observational studies of Lee et al. [2011] and Zhang et al. 

[2014] who compared surface air temperature using site pairs of measurements over forests and 

open lands, and found that the magnitude of cooling in high latitudes was higher than the 

magnitude of warming in low latitudes in both the Americas and Asia.  Additionally, these initial 

results are in general agreement with the annual sub-grid canopy air temperature difference (crop 

– natural vegetation) calculated by Malyshev et al. [2015].  They found that, compared with 

natural vegetation, crops produce a local cooling in high latitudes (above approximately 45oN) 

and warming in mid to low latitudes. The separate soil columns present a new opportunity to 

isolate the effects of land cover and land cover change on surface climate in GCM experiments.   

Soil column effect on PFT surface energy balance 

We found that soil column configuration influenced net radiation, turbulent fluxes, and the 

ground heat flux at the PFT level, and the difference between the PFTCOL and CTRL 

simulations increased as the grid cell fraction of the PFT decreased (Figure S3.13).  With regard 

to the surface energy budget, the largest difference between the PFTCOL and CTRL simulations 

was found for the ground heat flux (Table 3.1).  The annual mean G at the PFT level in the CTRL 
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case is significantly larger than expected in a relatively unchanging climate.  By allowing the 

grass and tree PFTs to share the same soil column, a substantial amount of heat is entering the 

soil below the grass and coming out of the soil below the tree PFTs.  Because there was little to 

no change in the column averaged soil temperature despite these large ground heat fluxes, we 

infer that heat was being transferred from one PFT to another through the shared soil column.   

Measurements of horizontal soil temperature gradients in heterogeneous landscapes are needed to 

understand the magnitude of horizontal ground fluxes between different land cover types.  

However, the CTRL and PFTCOL configurations cannot answer this question, because neither 

configuration allows for horizontal heat transfer between different PFTs.    

The ground heat flux in CLM is calculated as the residual of the surface energy balance equation 

[Oleson et al., 2013].  Therefore, the nonzero G in the CTRL simulation had to have been made 

up for by smaller or larger PFT-level sensible and latent heat fluxes.  The magnitude of changes 

in these fluxes between the PFTCOL and CTRL cases was significant: In the tropical grid cell, 

for example, H and λE for tree PFTs decreased by 26% and 10%, respectively, while H and λE 

for grass PFTs increased by 21% and 7% (Figure 3.10, Table 3.1). We can infer that the turbulent 

fluxes in the CTRL case are biased at the PFT-level because large negative or positive residual 

ground heat fluxes are produced.  Yet, these biases seem to offset each other, since there are only 

minimal differences in the grid cell-averages.  As will be discussed in the following section, this 

is not to say that the PFTCOL results do not have their own biases.  However, we propose that the 

PFTCOL configuration is useful for diagnosing model biases at their source: the PFT-level.            
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Figure 3.10. The 20-year annual mean difference (PFTCOL-CTRL) in surface energy fluxes for 

(a) grass PFTs and (b) tree PFTs in the tropical grid cell.  The colored arrows represent fluxes 

from the PFTCOL case, while grey arrows represent fluxes from the CTRL case.  Units are in 

Wm-2. 
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Model evaluation and validation 

Our results indicate that the PFTCOL land surface configuration can also be used for larger-scale 

evaluation and validation of PFT-level processes.  The configuration of the PFTCOL case can be 

thought of as an expansion of CLM run in single-point mode.  Single-point simulations consist of 

a single point with one PFT on a single column, forced with a prescribed atmospheric dataset or 

flux tower [Oleson et al., 2013].  Often, single-point simulations are used for evaluating specific 

vegetation types, testing new model schemes, or running CLM over a specific site with observed 

data [e.g. Bonan et al., 2014; M Chen et al., 2015].  Because CLM calculates surface variables at 

the PFT-level, model evaluation at the PFT-level may be able to identify potential errors at their 

source and therefore improve both sub-grid and grid cell-averaged output.  It should be noted, 

however, that the separate columns increased the computational time of the CLM simulation, 

with the PFTCOL case costing approximately 11% more than the CTRL case, a relatively minor 

slowdown when running CLM offline.     

The value of this configuration for validation is highlighted through our identification of potential 

model biases in tropical regions.  In the tropics, our PFT-level data shows that CLM does not 

reproduce observed differences in energy partitioning between forested and deforested areas.  

Comparative flux measurements by von Randow et al. [2004] show that the difference in the 

latent heat flux between a forest and pasture site ranges from 21.5 Wm-2 in the wet season to 44.7 

Wm-2 in the dry season.  From our PFTCOL simulation, the difference in λE between grass and 

forest PFTs was less than 10 Wm-2 across all seasons (Figure S3.1).  The small contrast in λE 

between tropical PFTs results in an inaccurate partitioning of the biophysical effects on surface 

temperature.  From flux tower observations, Lee et al. [2011] found that deforested tropical sites 

were nearly 2 K warmer than tropical forests, attributable in large part to changes in the Bowen 

ratio between the forested and open sites.  In paired CLM4.5 simulations by L Chen and 

101 
 



Dirmeyer [2016], however, there was higher ET in the tropics in the deforestation scenario, 

resulting in a negative contribution of the Bowen ratio effect on surface temperature.   

In tropical regions, observations show that forest transpiration is sustained during the dry season 

and the seasonal change in energy partitioning between H and λE is small [da Rocha et al., 2004; 

von Randow et al., 2004].  In contrast, observations over deforested areas show a reduced λE 

during the dry season, accompanied by an increase in H [von Randow et al., 2004].  von Randow 

et al. [2004] show that the Bowen ratio (β = H/ λE) is relatively constant over a tropical forest 

across a year, varying between 0.3-0.4, while the seasonal β at a nearby pasture site varies from 

0.55 during the wet season to 0.77 during the dry season.  From the tropical grid cell in this 

analysis, the annual PFT-level Bowen ratios from the PFTCOL simulation are in better agreement 

with the measurements of von Randow et al. [2004].  Despite improvements in the PFTCOL case, 

the β of tree PFTs displayed a much larger seasonal change, from 0.33 in the wet season to 0.76 

in the dry season, than those reported from field observations, showing that the energy 

partitioning between sensible and latent heat fluxes at the PFT-level in CLM4.5 is inconsistent 

with field observations.   

Through the PFT-level analysis, we identified two potential areas of focus for improving PFT-

level latent heat flux and energy partitioning in the tropical zone.  First, such an improvement 

may be accomplished through an improved parameterization of below-ground processes.  The 

vertical root distribution affects the rates at which plants extract water from different soil layers 

for transpiration [Zeng, 2001].  The effective rooting depth, defined here as the depth at 99% of 

the cumulative root fraction, for each of the four PFTs in the tropical grid cell (two grasses, two 

trees) is given in Table 3.2.  Using the plant-dependent root distribution parameters adopted from 

Zeng [2001], the rooting depths of the C4 grass, C3 grass, broadleaf evergreen trees (BET), and 

broadleaf deciduous trees (BDT) are 2.3 m, 1.4 m, 3.8 m, and 2.3 m.  The similar rooting 

distributions of tree and grass PFTs are unable to simulate observed differences in soil moisture 
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between these different land cover types.  von Randow et al. [2004] found that water storage in 

the 0-2 m soil layer ranged from approximately 380 mm in the dry season to 800 mm in wet 

season in the forest, and from 420 mm to 700 mm in the pasture, and water storage in the 2.0-3.4 

m soil layer in the forest ranged from 200 mm to 500 mm and from 400 mm to 550 mm in the 

pasture.  The large seasonal amplitude of the 2.0-3.4 m layer soil moisture in the forest compared 

to the minor seasonal variations in the lower soil layer in the pasture indicates larger root uptake 

from below 2 m in the forest, compared to the pasture.  For comparison, little contrast is seen in 

the modeled soil moisture between grass and tree PFTs (Table 3.2).  From this analysis, extending 

the rooting system and improving root parameterizations of the tree PFTs may improve the 

seasonality of energy partitioning of the tree PFTs.   
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      Wet season (Jul – Sep)   Dry Season (Jan – Mar) 

 Root depth (m)  β  Soil water content (mm)  β  Soil water content (mm) 

 PFT #1 PFT #2  PFTCOL CTRL Δ  0 - 2.3 m 2.3 - 3.8 m  PFTCOL CTRL Δ  0 - 2.3 m 2.3 - 3.8 m 

Grass PFTs 2.3a 1.4b  0.24 0.23 0.01  833 593  0.58 0.44 0.14  536 521 

Tree PFTs 3.8c 2.3d  0.33 0.37 -0.04  835 589  0.76 1.14 -0.38  566 520 

a) C4 grass, b) C3 grass/crop, c) broadleaf evergreen tree, and d) broadleaf deciduous tree. 

