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A B S T R A C T   

Knowledge of the temporally continuous dynamics of seasonal and diurnal surface urban heat islands (SUHIs) as 
well as their underlying determinants is crucial to better understand their variations at multiple time scales. 
Owing to the orbital limitation of satellites, previous studies primarily focused on SUHI dynamics at limited time- 
nodes, either in a diurnal or seasonal cycle. However, a joint investigation of the continuous dynamics of sea-
sonal and diurnal SUHIs (hereafter referred to as SUHIsea and SUHIdiu) remains lacking. The comprehensive 
taxonomy of the patterns of continuous SUHIsea and SUHIdiu dynamics across global cities is also not clear. Using 
satellite-derived land surface temperature (LST) data, we investigated the prevalent patterns of continuous 
SUHIsea and SUHIdiu dynamics across global cities by combining annual and diurnal temperature cycle models 
and the k-means clustering algorithm. Our results showed that: (1) Both SUHIsea and SUHIdiu dynamics exhibited 
six typical patterns including, single-peak type (SPT), single-valley type (SVT), peak-valley type (PVT), valley-peak 
type (VPT), two-peak type (TPT), and two-valley type (TVT). (2) The daytime SUHIsea dynamics pattern was 
closely related to the background climate, with SPT and PVT mainly occurring in cities located in the warm 
temperate and snow zones, SVT and VPT in the arid zone, and TPT and TVT in the equatorial zone. In contrast, 
the nighttime SUHIsea dynamics pattern depended more on rural land cover type, with SPT, PVT, and TPT mostly 
occurring in cities surrounded by barren lands with high albedo and SVT, VPT, and TVT in cities surrounded by 
dense vegetation with low albedo. We also find a significant negative relationship between daytime SUHIsea 
dynamics and urban-rural contrast in vegetation and between nighttime SUHIsea dynamics and urban-rural 
contrast in albedo across cities. (3) For SUHIdiu dynamics, SPT, PVT, and TVT were mainly located in cities 
with higher vegetation coverage in rural than in urban areas, while SVT, VPT, and TPT were in cities with higher 
vegetation coverage in urban areas. The SUHIdiu dynamics were found to be synthetically affected by the urban- 
rural contrast in vegetation and albedo. We consider these findings to be beneficial for deepening the under-
standing of SUHI dynamics at various time scales.   

1. Introduction 

The urban heat island (UHI) effect refers to a phenomenon causing 
higher temperatures over urban surfaces than their rural surroundings 
(Li et al., 2019; Oke, 1973; Oke et al., 2017; Zhao et al., 2014). The UHI 
effect has become a global concern in recent years, posing a serious 
threat to both urban environment and residents (Chakraborty et al., 
2020; Clinton and Gong, 2013; Manoli et al., 2019; Peng et al., 2012; 

Yao et al., 2019). A comprehensive understanding of the UHI effect is, 
therefore, vital to the design of heat mitigation and human adaptation 
strategies (Zhou et al., 2014, 2019). 

UHIs include canopy UHIs (CUHIs), typically investigated using in- 
situ surface air temperature (SAT), and surface UHIs (SUHIs), usually 
studied by spaceborne or airborne land surface temperature (LST) (Oke 
et al., 2017). In recent years, the investigation of SUHIs using satellite- 
derived LST data has attracted increasing attention because of the 
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availability of large-scale and regular satellite thermal observations 
(Voogt and Oke, 2003; Yao et al., 2019; Zhou et al., 2019). Many such 
investigations have focused on SUHI dynamics at both diurnal and 
seasonal scales (Clinton and Gong, 2013; Manoli et al., 2019; Peng et al., 
2012; Streutker, 2003; Tran et al., 2006). However, owing to cloud 
contamination and satellite orbits, most SUHI dynamics-related efforts 
have been focused on only one time-node or some typical time-nodes in 
a diurnal and/or seasonal cycle, and relatively few studies have 
analyzed the temporally continuous dynamics of the seasonal and 
diurnal SUHIs (SUHIsea and SUHIdiu). Thus, the relative lack of the joint 
analysis of SUHIsea and SUHIdiu dynamics has greatly limited the un-
derstanding of SUHI variations at multiple time scales. 

Nevertheless, to overcome the deficiency of satellite-derived LSTs, 
several approaches have been proposed recently to better investigate the 
temporally continuous SUHIsea and SUHIdiu dynamics. At the seasonal 
scale, SUHIsea dynamics have been explored using the temporal interpo-
lation techniques such as the annual temperature cycle (ATC) and 
Fourier series models (Bechtel, 2012; Fu and Weng, 2018; Huang et al., 
2016; Manoli et al., 2020; Zhou et al., 2013a, 2016a). At the diurnal 
scale, SUHIdiu dynamics have been investigated either indirectly using 
the spatial downscaling (Bechtel et al., 2012; Sismanidis et al., 2015; 
Zhou et al., 2013b) and temporal interpolation techniques (Huang et al., 
2016; Manoli et al., 2020; Zhou et al., 2016a) or directly using the 
temporally dense thermal observations with a relatively higher spatial 
resolution obtained from the recently launched geostationary satellites 
(Chang et al., 2021). Continuous SUHIdiu dynamics can be investigated 
using both the spatial downscaling technique, which generates hourly or 
sub-hourly LST data with a spatial resolution of 1 km or finer, based on 
the geostationary satellite-derived LSTs (Bechtel et al., 2012; Sismanidis 
et al., 2015, 2021; Weng and Fu, 2014; Zakšek and Oštir, 2012; Zhou 
et al., 2013b) and the temporal interpolation technique, which produces 
diurnally continuous LSTs based on limited thermal observations from 
polar orbiters, such as MODIS and AVHRR, usually with diurnal tem-
perature cycle (DTC) models (Fang et al., 2017; Lai et al., 2018). A very 
recent study directly employed the LST data with both high spatial and 
temporal resolutions acquired from the newly launched geostationary 
satellites (e.g., GOES-R, with spatial and temporal resolutions of 2 km 
and 5 min, respectively) to investigate the continuous SUHIdiu dynamics 
in Boston, United States (Chang et al., 2021). 

Using the above-mentioned approaches, studies have revealed that 
continuous SUHIsea dynamics vary with the background climate (Manoli 
et al., 2020). The seasonal hysteresis of SUHI patterns has been shown to 
be closely related to the time lag between radiation forcing, air 

temperature, and precipitation and, hence, indirectly to the background 
climate. For example, observational studies across several typical chosen 
megacities (including Paris, London, Milan, Madrid, and Nicosia) have 
shown that SUHIsea dynamics are characterized by a concave-up curve in 
wet regions with SUHI intensity (SUHII) peaking in summer and a 
concave-down curve in dry regions with SUHII peaking in spring 
(Manoli et al., 2020). Nevertheless, even for cities in the same climate 
zone, the associated SUHIsea dynamics can also be explained by the local 
surface status, which requires further investigation (Zhou et al., 2013a). 
Similarly, continuous SUHIdiu dynamics (e.g., the timing of peak 
maximum or minimum SUHIIs) are also related to the background 
climate and city location (Fang et al., 2017; Sismanidis et al., 2015; Zhou 
et al., 2013b). For example, SUHII peaks in the day for cities in the wet 
region, while it drops for cities in the dry region; however, it becomes 
roughly constant at night in both wet and dry regions (Lai et al., 2018). 
In addition, the phase shifts among different patterns of SUHIdiu dy-
namics depend significantly on urban geometry and the urban-rural 
differences in vegetation status, and they are usually higher in the 
warm season (Lai et al., 2018). 

Although great progress has been made in understanding continuous 
SUHIsea and SUHIdiu dynamics, several issues remain to be addressed: 
First, previous studies have focused on the dynamics of either SUHIsea or 
SUHIdiu. A joint investigation of continuous SUHI dynamics at these two 
timescales remains lacking, restraining an accurate interpretation of 
SUHI dynamics. Second, previous studies have focused on a few cities or 
cities with limited types of background climates. With several studies 
conducted either on the seasonal or diurnal scales, the patterns of 
continuous SUHIsea and SUHIdiu dynamics remain unidentified. With 
several case cities, it is also difficult and even unfeasible to obtain a 
holistic taxonomy of the pattern types of continuous SUHIsea or SUHIdiu 
dynamics as well as their relationships with the underlying controls as 
there is no adequate basis for generalization. 

To address these issues, we first investigated continuous SUHIsea and 
SUHIdiu dynamics simultaneously across more than 2000 cities world-
wide by combining the ATC and DTC models. Subsequently, we classi-
fied all SUHIsea and SUHIdiu dynamics into several typical types using the 
k-means clustering algorithm. Finally, the major controls of these dy-
namics were analyzed. We consider that our taxonomy of SUHIsea and 
SUHIdiu dynamics over global cities should be helpful in enriching the 
knowledge of SUHI dynamics on multiple timescales. 

Fig. 1. Distribution of the 2139 cities derived from Natural Earth data (2018). The background colors denote five climate zones, i.e., equatorial, arid, warm 
temperate, snow, and polar. 
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2. Study area and data 

2.1. Study area 

Our study area included all global urban clusters with an urban area 
greater than 40 km2, as determined by the global urban boundary (GUB) 
data (Li et al., 2020a). According to this criterion, a total of 2027 cities 
were identified (see Fig. 1). The rural backgrounds of these cities were 
covered by one or several of the 17 different land cover types based on 
the International Geosphere-Biosphere Programme (IGBP) classification 
scheme, and these cities were distributed into five climate zones, 
including the equatorial, arid, warm temperate, snow, and polar, ac-
cording to the updated Koppen-Geiger classification scheme (Rubel and 
Kottek, 2010). 

2.2. Data 

Both satellite and auxiliary data were used to investigate the SUHI 
dynamics and their associated controls (Table 1). The satellite data 
included the MODIS LST, albedo, enhanced vegetation index (EVI), land 
cover type products from the Climate Change Initiative (CCI) program, 
and the nighttime lights (NL) data. The details of the data are given in 
Section 2.2.1. The auxiliary data mainly included the urban cluster, 
digital elevation model (DEM), and reanalysis data (refer to Section 
2.2.2 for the detailed information). The urban cluster and CCI land cover 
product were used to delineate urban and rural surfaces. The MODIS LST 
data were used to study the continuous SUHIsea and SUHIdiu dynamics, 
while the remaining data were used to analyze their associated controls. 

2.2.1. Satellite data 
Three Terra/Aqua MODIS products from 2016 to 2018, including (1) 

the 8-day composited LST products with a spatial resolution of 1 km 
(MOD11A2 and MYD11A2), (2) an 8-day composited albedo product 
with a spatial resolution of 500 m (MCD43A3), and (3) a 16-day 
composited EVI product with a spatial resolution of 1 km (MOD13A2), 
were used. Note that here we selected 8-day LST rather daily LST, mainly 
considering that: the 8-day composition procedure (1) can largely 
eliminate daily SUHI fluctuations due to variations in synoptic and soil 
conditions and therefore enable an investigation of SUHI dynamics from 
a climatological perspective (Lai et al., 2018), (2) can potentially reduce 
the impacts from data gaps caused by cloud contamination, and (3) can 
significantly decrease the time to download/process data and therefore 
increase the global applicability of the associated approach. All datasets 
were obtained from the Earth Observing System Data and Information 
System (EOSDIS; https://earthdata.nasa.gov/). The CCI land cover 
product (2016–2018) were obtained from the European Space Agency 

(ESA; https://www.esa.int/). The spatial resolution of the CCI land 
cover product is 300 m, and its overall accuracy is satisfactory according 
to independent product validations (ESA-European Space Agency, 
2017). Both the MODIS albedo and yearly CCI land cover product were 
resampled to 1 km to match the spatial resolution of the LST data using 
the bilinear sampling method (i.e., the weighted average method). 