Table 3.2. The root depth, Bowen ratio (β) and soil water content for PFTs in the tropical grid cell.  All values are averaged over 20 years (1991-

2010), and divided into wet and dry seasons. 

104 
 



Second, revisions to canopy parameterizations may improve energy partitioning of PFTs in the 

tropics.  The empirical Ball-Berry stomatal conductance model [Ball et al., 1987] is used in 

CLM4.5 to simulate biotic regulation of ET, but there is some uncertainty as to how to represent 

stomatal closure as soil moisture declines [Bonan et al., 2014].   Adjusting PFT-dependent 

photosynthetic parameters that control stomatal resistance has been shown to reduce or offset 

model errors [Bonan et al., 2011].  Refinement of the canopy model in CLM is another avenue 

for potential improvements.  For example, a multi-layer canopy model by [Bonan et al., 2014] 

performed better than the CLM Ball-Berry model in flux tower simulations, particularly during 

times of moisture stress.  Additionally, the lack of contrast between the λE of tree and grass PFTs 

may be due to excessively high ground evaporation and canopy transpiration from grass PFTs [L 

Chen and Dirmeyer, 2016]. Swenson and Lawrence [2014] have shown that soil evaporation in 

CLM4.5 is biased high over sparse canopies.  Revisions to soil evaporation in CLM should result 

in further improvements. 

Column effect on coupled simulations and carbon balance 

Despite large changes at the PFT-level between the PFTCOL and CTRL simulations, the grid 

cell-averaged differences between the two cases were minimal, because the changes in the surface 

variables for tree PFTs were offset by changes in the other direction for grass PFTs. Therefore, a 

PFTCOL configuration of CLM4.5 coupled to the atmospheric model will not significantly 

modify atmospheric processes.  However, there is evidence that the representation of the land 

surface in terrestrial models affects the carbon balance at both the PFT and grid cell levels.  Li 

and Arora [2012] compared the carbon balance of a land surface model using both the composite 

and mosaic approaches, finding that the grid cell-averaged carbon flux differed between the two 

approaches by as much as 41% for net primary productivity, 16% for vegetation biomass, and 

46% for soil carbon mass.  Additionally, Melton and Arora [2014] found that land model surface 

configuration had a significant influence on the modeled response of terrestrial carbon to land 
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cover change, with the composite and mosaic approaches differing by 16% in estimates of the 

terrestrial carbon sink.  This topic has not yet been investigated using CLM; however, as with the 

physical surface processes, individual columns may prove as a useful tool for model evaluation. 

Conclusions 

We found that the spatial pattern and magnitude of ΔTGT (2-m air temperature difference between 

grass and tree PFTs) from the PFTCOL simulation agreed closely with previously published 

studies, with grasses typically exhibiting lower mean annual temperatures in boreal regions and 

higher temperatures in the tropics than forests.  The CTRL case was not able to simulate these 

same patterns at the sub-grid level.   

Between the PFTCOL and CTRL cases, there were large differences in 2-m air temperature and 

the ground heat flux (G) at the PFT-level.  As G is calculated as the residual of the surface energy 

budget, we infer that the latent and sensible heat fluxes in the CTRL case were biased either high 

or low depending on the large negative or positive ground heat flux.  The large PFT-level ground 

heat fluxes in the CTRL case imply a transfer of energy between PFTs through the shared soil 

column, complicating the interpretation of PFT-level fluxes.  This issue does not exist in the 

PFTCOL configuration, which presents the opportunity to both evaluate the simulation of PFT-

level processes and to compare biophysical processes between different vegetation types. 

Land models produce a large amount of sub-grid information; however, PFT-level data are rarely 

used in GCM experiments.  Here, we show that the PFTCOL configuration appears to be 

promising for evaluation of biophysical land cover change impacts and for assessment of PFT-

level representations of fluxes.   
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Supporting Information 

The supporting information for this chapter contains figures that include global maps of the PFT-

level differences in air temperature and surface energy fluxes, the monthly and hourly surface 

temperature and energy fluxes for the PFTCOL and CTRL cases and the atmospheric forcing data 

for each of the three grid cells presented in the main text: tropical (grid center at 6.13oN, 

288.75oE), temperate (35.34oN,282.5oE), and boreal (66.44oN, 222.5oE), and the relationship 

between PFT fraction and the difference in PFT-level variables between the two simulations.  All 

figures were created following the methods described in the main text.  Supplemental figures S1 

and S2 present global maps of the data presented as zonal means in the main text.  Figure S3 

presents the atmospheric forcing data for each grid cell.  Supplemental figures S4 to S6 present 

the monthly variations of surface variables from each simulation.  Figures S7 to S9 present the 

hourly variations and differences between the two cases for each of the three grid cells.  Figure 

S10 shows the difference in PFT-level variables as a function of grid cell fraction.  Table S1 

provides the PFT fractions in each of the three grid cells.        
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Figure S3.1. The spatial distribution of the difference in 2m surface air temperature for tree and 

grass PFTs between the PFTCOL and CTRL simulations.  The zonal means are presented in 

Figure 1 in the main text. 
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Figure S3.2. The spatial distribution of the difference in net radiation, sensible heat flux, latent 

heat flux, and the ground heat flux for tree and grass PFTs between the PFTCOL and CTRL 

simulations.  The zonal means are presented in Figure 2 in the main text. 
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Figure S3.3. The 20-year (1991-2010) monthly mean values of the atmospheric forcing data (at 

reference height of 30m) used to drive CLM for each of the three grid cells. 
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Figure S3.4. The monthly values of (a) 2-m air temperature, (b) net radiation, (c) emitted 

longwave radiation, (d) sensible heat flux, (e) latent heat flux, and (f) ground heat flux at the tree 

and grass PFT-level and grid cell-level for the tropical grid cell (6.13oN, 288.75oE).  The monthly 

values are averaged over 20 years (1991-2010). 
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Figure S3.5. Same as Figure S3.4, but for the temperate grid cell (35.34oN, 282.5oE). 
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Figure S3.6. Same as Figure S3.4, but for the boreal grid cell (66.44oN, 222.5oE). 
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Figure S3.7. The hourly values of (a) 2-m air temperature, (b) net radiation, (c) emitted longwave 

radiation, (d) albedo, (e) sensible heat flux, (f) latent heat flux, and (g) ground heat flux at the tree 

and grass PFT-level for the tropical grid cell (6.13oN, 288.75oE).  The hourly values are averaged 

over one year (2010). 
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Figure S3.8. The hourly differences of (a) 2-m air temperature, (b) net radiation, (c) emitted 

longwave radiation, (d) albedo, (e) sensible heat flux, (f) latent heat flux, and (g) ground heat flux 

at the tree and grass PFT-level for the tropical grid cell (6.13oN, 288.75oE).  The hourly 

differences are averaged over one year (2010). 
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Figure S3.9. Same as Figure S3.7, but for the temperate grid cell (35.34oN, 282.5oE). 
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Figure S3.10. Same as Figure S3.8, but for the temperate grid cell (35.34oN, 282.5oE). 
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Figure S3.11. Same as Figure S3.7, but for the boreal grid cell (66.44oN, 222.5oE). 
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Figure S3.12. Same as Figure S3.8, but for the boreal grid cell (66.44oN, 222.5oE). 
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Figure S3.13. The difference in air temperature, net radiation, sensible, latent, and ground heat 

fluxes between the PFTCOL and CTRL simulations as a function of PFT grid cell percentage.  

Single point simulations were run on the tropical grid cell, with PFT fractions for grass (C4 grass) 

and tree (broadleaf evergreen) fractions ranging between 25 and 100%.  At 100% PFT fraction, 

the CTRL case PFTs equaled the PFTCOL case PFTs.  The differences increased as the fraction 

decreased. 
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Plant functional type Boreal Temperate Tropical 

Bare 0.016 0 0.004 

Needleleaf evergreen, temperate 0 0.308 0 

Needleleaf evergreen, boreal 0.241 0 0 

Needleleaf deciduous, boreal 0 0 0 

Broadleaf evergreen, tropical 0 0 0.241 

Broadleaf evergreen, temperate 0 0 0 

Broadleaf deciduous, tropical 0 0 0.062 

Broadleaf deciduous, temperate 0 0.152 0 

Broadleaf deciduous, boreal 0.004 0 0 

Broadleaf evergreen shrub, temperate 0 0 0 

Broadleaf deciduous shrub, temperate 0 0.001 0 

Broadleaf deciduous shrub, boreal 0.410 0 0 

C3 arctic grass 0.328 0 0 

C3 non-arctic grass 0 0.190 0 

C4 grass 0 0.099 0.685 

C3 generic crop 0 0.247 0.008 

Table S3.1. The fraction of PFTs in each of the three grid cells examined in this study. 
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Chapter 4: Using sub-grid land model output to evaluate the simulated effects of 

land cover change on local climate 
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Abstract 

Land models produce a large amount of sub-grid information, and this data is particularly well 

suited to evaluate the representation of the effects of land use/land cover change (LULCC) on 

local climate.  In this study, we use sub-grid output from the Community Land Model (CLM4.5) 

to calculate the difference in surface temperature (ΔTS) and other surface energy budget variables 

between grass and forest plant functional types (PFTs).  We use global satellite observations to 

evaluate the sub-grid differences in surface climate variables, and examine if the accuracy of the 

representation of ΔTS is related to the representation of TS for grass and tree PFTs.  Our analysis 

focuses on day and nighttime separately.  We find that although modeled TS and other surface 

climate variables for each of the PFT classes are in good agreement with observations, this does 

not translate to good agreement in the differences between the PFTs (e.g. ΔTS).  Our results show 

that the biases in daily-mean ΔTS are small (< 0.7 K), but are due to the offsetting of errors in the 

day and nighttime results.  In evaluating land surface models’ representation of LULCC, our 

results highlight the importance of using the differences in surface climate variables (e.g. ΔTS), 

rather than just the output of individual land cover types. 
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Introduction 

It has been well established that the biophysical effects of land use and land cover change 

(LULCC) affect local to regional climates.  Observational and modeling studies agree that 

deforestation leads to cooling in high latitudes and warming in the tropics, with some 

uncertainties about the sign of the change in temperature in the mid-latitudes [e.g. Bonan, 2008; 

Davin and de Noblet-Ducoudré, 2010; Lee et al., 2011; Li et al., 2015; Mahmood et al., 2010; 

Pielke et al., 2011].  Regional changes in climate caused by deforestation can be larger than the 

changes resulting from increases in greenhouse gas emissions [de Noblet-Ducoudré et al., 2012].  

However, substantial disagreement among models exists when it comes to the regional climate 

response to LULCC [Pitman et al., 2009].  In particular, de Noblet-Ducoudré et al. [2012] found 

that there was no consistency among land surface models in their representation of the 

partitioning of available energy between latent and sensible heat fluxes due to LULCC, 

highlighting the need for rigorous evaluation of land surface models.  To that end, the goal of the 

Land Use Model Inter-comparison Project is to develop metrics and diagnostic protocols to 

quantify model performance when it comes to the simulated response of LULCC [D M Lawrence 

et al., 2016]. 

Often, land surface models are evaluated using single-point mode simulations for different land 

cover types [Bonan et al., 2014; M Chen et al., 2015].  Using this framework, a single point (or 

grid cell) is driven by local atmospheric conditions, and the response of the model is compared to 

observations (usually from a flux tower).  Vanden Broucke et al. [2015] argue that this method of 

evaluation may not provide a complete picture of a model’s ability to accurately represent the 

effects of LULCC.  Implicit in this type of model evaluation is that if the model acceptably 

simulates the surface climatology of two land cover types separately, it should be able to simulate 

the climate response of the transition between the two land cover types.  However, what may 
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seem like acceptable biases for individual land classes may become magnified when examining 

the change from one land cover type to another. 

A paired-site approach has emerged to investigate the potential impacts of LULCC using in-situ 

or satellite observations [Juang et al., 2007; Lee et al., 2011; Li et al., 2015; N.M. Schultz et al., 

2017; Teuling et al., 2010].  Substituting space for time, this type of analysis compares the land 

surface response of different land cover types to the same atmospheric conditions.  For example, 

two flux towers within close proximity of each other, or satellite-derived values of land surface 

climatology from different land cover types within a small geographic region.   

In terms of model performance, flux tower site pairs have been used to evaluate the simulated 

effects of LULCC on surface temperature in Europe [Vanden Broucke et al., 2015].  Their results 

highlight the importance of evaluating a land surface model’s simulation of land cover change, 

rather than just the climatology of the different land cover types.  However, the geographic 

distribution of paired flux towers suitable for this type of analysis is uneven, limiting the ability to 

investigate the effects of LULCC, and thus model evaluation, across diverse climatological 

regions.  

On a larger scale, satellite-derived products can provide a global assessment of the effects of land 

cover change on surface temperature, albedo, and evapotranspiration (ET) [Boisier et al., 2013; 

2014; Li et al., 2015; N.M. Schultz et al., 2017].  In this study, we use global satellite observations 

to investigate the representation of LULCC on land surface temperature (TS) in the Community 

Land Model (CLM4.5).  Many terrestrial models, including CLM, represent land cover 

heterogeneity in a grid cell as a mosaic of sub-grid tiles; however, few studies have attempted to 

utilize the sub-grid data to assess the biophysical effects of LULCC [Malyshev et al., 2015; N. M. 

Schultz et al., 2016].  Sub-grid information from climate models can be a powerful tool for 

LULCC studies, allowing for the direct comparison of land surface response of different land 
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cover types to the same forcing from the same prescribed or modeled atmospheric conditions.  

Comparing data from different land cover tiles within a grid cell can be considered an analogous 

method to the space-for-time approach that has been conducted using satellite observations [Li et 

al., 2015; Peng et al., 2014; N.M. Schultz et al., 2017; Wickham et al., 2012].  

Here, we use sub-grid data from CLM4.5 to evaluate the representation of LULCC on TS and the 

surface energy budget.  Specifically, the objectives of this research are to: (1) directly evaluate 

the difference in surface temperature (ΔTS) between sub-grid land cover types, (2) examine 

whether the accuracy of the representation of ΔTS is related to the representation of TS of 

individual land cover types, (3) evaluate ΔTS during daytime and nighttime, and (4) compare the 

representation of ΔTS across diverse climate regimes.  We use a modified version of CLM4.5, in 

which each sub-grid plant functional type (PFT) is assigned to an individual soil column, thus 

making each PFT independent from the others within the grid cell [N. M. Schultz et al., 2016]. 