The MODIS LST products have been widely validated (Wan, 2008, 
2014). They provide four global-coverage LST observations per daily 
cycle, including two daytime observations at around 01:30 h and 10:30 
h and two nighttime observations at approximately 13:30 h and 22:30 h 
for the local solar time, ensuring the application of the four-parameter 
DTC model to model the SUHIdiu dynamics (Hong et al., 2018, also 
refer to Section 3.1.2). The MODIS albedo products include both white- 
sky albedo (WSA) and black-sky albedo (BSA). We used the average of 
WSA and BSA to represent the actual albedo condition (Román et al., 
2010). 

The nighttime light (NL) data from 2016 to 2018 were obtained from 
Li et al. (2020b), which were generated by combining the Defense 
Meteorological Satellite Program (DMSP)/Operational Linescan System 
(OLS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) data. 
The annual NL data with a 30-arcsecond spatial resolution were also 
resampled to 1 km to match the spatial resolution of the MODIS LSTs 
using the bilinear sampling method. The NL data, being one of the most 
commonly used indicators of human activities (Chen et al., 2021b; Du 
et al., 2021b; Jiang et al., 2021), were employed as a proxy of anthro-
pogenic heat release (AHR) in this study. 

2.2.2. Auxiliary data 
The GUB data with a spatial resolution of 30 m for 2018 were used to 

determine urban areas, which can be obtained from a public 
information-sharing center (http://data.ess.tsinghua.edu.cn). The GUB 
data are generated from the global artificial impervious area product, 
and correspond well with the nighttime light data and human inter-
pretation (Li et al., 2020a). Owing to its high quality, this dataset have 
been widely used in various studies such as the investigation of SUHIs 
(Du et al., 2021a), urban expansion (Wang et al., 2020), and land use/ 
cover type change (Chen et al., 2021a). The Global 30-arcsecond USGS 
Digital Elevation Model (GTOPO30) data were obtained from the United 
States Geological Survey (https://www.usgs.gov/) and resampled to 1 
km using the bilinear sampling method to match the resolution of the 
MODIS LSTs. 

We also employed three meteorological variables, including the 
mean air temperature (MAT), precipitation intensity (PI), and soil 
moisture (SM) from 2016 to 2018, to examine the controls of SUHI 
dynamics. These variables were retrieved from the common Global Land 
Data Assimilation System (GLDAS), a reanalysis dataset available at the 
Goddard Earth Sciences Data and Information Services Center (GES 
DISC) (https://disc.sci.gsfc.nasa.gov/datasets/). All these reanalysis 
data (9 km) were resampled to a resolution of 1 km using the bilinear 
sampling method to match the resolution of the MODIS LSTs. 

3. Methodology 

We complied with the following three steps to analyze the taxonomy 
of SUHIsea and SUHIdiu dynamics as well as their determinants: (1) 
Extraction of the seasonal and diurnal LST dynamics using the ATC and 
DTC models (refer to Section 3.1), (2) identification of the taxonomy of 
the typical SUHIsea and SUHIdiu dynamics through the derived param-
eters in the ATC and DTC models using the k-means clustering algorithm 
(Section 3.2), and (3) analysis of the dominant determinants of SUHIsea 
and SUHIdiu dynamics using correlation and linear regression analyses 
(Section 3.3). 

3.1. Extraction of seasonal and diurnal LST dynamics 

The seasonal and diurnal LST dynamics were extracted using the ATC 

Table 1 
Detailed information of the used satellite and auxiliary data.   

Variable Abbr. Temporal/ 
spatial 
resolution 

Product or 
Source 

Satellite data Land surface 
temperature 

LST 8-day /1 km MOD/ 
MYD11A2 

Enhanced 
vegetation index 

EVI 16-day/1 km MOD13A2 

Albedo ALB 16-day/0.5 km MCD43A3 
Land cover LC yearly/0.3 km CCI-LC 
Nighttime lights NL yearly/30- 

arcsecond 
— 

Auxiliarydata Mean air 
temperature 

MAT monthly/9 km GLDAS 

Soil moisture SM monthly/9 km GLDAS 
Precipitation 
intensity 

PI monthly/9 km GLDAS 

Urban cluster — yearly/30 m GUB 
Digital Elevation 
Model 

DEM yearly/30- 
arcsecond 

GTOPO30  
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and DTC models, respectively, which can reconstruct the temporally 
continuous seasonal and diurnal LST dynamics with a limited number of 
LST observations (Bechtel and Sismanidis, 2017; Duan et al., 2012; Fu 
and Weng, 2018; Hong et al., 2018). We chose these two types of models 
because of their physically meaningful parameters, capability to 
describe LST climatology, and easy global implementation (Bechtel, 
2015; Hong et al., 2018). 