Methods 

Observational data 

The observational dataset is derived from global data products from the Moderate Resolution 

Imaging Spectrometer (MODIS) and the Modern Era Retrospective-Analysis for Research and 

Applications (MERRA) [Rienecker et al., 2011].  The full details of the dataset are described in 

N.M. Schultz et al. [2017].  Briefly, the MODIS dataset is comprised of 0.5o x 0.5o grids, with the 

average TS, LE and albedo (α) calculated for forests and open land pixels within each grid.  Using 

the International Geosphere Biosphere Programme (IGBP) classification scheme from the 

MODIS land cover classification product (MCD12Q1) [Friedl et al., 2010], our forest class 

includes pixels that are classified as the five IGBP forest classes, while our open land class 

includes savanna, grasslands, and cropland/natural vegetation mosaic.  The MODIS white-sky 

albedo (MCD43B3) [Schaaf et al., 2002] was used in combination with incident solar radiation 

data from MERRA to calculate the amount of solar radiation absorbed at the surface (Ka = K↓[1 – 
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α]).  Unlike the MODIS TS product (MYD11A2) [Wan, 2008], which contains a day (~13:30) and 

nighttime (~01:30) measurement, approximating daily maximum and minimum temperatures, the 

Ka and LE (MOD16) [Mu et al., 2011] products represent the daily average.  All observational 

data products used in this evaluation (13:30 TS, 01:30 TS, mean TS, LE, and Ka) were averaged to 

the same temporal scale (monthly) for the years 2003-2010.       

Model description & experimental design 

We evaluate a sub-grid method of representing land cover change using the Community Land 

Model (CLM4.5) [D M Lawrence et al., 2011; Oleson et al., 2013], the land component of the 

Community Earth System Model (CESM) [Hurrell et al., 2013].  The sub-grid heterogeneity of 

CLM4.5 allows for the calculation of biophysical processes for each plant functional type (PFT).  

By default in CLM, all PFTs share a single soil column.  We use a modified version, described in 

detail by N. M. Schultz et al. [2016], where each PFT is assigned its own soil column, each with 

independently evolving soil moisture and temperature profiles, as well as carbon/nitrogen 

fluxes/storage when the biogeochemistry model is active.  In this modified configuration, each 

PFT is independent from the other PFTs within the grid cell, providing an opportunity to examine 

the differences in land surface response to the same atmospheric forcing. 

For this study, CLM4.5 was run offline for present-day conditions using 2003-2010 CRUNCEP 

atmospheric forcing data [Viovy, 2011] at a horizontal resolution of 0.9o lat x 1.25o lon.  As our 

focus here is on surface temperature and biophysical processes, this simulation was run without 

an active biogeochemistry model, with vegetation phenology instead prescribed by satellite 

observations [P J Lawrence and Chase, 2007; Myneni et al., 2002].  The initial conditions for this 

simulation were generated by cycling through the 1991-2010 CRUNCEP dataset for 60 years, 

which is more than enough time for soil moisture and temperature to reach equilibrium [N. M. 

Schultz et al., 2016].  PFT-level state and flux variables were archived at hourly intervals for the 

2003-2010 model simulation period. 
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For direct correspondence with the observational dataset, the CLM4.5 data were regridded to 0.5o 

x 0.5o using bilinear interpolation.  For further agreement with the MODIS clear-sky conditions, 

we excluded modeled data where the clearness index [Gu et al., 1999] was less than 0.5 [Zhao et 

al., 2014].  For comparison with MODIS TS, we only included the modeled TS data at 1:00 and 

13:00 local time each day.  Modeled TS was derived from longwave radiation components, 

 𝑇𝑇𝑆𝑆 =  �
𝐿𝐿↑  − (1 −  𝜀𝜀) 𝐿𝐿↓

𝜀𝜀𝜎𝜎
�
�1 4� �

 (1) 

where L↑ and L↓ are the upward and downward longwave radiation fluxes, ε is the surface 

emissivity (assumed here to be 0.98), and σ is the Stefan-Boltzmann constant (5.67 × 10-8 W m-2 

K-4).  We area-weighted the grass and tree PFT data within each grid cell into a single value for 

each of those respective land cover categories.  Finally, the modeled data was averaged to the 

same temporal resolution as the MODIS/MERRA data, and was masked using the spatial 

coverage of the observational data.             

Evaluation of model performance 

As we are interested in evaluating CLM’s representation of the effects of land cover change, our 

analysis focuses primarily on the sub-grid differences in surface climate variables between land 

cover types, rather than the absolute values of each land cover type themselves.  Therefore, for 

each climate variable (13:30 TS, 01:30 TS, mean TS, LE, and Ka) from observations and CLM, we 

calculate the difference (Δ) as open – forest, which can be thought of as the change resulting from 

deforestation.  Because the localized surface temperature response to deforestation exhibits 

spatial variability, we evaluate model performance separately for four major climate zones 

defined by the Köppen-Geiger climate classification system [Peel et al., 2007]: tropical (A), 

arid/semi-arid (B), temperate (C), and continental (D).    
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We quantify model performance over annual and seasonal scales using conventional measures of 

model-observation statistics: mean bias (MB), spatial correlation (r), standard deviation (σ), and 

centered root mean squared error (E’).  Given observational values (o) and corresponding model 

results (m), these error metrics are defined as: 

 𝑀𝑀𝑀𝑀 = 𝑚𝑚 −  𝑜𝑜 (2) 

 𝑟𝑟 =
1
𝑁𝑁
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𝑛𝑛=1
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where the overbar denotes the mean of the set and the prime denotes the perturbation from the 

mean.  In equation 3, x represents either observational or modeled data.  These statistics can be 

represented in the two-dimensional space of the Taylor diagram [Taylor, 2001] simultaneously.  

Normalizing E’ and σm by σo makes it possible to plot statistics for different fields on the same 

diagram. 

Results 

Model evaluation 

The modeled daily mean ΔTS (average of 13:00 and 1:00) is in general agreement with MODIS 

(Figure 4.1a-c).  Averaged over the 8-year analysis period, the annual mean bias (MB) is less than 

±1 K within each climate zone (Figure 4.2).  With only two exceptions, this agreement is 

maintained across the seasons in each of the four climate zones.  However, the agreement in the 

daily mean ΔTS between CLM and MODIS appears to result from systematic biases in the 

modeled hourly data.  Consistent across all four climate zones, daytime (13:30) ΔTS is 
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underestimated and nighttime (1:30) ΔTS is overestimated (Figure 4.1d-i, Figure 4.2).  The largest 

hourly biases are observed in the continental and semi-arid regions (Figure 4.2a, c), where the 

annual daytime (nighttime) biases are -2.4K (1.1 K) and -3.8K (2.3 K).  The daytime bias exhibits 

some seasonality in the continental and semi-arid zones, with the most extreme biases occurring 

during DJF and MAM in the continental zone, and during MAM and JJA in the semi-arid zone.  

In the temperate and tropical regions, there is little seasonality to the bias in ΔTS (Figure 4.2b, d).   

Examining the MB of each of the land cover classes individually provides additional information 

about the source of the biases in ΔTS.  While the departure of modeled TS from observations may 

be partially due to uncertainties in the atmospheric forcing dataset, the fact that both of the sub-

grid land cover classes are forced by the same data allows us to compare their relative biases.  