3.1.1. Extraction of continuous seasonal LST dynamics under clear-sky 
We employed both the original ATC model (the ATCO model here-

after) as well as its enhanced version (the ATCE model hereafter) to 
extract the seasonal LST dynamics (see Fig. 2a). The ATCO model uses a 
single sinusoidal function plus a constant term (see Fig. 2a), whereas the 
ATCE model incorporates an additional sinusoidal function, to describe 
the seasonal LST dynamics (Bechtel, 2011, 2015; Bechtel and Sismani-
dis, 2017) in the tropics (approx. between 23.5◦S and 23.5◦N). The 
ATCO and ATCE models are given by the following equations: 

Ts(d) = φ(C, A, ω)

= C + A⋅sin(2πd/365 + ω)
(1)  

T
′

s(d) = φ
′

(C
′

, A1, A2, ω1, ω2)

= C
′

+ A1⋅sin(2πd/365 + ω1) + A2⋅sin(4πd/365 + ω2)
(2)  

where Ts(d) and Ts
′(d) are the modeled LSTs based on the ATCO and 

ATCE models, respectively, on day d within an annual cycle; φ are φ′ are 
the functions of the ATCO and ATCE models, respectively; C, A, and ω of 
the ATCO model are the annual mean LST, annual LST amplitude, and 
phase shift relative to the spring equinox, respectively; and C′ (equiva-
lent to C) is the annual mean LST, and A1 (equivalent to A) and A2 are the 
amplitudes of the annual and biannual variations, respectively; and ω1 
and ω2 are the phase shifts. For the ATCO model, ω was defined relative 

to the spring equinox (Bechtel, 2015) which differs between the north-
ern and southern hemisphere, and it should therefore be revised as ω + π 
for the southern hemisphere. The ATCO and ATCE models have three (C, 
A, ω) and five (C, A1, A2, ω1, ω2) free parameters, respectively, which 
can be solved by inputting valid LSTs and their associated days of year 
(DOYs) within an annual cycle using the least squares algorithm. 

The LST observations at the Aqua day and night overpass times were 
used to investigate SUHIsea dynamics, mainly considering that they were 
acquired around mid-day (i.e., 13:30 h local solar time) and midnight (i. 
e., 01:30 h local solar time) and, therefore, are more representative for 
characterizing SUHIsea dynamics for both day and night (Clinton and 
Gong, 2013; Fu and Weng, 2018). Nevertheless, the DTC model used for 
extracting SUHIdiu dynamics has four controlling parameters, indicating 
that at least four LST observations per day are needed to solve the DTC 
model (refer to Section 3.1.2). We therefore incorporated the two Terra- 
MODIS LST observations to obtain four valid LSTs per day to help 
investigate the continuous SUHIsea dynamics. 

3.1.2. Extraction of continuous diurnal LST dynamics under clear-sky 
conditions 

To extract the continuous diurnal LST dynamics with four inputs per 
day, we employed an advanced four-parameter DTC model derived from 
a semi-physical DTC model (the GOT09 model) (Göttsche and Olesen, 
2009), which has been shown to be effective for the extraction of 
continuous diurnal LST and SUHI dynamics with satisfactory accuracy 
(Hong et al., 2018; Lai et al., 2018). The GOT09_A model uses a sinu-
soidal function and an exponential function to model LST dynamics for 
the day and night, respectively (Fig. 2c), given by the following 
equations: 

Fig. 2. Illustration of the modeling of 
the land surface temperature (LST) and 
surface urban heat island (SUHI) dy-
namics. (a) and (b) display the modeling 
of seasonal LST and SUHI dynamics for 
the cities outside and within the tropics 
using the original (ATCO) and enhanced 
annual temperature cycle (ATCE) 
models, respectively; and (c) displays 
the modeling of the continuous SUHIdiu 
dynamics using the diurnal temperature 
cycle (DTC) model. SUHII, Obs, and 
DOY are the abbreviations for ‘SUHI in-
tensity’, ‘observation’, and ‘day of year’, 
respectively.   
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tday(t) = T0 + Ta
cos(θz)

cos(θz,min)
⋅exp[0.01 × (mmin − m(θz)) ], t < ts

Tnight(t) = T0 + Ta
cos(θzs)

cos(θz,min)
⋅exp[0.01 × (mmin − m(θzs)) ]

⋅exp
[

−
12
πk

(θ − θs)

]

, t⩾ts

(3)  

where Tday(t) and Tnight(t) are the LST dynamics for the day and night, 
respectively; t is the hour of the day; T0 is the residual temperature 
around sunrise; Ta is the diurnal temperature amplitude; tm is the time 
when the LST reaches its maximum; ts is the starting time of the free 
attenuation of LST; θ and θz are the thermal hour and solar zenith angles, 
respectively; θs is the thermal hour angle at time ts, and and θz, min is the 
minimum zenith angle at time tm; θzs is the thermal zenith angle when θ 
is equivalent to θs; m(θz) and mmin are the relative air mass and the 
minimum relative air mass at t = ts, respectively; m(θz) is denoted by m 
(θzs) when t equals ts; and k is the attenuation constant of the LST. 
Detailed descriptions and physical meanings of the constants (i.e., θ, θz, 
θs, θz, min, θzs, mmin, k) are available in the paper of Göttsche and Olesen 
(2009). The GOT09_A model has four free parameters: T0, Ta, tm, and ts 
(Hong et al., 2018), which were solved using the nonlinear least squares 
algorithm, analogous to the ATC model and then used to extract the 
continuous diurnal LST dynamics. 

For each pixel within the city, the four valid LSTs were computed 
through seasonal aggregations (i.e., seasonal mean) of the correspond-
ing daily MODIS transits before being used as the inputs of the GOT09_A 
model (Hong et al., 2018). This is mainly to eliminate the daily SUHI 
fluctuations due to variations in synoptic and soil conditions as well as to 
obtain a seasonal average of the SUHIdiu dynamics from a clear-sky 
climatological perspective (Lai et al., 2018). As a result, we can obtain 
four seasonal mean LST observations within a diurnal cycle: [t1, T(t1)], 
[t2, T(t2)], [t3, T(t3)], and [t4, T(t4)], where t1, t2, t3, and t4 are seasonal 
mean acquisition times, and T(t1), T(t2), T(t3), and T(t4) are the associ-
ated seasonal mean LST composites. 

3.2. Identification of the taxonomy of SUHIsea and SUHIdiu dynamics 

3.2.1. Modeling of SUHIsea and SUHIdiu dynamics 
The magnitude of SUHI effects was quantified using SUHI intensity 

(SUHII), typically calculated as the urban-rural difference in LST (Lai 
et al., 2018; Zhou et al., 2014), which, in turn, requires the delineation 
of urban and rural areas. For each city, the pixels labelled ‘urban and 
built-up’ in the land cover product were used as urban surfaces. The 
rural areas were defined as the frequently used buffer zones with the 
sizes equal to the urban areas outside the urban edge (Peng et al., 2012; 
Zhou et al., 2014). The snow and ice pixels within rural areas were 
removed because of their extremely low LSTs. The water and permanent 
wetland pixels within rural areas were also excluded to eliminate the 
impact of water bodies with a high specific heat capacity (Chakraborty 
and Lee, 2019). Consistent with previous studies (Chakraborty and Lee, 
2019; Lai et al., 2018; Imhoff et al., 2010; Venter et al., 2021), the urban 
and rural pixels with elevations exceeding ± 50 m of the median 
elevation were further removed based on the DEM data to suppress the 
elevation impacts. 

With seasonal and diurnal LST dynamics extracted (Section 3.1) and 
urban and rural areas delineated, the continuous SUHIsea (refer to Fig. 2a 
and 2b) and SUHIdiu (refer to Fig. 2c) dynamics can be calculated using 
the following equation: 

I(t) = Tu(t) − Tr(t) (4)  

where I(t) is the SUHII at time t within a seasonal or diurnal cycle, and 
Tu(t) and Tr(t) are the mean LSTs for all pixels within urban and rural 
areas at time t, respectively. 

3.2.2. Classification of the patterns of SUHIsea and SUHIdiu dynamics 
We classified the patterns of continuous SUHIsea and SUHIdiu dy-

namics using the following two steps. (1) For each city, we calculated 
the averages of the associated urban-rural differences in each parameter 
of the ATC and DTC models and then employed these values as the de-
scriptors of the continuous SUHIsea and SUHIdiu dynamics. This was 
plausible because the parameters of these two types of models can 
directly determine both urban and rural LST dynamics and consequently 
SUHI dynamics (Fu and Weng, 2018; Huang et al., 2016). (2) We then 
classified the descriptors of the SUHIsea and SUHIdiu dynamics (i.e., the 
parameters of the ATC and DTC models) using the k-means clustering 
algorithm for all cities (Liu et al., 2018; Zhou et al., 2013a), based on 
which the typical patterns of SUHIsea and SUHIdiu dynamics were 
identified. It should be noted that (1) we used the urban-rural difference 
in ATCO model derived parameters C, A, and ω as the descriptors of 
SUHIsea dynamics outside tropics while used the first three parameters of 
ATCE (i.e., C, A1, and ω1) within the tropics to keep the consistency of 
the clustering parameters. We kept only these three parameters for the 
ATCE model because they already contain an adequate amount of in-
formation of seasonal LST dynamics for clustering (Bechtel and Sisma-
nidis, 2017). (2) prior to the k-means clustering, each input descriptor 
was normalized between − 1.0 and 1.0 to suppress the uncertainties 
caused by scale differences among these parameters. (3) The initial 
value of K was set from 3 to 10 mainly by referring to previous studies 
(Zhou et al., 2013a; Lai et al., 2018). (4) The silhouette coefficient (SC) 
index was applied to determine the most appropriate number of clusters 
(K) (Zhou et al., 2013a), with a higher value indicating a better cluster 
result. 

With the above-mentioned steps, each city was labeled with a spe-
cific SUHI dynamics and then classified according to the labeled pat-
terns. We further calculated the mean pattern of the SUHI dynamics for 
all cities that were grouped into the same cluster by the k-means clus-
tering algorithm, in order to represent the representative shape of the 
continuous SUHI dynamics for each cluster. 

3.3. Analysis of dominant determinants of SUHIsea and SUHIdiu dynamics 

The SUHI dynamics have been shown to be related to the background 
climate, surface properties, and human activities (Peng et al., 2012; 
Zhao et al., 2014; Zhou et al., 2016b). Here, we included two parameters 
representing the background climate conditions (i.e., MAT and PI), three 
surface parameters (i.e., EVI, ALB, and SM), and one human activity 
parameter (i.e., NL), to investigate the regulation of continuous SUHIsea 
and SUHIdiu dynamics by these determinants. We selected these six 
driving variables, mainly considering that: (1) background climate 
conditions are largely determined by MAT and PI, which plays an 
important role in modifying aerodynamic resistance and can therefore 
impact SUHIs (Zhao et al., 2014; Manoli et al., 2019; Zhou et al., 2016b); 
(2) surface properties are mainly reflected by the EVI, ALB, and SM, 
which are directly related to evaporative cooling, solar radiation, and 
surface heat capacity and can consequently influence SUHIs (Li et al., 
2019; Venter et al., 2021; Zhou et al., 2016b); and (3) NL data were used 
as a proxy for anthropogenic heat emissions due to the wide acceptance 
by previous studies (Peng et al., 2012; Zhou et al., 2014). Although SUHI 
dynamics can be impacted by other factors, such as urban structure, 
topography, and geometry (Li et al., 2020c; Oke et al., 2017; Zhao et al., 
2014; Zhou et al., 2017), they were not incorporated in this study, 
mainly because (1) their seasonal variations are relatively insignificant 
within an annual cycle, and they are used to determine the overall 
magnitude of SUHI more than the temporal dynamics of SUHI and (2) 
they are relatively difficult to obtain for global cities. 