Generally, the daytime TS biases for forest PFTs are larger than those for grass PFTs (Figures 

S4.1-S4.2), which is why the modeled daytime ΔTS is underestimated.  In the semi-arid zone, for 

example, the forest daytime TS is overestimated by 4.6 K, while the bias for grass PFTs is only 

1.0 K.   
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Figure 4.1.  The (a-c) daily mean, (d-f) daytime (13:30 or 13:00), and (g-i) nighttime (1:30 or 1:00) ΔTS. The ΔTS is shown for MODIS (a, d, g), 

and CLM4.5 (b, e, h).  The CLM ΔTS bias is shown in panels c, f, i.  All data are averaged over 2003-2010.  The bias is calculated here as CLM4.5 

ΔTS – MODIS ΔTS. 
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Figure 4.2. The 8-year mean bias in the daily mean, daytime (13:30), and nighttime (01:30) ΔTS for the (a) continental, (b) temperate, (c) semi-

arid, and (d) tropical climate zones. 
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The ΔKa is underestimated across all four climate zones, with the most significant biases 

observed in the continental zone (Figure 4.3a-c, Figure 4.4a).  Here, the annual ΔKa is biased by -

14.9 W m-2, with the largest departure from observations occurring during MAM (-28.6 W m-2).  

In other words, the observational data show the sub-grid difference in Ka to be -21.4 W m-2, while 

the model produces a sub-grid difference of -50.0 W m-2.  In the continental zone, the MB in ΔKa 

results from biases in both PFT classes.  During MAM, Ka is overestimated for forest PFTs by 11 

W m-2, while at the same time is underestimated by 18 W m-2 for grass PFTs (Figures S4.3a, 

S4.4a).  Across the other climate zones, the annual bias in ΔKa is small (less than 5 W m-2).  Here, 

the departure in Ka from observations for forest and grass PFTs are of approximately the same 

magnitude. 

The most significant biases in ΔLE occur in the tropical zone (Figure 4.3d-f, Figure 4.4b).  In this 

region, the annual bias in ΔLE is 43.3 W m-2, and is persistent across all seasons.  These large 

biases in ΔLE result from the fact that MODIS data show that the LE of non-forested areas is 39 

W m-2 lower than tropical forests, while the modeled results show that grass PFTs have a higher 

LE by 4.3 W m-2.  The bias in ΔLE results from the compounding of errors in both forest and 

grass PFT classes.  In the tropical zone, the annual LE of forest PFTs is underestimated by 16.4 

W m-2, while the LE of grass PFTs is overestimated by 26.6 Wm-2.  Across the other climate 

zones, the LE of forest PFTs is consistently underestimated while the LE of grass PFTs is 

overestimated.  However, moving away from the tropics, the forest and grass biases in LE are 

smaller, making the additive effect of errors in the individual land cover classes on ΔLE less 

significant. 
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Figure 4.3. The (a) MODIS ΔKa, (b) CLM4.5 ΔKa, and (c) CLM4.5 ΔKa bias (CLM-MODIS), and (d) MODIS ΔLE, (e) CLM4.5 ΔLE, and (f) 

CLM4.5 ΔLE bias, averaged over 2003-2010. 
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Figure 4.4.  The 8-year mean bias in (a) ΔKa and (b) ΔLE for each of the four climate zones.
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Taylor diagrams illustrate the effects of modeled biases in TS from individual PFT classes on ΔTS 

(Figure 4.5).  The angular dimension displays the pattern correlation of the modeled and observed 

data, while the radial dimension shows the normalized standard deviation (ratio of the standard 

deviation of simulated and observed fields).  The standard deviation of the observed field is also 

normalized by itself.  In other words, a standard deviation >1 indicates more variability in the 

modeled data than the observed values, and vice versa for standard deviations < 1.  Were the 

model to agree perfectly with observations, markers on the graph would lie on the point OBS (E’ 

= 0, r = 1, σm = σo).  The statistics for the Taylor diagrams were computed using the 2003-2010 

monthly climatology from MODIS and CLM, shown annually and seasonally for each of the four 

climate zones. 

For the daily mean, daytime (13:30), and nighttime (1:30) TS and ΔTS, it is evident that the relative 

agreement between modeled and observed TS does not necessarily translate to good agreement in 

ΔTS (Figure 4.5a-c).  For the daily mean values (Figure 4.5a), the pattern correlations of grass and 

forest TS are greater than 0.95 with similar variability to observations (~1) for the continental, 

temperate, and semi-arid climate zones.  The agreement is slightly reduced for the tropical zone, 

where the correlations are approximately 0.75 with slightly lower standard deviations than the 

MODIS data.  However, when it comes to ΔTS, the strongest correlation between simulated and 

observed values is 0.6, and is as low as 0.1.  With a few exceptions, modeled ΔTS across climate 

zones and seasons is less variable than what is observed with MODIS.  The daytime values 

(Figure 4.5b) show similar patterns to the daily means.  Again, although simulated daytime TS is 

strongly correlated to and shows similar variability with observations, the statistics for ΔTS are 

significantly worse, with pattern correlations ranging from 0.1 to 0.61, and normalized standard 

deviations ranging from 0.27 to 1.25.  Although the agreement between the modeled and 

observed nighttime TS (Figure 4.5c) is only slightly reduced compared to the mean or daytime 

values (r = 0.71-0.97, σm/σo = 0.8-1.2), the correspondence between modeled and observed ΔTS is 
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significantly diminished.  Model simulated results can only be plotted in the first quadrant of the 

Taylor diagram, as shown here, if the spatial correlation coefficient is positive.  To aid visual 

comparison with daily mean and daytime ΔTS (Figure 4.5a-b), negative correlations between the 

modeled and observed values in nighttime ΔTS (Figure 4.5c) are plotted at r = 0 (on the vertical 

axis).  The modeled nighttime ΔTS is negatively correlated with observed values for 6 of the 20 

temporal-geographic regions considered here (r ranging from -0.18 to -0.10).  The semi-arid DJF 

ΔTS in the semi-arid zone has the highest pattern correlation (0.3).  The normalized standard 

deviations of the modeled nighttime ΔTS values exhibit similar patterns to the daily mean and 

daytime values, ranging from 0.5 to 1.49. 
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Figure 4.5. Taylor diagrams for (a) daily mean, (b) daytime (13:30) and (c) nighttime (1:30) TS and ΔTS. 
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We also use Taylor diagrams to examine the statistical relationships of absorbed shortwave 

radiation (Ka and ΔKa) and the latent heat flux (LE and ΔLE) (Figure 4.6).  The pattern correlation 

of Ka for forest and grass and tree PFTs ranges from 0.94 to 0.98 for the continental, temperate, 

and semi-arid regions, and in these regions, the model exhibits similar variability in Ka to what is 

observations (Figure 4.6a).  The modeled Ka for the tropical regions is less variable than observed 

values, which results in lower correlations (0.56-0.57) for tree and grass PFTs.  The Ka biases for 

each of the PFT classes produce ΔKa values that have weak to medium correlation with 

observations (0.09 to 0.71).  The modeled ΔKa have normalized standard deviations ranging from 

0.4 to 1.66.   

The spatial correlation of modeled LE (Figure 4.6b) for the tree and grass PFTs ranges from 0.51 

to 0.94, with higher correlations in the continental and temperate regions.  In general, the 

variability of annual LE for tree PFTs agrees well with observations (σm/σo ~ 1, except for semi-

arid zone).  In contrast, the spatial variability in LE for grass PFTs is larger than the observed 

values (σm/σo ~1.5, except for semi-arid zone).  The model-derived ΔLE exhibits negative 

correlations with observations in 13 of the 20 time periods/regions examined here (r ranging from 

-0.36 to -0.03).  Where there is a positive correlation in ΔLE, r ranges from 0.04 to 0.32, with the 

strongest correlation for the continental zone DJF.  Overall, the modeled ΔLE exhibits less 

variability than observations (typical σm/σo = 0.2 – 0.35).  
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Figure 4.6. Taylor diagrams for (a) absorbed shortwave radiation and (b) the latent heat flux. 
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Discussion 

Sub-grid LULCC difference 

For the purposes of LULCC simulation, our results highlight the importance of evaluating land 

surface models using the differences in surface climate variables (e.g. ΔTS), rather than relying 

solely on the representation of the individual land cover types (e.g. Ts).  Our results show that 

although there was generally strong agreement between the modeled and observed values for tree 

and grass PFTs, this agreement did not translate to a strong agreement between the modeled and 

observed differences between the tree and grass PFTs.  We found that the spatial correlation of 

modeled and observed TS to be in the range of 0.7 to 0.98, while the correlation between modeled 

and observed ΔTS was 0.6 at best, with negative correlations for  nighttime ΔTS.  Over most 

regions and seasons analyzed here, CLM did a good job of capturing the spatial variability of TS 

across each of the climate regions, but across most regions and seasons, CLM underestimated the 

spatial variations of ΔTS.  The worst agreement between modeled and observed TS was in the 

tropical region.  For absorbed shortwave radiation, CLM shows good performance for each of the 

grass and tree PFTs, but again did not result in overall good agreement between modeled and 

observed ΔKa.  Of the surface climate variables considered here, CLM was the least successful in 

modeling LE and ΔLE.  Compared to TS and Ka, the correlations between modeled and observed 

LE were lower across all regions and seasons, ranging from 0.5 to 0.93.  These biases resulted in 

poor agreement between modeled and observed ΔLE.  In fact, in most cases, there was a negative 

correlation between modeled and observed ΔLE. 

Biases in the grass or tree PFT TS may be attributed to deviations of the forcing data used in this 

simulation with observed meteorology.  However, it does not necessarily follow that biases in the 

difference in surface climate variables between the two PFT classes can be contributed to the 

same reason.  Therefore, for the purposes of testing land surface models of their representation of 

LULCC, evaluating the sub-grid difference provides a new, valuable source of information about 
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model performance.  In terms of model development, perhaps it would be useful to take into 

account the differences between the different sub-grid tiles when testing new model schemes or 

parameterizations to ensure an accurate representation of each individual sub-grid tile or PFT. 

Day and night evaluation 

Although observations have shown a diurnal asymmetry in the surface temperature response to 

LULCC (deforestation) [Lee et al., 2011; Li et al., 2015; N.M. Schultz et al., 2017; Zhang et al., 

2014],  studies that evaluate the impact of LULCC in climate models rarely distinguish between 

day and nighttime climate [Vanden Broucke et al., 2015].  Instead, the analyses are averaged over 

daily or longer timescales.  Our results show that limiting the analysis to the daily mean obscures 

important information about sub-daily model performance.  We found that on an annual basis, the 

daily mean ΔTS across each of the four climate regions was simulated to within 0.7 K of the 

observed values.  However, the daytime ΔTS was overestimated by 0.8 to 2.6 K, and the nighttime 

ΔTS was underestimated by 1.1 to 3.8 K.  Therefore, the relative agreement of the modeled and 

observed daily mean ΔTS is due to the offset of the errors in the hourly data.  Using flux tower 

site pairs in Europe, Vanden Broucke et al. [2015] report a similar diurnal bias in modeled CLM 

ΔTS.  From their analysis, the daytime ΔTS is underestimated by up to 3 K, while the nighttime 

ΔTS is overestimated by 3 to 6 K.  In their study region, this resulted in a daily mean ΔTS that was 

biased high by approximately 2 K.  Their analysis attributes the lack of nighttime cooling to the 

inability of COSMO-CLM2 to capture the observed reduction in incident longwave radiation 

(L↓), and hypothesize that the reduction in L↓ over open lands may be due to: (1) an aerosol 

effect from forest VOC emissions, (2) decreased boundary layer humidity, and/or (3) increased 

boundary layer stability.  Overall, our day and nighttime results highlight the importance of 

evaluating the effects on LULCC separately for day and night.  Averaging to daily or longer 

timescales may not accurately represent the reality of the model’s performance. 
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Diagnosing sources of error 

This paper joins several recent studies seeking to evaluate and diagnose simulated changes to 

surface temperature and the surface energy budget in response to local land cover change in 

CLM.  Our results are in agreement with Chen et al, in review [2017] who, using a paired 

FLUXNET site approach, found issues in CLM’s ability to partition energy between LE and H, 

and like this study, found a slight increase in LE after deforestation, contrary to observations.  By 

further investigating the three components of evapotranspiration (ground evaporation, canopy 

evaporation, and transpiration) in CLM4.5, they attribute a source of the LE bias to the soil 

resistance parameterization in CLM4.5, leading to the overestimation of ground evaporation over 

the open land (non-forested).  Previous studies also have noted the excessive ground evaporation 

over sparse canopies in CLM4.5; however, Swenson and Lawrence [2014] have implemented a 

dry surface layer for the soil resistance parameterization to solve this issue for the new version of 

CLM (CLM5).  Furthermore, Meier et al, in prep [2017] use the sub-grid configuration of Schultz 

et al. [2016] to show that four aspects of the parameterizations of vegetation transpiration (root 

distribution, soil moisture stress, light limitation, and the maximum rate of carboxylation) may 

help alleviate some of the biases in the simulation of ET in CLM4.5.  Further evaluation of these 

processes should be undertaken with the upcoming CLM5.            

Biophysical metrics such like the intrinsic biophysical partitioning method (IBPM) [Lee et al., 

2011] or the decomposed temperature metric (DTM) [Juang et al., 2007] can be important tools 

in diagnosing the impacts of LULCC in global climate model simulations, providing a measure 

by which to validate climate model performance [L Chen and Dirmeyer, 2016; Vanden Broucke 

et al., 2015], and diagnosing the sensitivity of land surface models to LULCC for the upcoming 

Land-Use Model Inter-comparison Project [D M Lawrence et al., 2016].  These metrics may also 

be used to contrast how different land cover types respond to a changing climate, including 

extreme events such as heat waves or droughts. 
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Conclusions 

In this paper, we used sub-grid data from CLM4.5 to evaluate the representation of LULCC on TS 

and the surface energy budget.  We directly examined how the model simulated the difference in 

surface temperature (ΔTS) between sub-grid land cover types, and examined if the accuracy of the 

representation of TS for each sub-grid land cover type was related to the representation of ΔTS.  

Further, our analysis focused on both day and nighttime surface temperature, and compared the 

representation of ΔTS across different climate zones.   

We found that although there was generally strong agreement between the modeled and observed 

values for tree and grass PFTs, it did not translate to strong agreement between the modeled and 

observed differences between the grass and tree PFTs.  Instead, the small biases at the PFT-level 

were compounded into larger errors when the difference between them was calculated.    

Additionally, our results show that for a full understanding of model performance, it is important 

to evaluate the model at sub-daily scales.  The modeled daily mean ΔTS was in relative agreement 

with observations, but was due to the offset of errors in the hourly data, with the daytime ΔTS 

systematically underestimated and nighttime ΔTS overestimated.   

Land models such as CLM produce a great deal of sub-grid information, but that data is rarely 

used for LULCC experiments or model evaluation.  Here, we highlight the utility of sub-grid data 

for model evaluation using a space-for-time method.  For the purposes of LULCC, our results 

demonstrate the importance of evaluating land surface models using the differences in surface 

climate variables (e.g. ΔTS), rather than just the representation of individual land cover types.  

Further, we show that evaluation of the daily mean may not accurately depict the full reality of 

model performance, and it is important to evaluate the model separately during day and night.   