In parallel with SUHI dynamics (i.e., urban-rural difference in LST 
dynamics), we calculated the urban-rural differences in variables, 
including the ΔEVI, ΔALB, and ΔNL. Due to the coarse resolutions of 
reanalysis data, it is difficult and even impossible to provide accurate 
urban-rural contrasts in MAT, PI, and rural SM (SMr) variables across 
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global cities. Consistent with previous studies (Lai et al., 2021b; Peng 
et al., 2012; Zhou et al., 2016b), the MAT and PI were calculated based 
on all the available measurements of each city, and the SMr was calcu-
lated as the average of SM over rural areas, in order to represent the 
background climate and surface conditions of the entire city. We 
calculated both monthly and seasonal mean values of ΔEVI, ΔALB, ΔNL, 
MAT, PI, and SMr for each city. The monthly and seasonal mean ΔNL 
values were directly set as their yearly values because of the negligible 
monthly variations in ΔNL (Zhou et al., 2014). 

We investigated the relationships between the SUHIsea and SUHIdiu 
dynamics and their potential determinants using a statistical correlation 
analysis. For SUHIsea dynamics, a correlation analysis between monthly 
mean SUHII and potential determinants across cities was conducted. 
Due to the lack of hourly driving variables, it is unable to directly 
examine the potential determinants of SUHIdiu dynamics analogous to 
the statistical analysis of SUHIsea dynamics. For SUHIdiu dynamics, the 
following two steps were used to analyze their determinants. First, we 
conducted a correlation analysis between the seasonal mean daytime 
and nighttime SUHIIs and the potential drivers across cities to identify 
the SUHIdiu-related determinants during the day and at night. Note that 
a seasonal composition procedure was conducted with the purposes of 
(a) reducing the impacts from data gaps caused by cloud contamination, 
and (b) eliminating the daily SUHI fluctuations due to variations in 
synoptic and soil conditions and investigating SUHIdiu dynamics from a 
climatological perspective (Lai et al., 2018). Second, the continuous 
SUHIdiu dynamics with different value groups of the identified SUHIdiu- 
related determinants were then further compared to illustrate the 
different impacts of these SUHIdiu-related determinants (Lai et al. 2018). 

We need to clarify that this study was focused on the SUHIdiu dy-
namics in summer, during which heat mitigation is more important 
because of the threat posed by SUHI to urban environment and residents 
(Li et al., 2018; Liu et al., 2018; Oke et al., 2017). Another reason for 
selecting this season was the significantly greater diurnal variation of 
SUHII in summer mainly because of the stronger irradiation in this 
season than in the other seasons (Lai et al., 2018; Manoli et al., 2020). 
Summer (winter) is defined as the period from June to August 
(December to February) in the Northern Hemisphere and from 
December to February (June to August) in the Southern Hemisphere. 

4. Results and discussion 

4.1. Taxonomy of the seasonal SUHI dynamics 

4.1.1. Identified typical patterns of continuous SUHIsea dynamics 
The SC variations depending on cluster number K (from 3 to 10) are 

shown in Fig. 3. The results show that the SC reaches a local maximum 

with the lowest variability, regardless of whether it is day or night, when 
cluster number K is equivalent to six. This indicates that ‘six’ is the 
optimal cluster number for the taxonomy of continuous SUHIsea dy-
namics. Accordingly, six typical daytime and nighttime patterns of 
continuous SUHIsea dynamics across global cities were identified (Fig. 4; 
Fig. 5 and Fig. 6). According to the curve shape, these six patterns were 
termed as single-peak type (SPT), single-valley type (SVT), peak-valley type 
(PVT), valley-peak type (VPT), two-peak type (TPT), and two-valley type 
(TVT) (Table 2 and Fig. 4). Such patterns contain three pairs with 
approximately opposite shapes: SVT versus SPT, VPT versus PVT, and 
TVT versus TPT. Note that each pattern denotes the average of all cities 
belonging to the same patterns (Fig. 4). We acknowledge that some cities 
may exhibit specific patterns of continuous SUHIsea dynamics that differ 
from the average ones, mostly because of the large bioclimatic dis-
crepancies among cities (Zhou et al., 2013a). 

The pattern of daytime continuous SUHIsea dynamics is significantly 
regulated by the background climate: TPT and TVT mainly occur in the 
equatorial climate zone, SPT and PVT in warm temperate and snow 
zones, and SVT and VPT in arid zones (Fig. 7a). Like Manoli et al. (2020), 
we observed a concave-up shape (peaking in summer, refer to Fig. 4a 
and Fig. 7) in the wet climate and a concave-down shape (bottoming in 
summer, Fig. 4c and Fig. 7) in the dry region over several major cities in 
Europe. The two patterns of SUHIsea dynamics, as shown in Fig. 4a and 
4c, directly correspond to the two patterns illustrated by the SUHIsea-Tr 
(Tr denotes the rural LST) plots (Fig. 5a and 5c), as described by Manoli 
et al. (2020). However, in contrast to a previous finding, we show two 
similar but slightly different patterns that the SUHIsea dynamics can 
peak in spring for the wet climate (Fig. 4b) and reach the minimum in 
spring for the dry climate (Fig. 4d), which correspond to the two ellip-
tical patterns given by the SUHII-rural LST plots (Fig. 5b and 5d). This 
indicates a phase shift of continuous SUHIsea dynamics between the 
previously identified patterns, as shown in Fig. 4a and 4c, and the newly 
identified ones, as shown in Fig. 4b and 4d. Such a phase shift is prob-
ably caused by the great variety of urban-rural contrast in LST dynamics 
resulting from a combination of various surface properties and back-
ground climate conditions. This great variety in SUHIsea dynamics has 
already been revealed partly by previous studies focusing on plentiful 
cities in Europe (Zhou et al., 2013a). However, in contrast to previous 
studies, we identified two additional patterns with two peaks or valleys 
within an annual cycle (i.e., TPT and TVT; Fig. 4e and 4f), which are 
characterized by the ‘∞’ shape in the SUHII-Tr plots (Fig. 5e and 5f). This 
suggests that an accurate taxonomy of the SUHIsea dynamics, therefore, 
requires the incorporation of cities under a great variety of background 
climates. 

At night, TPT and TVT with two peaks/valleys within an annual cycle 
(refer to Fig. 4k and 4l, corresponding to the SUHII-Tr plots, as shown in 

Fig. 3. Variations of the silhouette coefficient of the k-mean algorithm depending on cluster number K (from 3 to 10) for identifying the typical patterns of 
continuous seasonal surface urban heat island (SUHIsea) dynamics for the daytime (a) and nighttime (b). 
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Fig. 6e and 2f, respectively), were more prevalent in the equatorial zone. 
However, the other four patterns of SUHIsea dynamics, that is, SPT, SVT, 
PVT, and VPT, all with a single peak/valley within an annual cycle (refer 
to Fig. 4g–4j, corresponding to the SUHII-Tr plots, as shown in 
Fig. 6a–2d, respectively), occurred predominantly in warm temperate, 
snow, and arid climates (Fig. 7b). When compared with the daytime 
case, the continuous SUHIsea dynamics are less regulated by the back-
ground climate, as evidenced by Zhou et al. (2016b). Nevertheless, we 
further observed that the nighttime continuous SUHIsea dynamics 
depended strongly on the rural land cover type. For example, SPT and 
PVT mainly occurred in cities with a rural background of sparse vege-
tation and bare lands, which possess a relatively higher albedo in urban 

than in rural surfaces (i.e., ΔALB < 0). In contrast, SVT and VPT pri-
marily occurred in cities with a rural background of dense vegetation 
and a relatively lower albedo (i.e., ΔALB > 0). 

4.1.2. Analysis of the dominant determinants of continuous SUHIsea 
dynamics 

The daytime SUHIsea dynamics can primarily be explained by the 
ΔEVI variations (Table A1), as evidenced by a strong negative correla-
tion between the monthly SUHII and ΔEVI dynamics (r = − 0.66, p <
0.05) (Fig. 8a). It is understandable that the increased EVI can enhance 
evapotranspiration, leading to a cooling effect on surface temperature 
(Peng et al., 2012; Zhou et al., 2014). An increase in urban EVI 

Fig. 4. Six typical patterns of the continuous seasonal surface urban heat island (SUHIsea) dynamics over global cities for the daytime (a–f) and nighttime (h–l). These 
patterns include the single-peak type (SPT), peak-valley type (PVT), single-valley type (SVT), valley-peak type (VPT), two-peak type (TPT), and two-valley type (TVT). The 
description of the shapes of these patterns is given in Table 2. For each panel, the thick line denotes the mean SUHIsea dynamics of all cities grouped in the same 
category, while the thin lines denote the examples of SUHIsea dynamics in typical cities. 
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(associated with an increase in ΔEVI) can reduce the SUHII by 
enhancing evaporative cooling of urban surfaces (Manoli et al., 2019; 
Zhou et al., 2014), while an increase in rural EVI (associated with a 
decrease in ΔEVI) can increase the SUHII by strengthening the rural 
evaporative cooling effect (Peng et al., 2012; Zhou et al., 2016b). In 

contrast, the nighttime SUHIsea dynamics were mainly regulated by the 
ΔALB variations, again with a negative relationship between these two 
parameters (r = − 0.57, p < 0.05) (Table A1 and Fig. 8b). A closer look at 
the monthly variations in SUHII and ΔEVI (or ΔALB) also supports the 
close relationship between these parameters at the monthly scale (Fig. 9 

Fig. 5. The six typical patterns of the daytime seasonal surface urban heat island (SUHIsea) dynamics as illustrated by the SUHI intensity (SUHII)-rural land surface 
temperature (Tr) plots. Each dot represents a single city in a certain month; each numerical symbol (i.e., 1–12) represents the mean value of Tr and SUHII for the cities 
belonging to the same category for a specific month (e.g., ‘1′ means January); and the bars around each numerical symbol are the associated standard deviations. 

Fig. 6. Six typical patterns of the seasonal surface urban heat island (SUHIsea) dynamics as illustrated by the SUHI intensity (SUHII)-rural land surface temperature 
(Tr) plots, but for the nighttime case. 
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Table 2 
Detailed descriptions on the identified typical patterns of the continuous seasonal surface urban heat island (SUHIsea) dynamics for the daytime and nighttime over 
global cities.  

Shape of SUHIsea 

dynamics 
Definition Descriptions Spatial distribution for the day Spatial distribution for the night 

Single-peak type 
(SPT) 

A peak in summer and a valley 
in winter 

Warm and snow zones with more 
vegetation in urban than in rural surfaces 

Regions with lower albedo in urban than in rural 
surfaces 

Peak-valley type 
(PVT) 

A peak in spring and a valley in 
autumn 

Warm and snow zones with high 
population density over urban surfaces 

Regions with lower albedo and relatively high 
population density in urban surfaces 

Single-valley type 
(SVT) 

A valley in summer and a peak 
in winter 

Arid zones with more vegetation in urban 
than in rural surfaces 

Regions with lower albedo in rural than in urban 
surfaces 

Valley-peak type 
(VPT) 

A valley in spring and a peak in 
autumn 

Arid zones with less precipitation and low 
temperature 

Regions with lower albedo and relatively 
intensive agricultural practice in rural surfaces 

Two-peak type 
(TPT) 