The modeling framework and performance metrics developed here can be used to evaluate future 

versions of CLM, and can be applied to other land surface models.  Because land surface models, 
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including CLM, calculate surface processes at the PFT-level, model evaluation at this scale is 

able to identify potential biases at their source and therefore improve sub-grid and grid-averaged 

output.   
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Supplementary Figures 

 

 

Figure S4.1. The 8-year mean bias in the daily mean, daytime (13:30), and nighttime (01:30) forest TS for the (a) continental, (b) temperate, (c) 

semi-arid, and (d) tropical climate zones. 
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Figure S4.2. The 8-year mean bias in the daily mean, daytime (13:30), and nighttime (01:30) open land TS for the (a) continental, (b) temperate, 

(c) semi-arid, and (d) tropical climate zone.
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Figure S4.3. The 8-year mean bias in (a) forest Ka and (b) forest LE for each of the four climate 

zones. 
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Figure S4.4. The 8-year mean bias in (a) open land Ka and (b) open land LE for each of the four 

climate zones.
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Chapter 5: Conclusions & Future Work 

This dissertation investigated the biophysical drivers of the day and nighttime surface temperature 

response to deforestation in the present climate, and developed a modeling framework by which 

to isolate the effects of land cover change in a global climate model and to evaluate a model’s 

simulation of the biophysical effects of land cover change.  A summary of the findings are as 

follows: 

Chapter 2: Using global satellite observations, reanalysis data, and in-situ observations from flux 

towers, we examined the patterns and drivers of the day and nighttime surface temperature 

response to deforestation (ΔTS).  We found that a diurnal asymmetry exists in both the magnitude 

and sign of ΔTS.  In magnitude, ΔTS is larger during the day than during the night over most 

regions of the world.  The sign of ΔTS changes from positive to negative from day to night, with 

most regions experiencing daytime warming and nighttime cooling.  We found that daytime ΔTS 

is driven by differences in absorbed shortwave radiation (ΔKa) and the latent heat flux (ΔLE).  

The magnitude and spatial pattern of nighttime ΔTS is related to the strength of the nocturnal 

temperature inversion, which is stronger in high latitudes and weaker in the tropics.  Therefore, 

the roughness of forests is responsible for daytime cooling (removing heat from the surface) and 

nighttime warming (bringing warm air aloft down to the surface).  Additionally, nighttime ΔTS is 

related to the relative amount of heat stored in forests and open lands during the day. 

Chapter 3: The sub-grid configuration of CLM4.5 was modified such that each PFT was 

assigned to an individual soil column.  We compared this modified version to the default 

configuration, where all PFTs share one soil column, and examined the difference in sub-grid and 

grid-averaged surface air temperature and energy fluxes.  Between the modified and default 

configurations, there were large differences in sub-grid output, but changes in the PFT-level data 

offset each other such that changes to grid-averaged values were minimal. We found that the sub-

grid output from the default configuration produced erroneous ground heat fluxes, thus calling 
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into question other surface energy balance variables.  We conclude that the modified 

configuration is better suited to the purposes of investigating the biophysical effects of land cover 

change, as each PFT is independent from the others both above and below-ground.  Additionally, 

we show the value of sub-grid data for the assessment of PFT-level representation of land surface 

processes. 

Chapter 4: In addition to evaluating model performance at the PFT-level, we also utilized the 

sub-grid differences in land surface climatology between PFTs as a metric of model performance.  

We found good agreement between satellite observations and PFT-level data; however, that 

agreement did not translate to an accurate representation of the climate response of the transition 

between two land cover types.  Instead, the small biases in PFT-level data were compounded into 

larger errors when the difference between them was calculated.  Additionally, the results show 

that it is important to evaluate the model at sub-daily scales, as the daily-mean obscured 

information about model biases during the day and night.  In this analysis, the daytime and 

nighttime ΔTS were overestimated and underestimated, respectively, producing reasonable results 

for the daily mean ΔTS.   

Future Work 

We found that the grid-averaged values were insensitive to the soil column configuration (shared 

versus separated).  This insensitivity may be an artifact of the offline configuration, where 

CLM4.5 was forced by prescribed atmospheric conditions.  However, in a simulation where the 

land and atmosphere models are fully coupled, this may not be the case, and potential changes to 

precipitation and runoff may cause grid-averaged quantities to change.  A preliminary 

investigation into the effect of sub-grid configuration in CLM-CAM simulation has been 

conducted (Appendix A); however, this investigation was primarily focused on the near-surface 

temperature response to sub-grid land cover change.  More work is warranted to understand 
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whether the sub-grid configuration may affect grid-averaged values in coupled model 

simulations.    

The modeling framework and performance evaluation presented in this dissertation has focused 

on local-scale land use and investigating the response of different land cover types to the same 

atmospheric conditions.  Implicit in this framework was the assumption that the land cover 

changes are small enough to not trigger changes to atmospheric dynamics.  However, land cover 

changes at a large enough scale may affect local and regional cloud and precipitation patterns.  

This feedback mechanism may not be triggered through coupled simulations of this sub-grid 

configuration, as no prescribed changes to the land surface map are occurring.  However, future 

work will investigate the importance of spatial scale in land cover change experiments, 

specifically examining the scale at which these feedback mechanisms begin to occur.   

Many land models represent the heterogeneous landscape through a sub-grid tiling scheme; 

however, these data are rarely utilized despite their potential value.  In addition to the 

deforestation applications described in this dissertation, the sub-grid data may be utilized to 

understand processes related to agricultural expansion, urbanization, and the local impacts of 

climate change.  Future examination of sub-grid data may also provide new insights into 

biogeochemical cycles (Appendix A), and the discrepancies between different models’ 

representation of land use/land cover change. The sub-grid framework may be a particularly 

powerful tool to understand how the biophysical effects of land cover change compare to other 

large-scale forcings, like, for example, a doubling of atmospheric CO2.  Future work could 

investigate the relative impacts of land cover change and rising greenhouse gas concentrations on 

local climate, as well as the response of different land cover types to extreme events, such as heat 

waves or droughts.        
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Appendix A: The effect of sub-grid model scheme on the carbon cycle and coupled 

CLM-CAM simulations 
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Introduction 

The sub-grid configuration of CLM4.5 has been shown to have significant effects on the PFT-

level surface air temperature and energy fluxes, while having minimal effects on the grid-

averaged variables [Schultz et al., 2016].  Because PFT-level values are averaged to the grid-level 

before being passed to the atmosphere model, we expect that the sub-grid configuration (either 

shared PFT soil column or individual PFT soil columns) would not introduce unintended 

feedbacks into coupled CLM-CAM simulations.  However, it is worthwhile to confirm that the 

modified sub-grid scheme (PFTCOL) may be used in coupled simulations without producing 

biased or erroneous results.  Additionally, it is unknown how the PFTCOL configuration would 

affect the grid-averaged carbon variables, and if this sub-grid scheme would have a significant 

influence on the simulated global carbon budget, via change in carbon storage/fluxes in terrestrial 

ecosystems.   

Here, I examine how the PFTCOL configuration performs for sub-grid land cover changes 

experiments in a coupled model environment.  Additionally, I investigate the effect of the 

PFTCOL configuration on the terrestrial carbon cycle, through CLM4.5 simulations with the 

biogeochemistry module enabled.   

Methods 

CLM4.5 – CAM simulation 

The experimental process here is similar to that described by Schultz, N.M., et al. [2016].  Briefly, 

two simulations were run using CLM4.5.  In the first simulation (CTRL), the default sub-grid 

configuration of CLM4.5 was used, in that all PFTs shared the same soil column.  The second 

simulation (PFTCOL) assigned each PFT to an individual soil column.  In both simulations, the 

vegetation phenology was prescribed by satellite observations (CLM4.5-SP) [Lawrence and 

Chase, 2007].  The simulations were run at a horizontal resolution of 0.9o lat x 1.25o lon.  
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CLM4.5 was coupled to the Community Atmosphere Model (CAM5), the atmosphere model in 

CESM [Neale et al., 2010].  The ocean and sea ice components of CESM were inactive, rather, 

were prescribed by data.  Each simulation was run for 14 years using present-day (year 2000) 

forcings, with the first 10 years devoted to spin up time for the atmosphere model.  Initial 

conditions were provided for CLM by previous 60-year spin ups for each of the sub-grid 

configurations.  As the coupled simulations are computationally expensive, we ended the 

simulations after 4 years post-spin up.  The sub-grid deforestation effect on air temperate (ΔTa = 

Ta [grass PFTS] – Ta [forest PFTs]) was calculated for each of the CTRL and PFTCOL 

simulations.  The results here were then compared to the offline sub-grid analysis by Schultz et al. 

[2016]. 

CLM4.5-BGC simulations 

A similar paired-simulation approach was also used here to examine the effect of sub-grid 

configuration on terrestrial carbon fluxes and storage.  Here, the CTRL and PFTCOL simulations 

were conducted using CLM4.5 enabled with the biogeochemistry module, rather than prescribing 

phenology with satellite data as in previous simulations.  To get CLM4.5-BGC to steady state 

conditions, a much longer spin-up is required for each case than is required for CLM4.5-SP.  

Starting from arbitrary initial conditions, each case was run for 1000 years using the “accelerated 

decomposition (AD) spin up” mode.  The AD spin up provided the initial conditions for the final 

spin up (200 years), cycling through the CRUNCEP data.  The final spin up then provided the 

initial conditions for the experimental simulations: the effect of sub-grid configuration on carbon 

variables.   

The experimental simulations were run for 10 years, 2001-2010, using the CRUNCEP 

atmospheric forcing data.  Here, we compared the 10-year average of grid-averaged variables of 

gross primary productivity (GPP), net ecosystem production (NEP), net ecosystem exchange 

167 
 



(NEE) and total ecosystem carbon.  Additionally, we estimate the change in global carbon fluxes 

and storage between the PFTCOL and CTRL cases. 

Results 

CLM4.5 – CAM 

Figure A1 presents the sub-grid difference in 2m air temperature in both the CTRL and PFTCOL 

simulations. For reference, the offline CLM results are also shown here.  The sub-grid ΔTa 

patterns from the coupled simulation are very similar to the offline simulation.  In the CTRL 

simulation, the zonal mean of sub-grid ΔTa shows very little variability across latitudes, averaging 

between 0.05 to 0.5 K in most regions of the world.  In contrast, the PFTCOL simulation shows a 

localized cooling in high latitudes and warming in mid-latitudes and the tropics.  The zonal mean 

of the coupled PFTCOL simulation agrees very closely in sign and magnitude to the offline 

simulation.  Although preliminary and brief, these results confirm the explanation that the sub-

grid configuration does not introduce unexpected errors into the atmosphere model  

CLM4.5-BGC 

Figure A2 presents the 10-year average of GPP for the PFTCOL and CTRL simulations, as well 

as the difference between them.  Here, the grid-averaged carbon flux values are shown for each 

simulation.  Both the PFTCOL and CTRL simulations exhibit similar spatial patterns, with 

highest productivity occurring, as expected, in tropical regions.  A comparison of the two 

simulations shows that in sub-tropical regions of South America and Africa, there are increases in 

GPP (up to 400-600+ gC m-2 yr-1).  However, because these increases in GPP are offset by 

decreases in GPP in other regions of the world, the global GPP is reduced in the PFTCOL 

simulation by 2.8 PgC or a percentage change of -2.15% (Table A1).  

The sub-grid configuration also influences grid-averaged net ecosystem production (NEP), which 

excludes fire, land use, and the harvest flux (Figure A3).  Positive values denote a grid as a 
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carbon sink, and vice versa as a carbon source.  The difference between the two simulations 

shows no coherent spatial pattern, with the largest increases in the sink capacity of ecosystems 

occurring in the tropical regions in the PFTCOL case, up to 80 gC m-2 yr-1.  There is an increase 

in NEP of 0.26 PgC in the PFTCOL simulation at the global scale, a change of 7.70% from the 

CTRL case (Table A1). 

Net ecosystem exchange, including fire, land use, and the harvest flux, for each of the two 

simulations is presented in Figure A4.  A positive NEE means the grid is a carbon source.  In both 

simulations, the general pattern of NEE is similar, with tropical forests acting as sinks and the 

central United States acting as a net carbon source.  Comparing the two sub-grid schemes, there 

are differences between the two simulations, ranging from -50 to 50 gC m-2 yr-1.  However, there 

is no coherent spatial pattern to the resulting changes in NEE.  At the global scale, the PFTCOL 

configuration increases the NEE by 1.7%.  As expected, if NEE is increased by 1.7% in the 

PFTCOL simulation, the total ecosystem carbon decreases by the same amount (Table A1).  The 

largest decreases are observed in latitudes north of 60oN, with some modest increases in the sub-

tropics and boreal regions (Figure A5).   

Summary 

Here, I investigated whether the sub-grid configuration introduces any unintended feedbacks into 

a coupled model simulation, and examined the effect of sub-grid configuration on grid-averaged 

and global terrestrial carbon fluxes and storage.  The ΔTa pattern from the coupled simulations 

agreed very well with the offline results.  Although the column configuration affects PFT-level 

variables, they are averaged to the grid-level before being passed to the atmosphere model.  From 

our previous analysis, changes in PFTs offset each other such that the grid-averaged output from 

the PFTCOL simulation does not significantly differ from the CTRL case.  That the patterns 

shown here are very similar to the offline simulation suggests that the PFTCOL configuration 
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may be successfully integrated into coupled simulations, and be used as a methodological tool to 

isolate the effects of land cover/land cover change from other forcings and feedbacks in climate 

model simulations.  

The PFTCOL configuration affected grid-averaged carbon flux and storage values, but because 

the changes varied from positive to negative in different regions of the world, the effect on the 

global carbon budget was small.  Therefore, the PFTCOL configuration would have negligible 

effect on atmospheric CO2 concentrations, for example, if coupled to CAM.  However, although 

we only present grid-averaged values here, it is clear that the PFTCOL configuration does 

influence the carbon balance of individual PFTs, in ways that as of now are not fully investigated.  

It would be worthwhile to dive deeper into this analysis, and to examine the PFT-level output to 

better understand why we observe the changes between the two simulations.  Additionally, 

because the PFTCOL configuration is essentially a global expansion of single-point simulations, 

it may be a useful tool to test and understand the influence of new model schemes or 

parameterizations on modeled PFT-level or grid-averaged carbon cycles.     
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Tables 

 

VARIABLE PFTCOL CTRL PFTCOL-CTRL % CHANGE 

GPP (PgC/yr) 127.5 130.3 -2.8 -2.15% 

NPP (PgC/yr) 57.4 57.9 -0.5 -0.86% 

NEP (PgC/yr) 3.64 3.38 0.26 7.70% 

NEE (PgC/yr) -0.199 -0.169 0.03 1.70% 

Ecosys C (PgC/yr) 5388.4 5482.1 -93.7 -1.70% 

 

Table A1. The global estimates of carbon flux and storage variables from the PFTCOL and 

CTRL simulations.  Also shown are the absolute difference and % change between the two sub-

grid configurations. 
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Figures 

 

 

Figure A1. The sub-grid surface temperature difference between grass and tree PFTs in (a) 

offline CLM4.5 (reproduced from Schultz et al. [2016]), and (b) CLM4.5 – CAM5.  The top and 

bottom panels show the CTRL and PFTCOL configurations, respectively. 

  

(a) CLM4.5 offline (b) CLM4.5 – CAM5 
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Figure A2. The 10-year average of GPP for the PFTCOL (COL) and CTRL simulations, and the difference in GPP between them. 
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Figure A3. The 10-year average of NEP for the PFTCOL (COL) and CTRL simulations, and the difference in GPP between them. 
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Figure A4.  The 10-year average of NEE for the PFTCOL (COL) and CTRL simulations, and the difference in GPP between them. 
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Figure A5. The 10-year average of total ecosystem carbon for the PFTCOL (COL) and CTRL simulations, and the difference in GPP between 

them. 
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