Two local peaks in spring and 
autumn respectively 

Equatorial zones with rural surfaces 
covered by savanna 

Equatorial zones with higher albedo in urban 
than in rural surfaces 

Two-valley type 
(TVT) 

Two local valleys in spring and 
autumn respectively 

Equatorial zones with rural surfaces 
covered by grassland and cropland 

Equatorial zones with higher albedo in rural than 
in urban surfaces  

Fig. 7. Spatial distributions of the cities with the six typical patterns of the continuous seasonal surface urban heat island (SUHIsea) dynamics for the day (a) and 
night (b). (SPT: single-peak type; PVT: peak-valley type; SVT: single-valley type; VPT: valley-peak type; TPT: two-peak type; TVT: two-valley type). 
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and Fig. 10). We also found a positive relationship between monthly 
mean SUHII and MAT (r = 0.32, p < 0.05) and a negative relationship 
between monthly mean SUHII and PI (r = − 0.34, p < 0.05 for PI) during 
the daytime (Table A1). The nighttime SUHIsea dynamics was negatively 
correlated with the MAT (or PI) (r = − 0.23, p < 0.05 for MAT; r =
− 0.21, p > 0.05 for PI). 

The results in Fig. 9 show that daytime SUHIsea dynamics are 
approximately opposite to the seasonal dynamics of ΔEVI. This is un-
derstandable because the ΔEVI dynamics directly control the variations 
in the urban-rural differences in evaporative cooling and hence in SUHII 
dynamics (Zhou et al., 2014, 2016b). For example, for the SPT pattern 
mostly occurring in warm and snow climates, the urban EVI is usually 
less than the rural EVI (ΔEVI < 0; see Fig. 9a), and the SUHIsea dynamics 
are thus more regulated by the rural than by the urban EVI dynamics; a 
decrease in ΔEVI (associated with an increase in rural EVI) can 

strengthen the rural evaporative cooling effect and, therefore, lead to an 
increase in SUHII. This ensures that the time of the minimum ΔEVI (i.e., 
maximum rural EVI, around summer) corresponds well with that of the 
maximum SUHII (Clinton and Gong, 2013; Manoli et al., 2020). For the 
SVT pattern mostly occurring in the dry climate, the urban EVI, how-
ever, is usually greater than rural EVI (ΔEVI > 0; Fig. 9c), indicating that 
the SUHIsea dynamics should be determined more by urban than rural 
EVI dynamics. The SUHIsea dynamics in the dry climate, therefore, 
demonstrate a variation opposite to that in warm and snow climates. 
Similar to the aforementioned examples, the SUHIsea dynamics shown in 
Fig. 9b, 9d, 9e, and 9f are closely related to the seasonal dynamics of 
ΔEVI, which are indirectly regulated by the annual precipitation and 
temperature cycles (i.e., background climate) and human activities (e.g., 
cropping and irrigation patterns). 

The results in Fig. 10 show that the nighttime SUHIsea dynamics are 

Fig. 8. Relationships between the continuous seasonal surface urban heat island (SUHIsea) dynamics and the variations in enhanced vegetation index (ΔEVI) (a) and 
albedo (ΔALB) (b). (SUHII: SUHI intensity). 

Fig. 9. Relationships between the daytime continuous seasonal surface urban heat island (SUHIsea) dynamics (the red lines) and monthly mean enhanced vegetation 
index (ΔEVI) variations (the green lines), both calculated as the averages of all cities belonging to the same pattern. Rectangles b1, b2, and b3 highlight the dynamics 
of SUHI intensity (SUHII) and ΔALB in three typical periods, including mid-winter to mid-spring, mid-spring to early autumn, and early autumn to mid-winter, 
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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also approximately opposite to the seasonal dynamics of ΔALB. This is 
mostly because the ΔALB variations determine the dynamics of urban- 
rural differences in heat storage and accordingly in the nighttime 
SUHIsea dynamics (Peng et al., 2012; Zhou et al., 2014). For example, for 
the SPT pattern that mostly appears in cities with a rural background 
covered by bare soils, the SUHIsea dynamics are more dependent on the 
urban than on the rural ALB dynamics, and the urban ALB is usually 
smaller than the rural ALB (ΔALB < 0; see Fig. 10a). For such a pattern, a 
decrease in ΔALB (usually associated with a decrease in urban ALB) can 
usually amplify the surface energy trapped during the day and is 
released at night, leading to an enhancement in SUHII (Peng et al., 2012; 
Zhou et al., 2014). This enables the minimum ΔALB (i.e., minimum 
urban ALB around summer) to corresponds well with the maximum 
SUHII (Fig. 10a). For the SVT pattern that generally occurs in cities with 
a rural background covered by dense vegetation, the urban ALB, how-
ever, is often higher than rural ALB (ΔALB > 0; Fig. 10c), and the 
SUHIsea dynamics are affected more by rural than urban ALB dynamics. 

Consequently, the SUHIsea dynamics in cities surrounded by dense 
vegetation revealed an opposite variation to that in cities surrounded by 
bare soils (Fig. 10a versus 10c). Like the above-mentioned examples, the 
SUHIsea dynamics in Fig. 10b, 10d, 10e, and 10f are also closely related 
to the seasonal variations of ΔALB, which is again indirectly related to 
surface bioclimate. 

Among the six typical patterns of SUHIsea dynamics, three pairs 
(Section 4.1.1), including the SPT versus PVT (typically in warm 
temperate and snow climates), SVT versus VPT (mainly in an arid 
climate), and TPT versus TVT (mostly in the equatorial zone), are for 
daytime and three similar pairs for nighttime. Nevertheless, hereafter, 
we were mainly focused on the comparisons of these three pairs during 
the day, while the comparison for the nighttime case was not itemized to 
avoid redundancy. 

For the first pair of daytime cases, both SPT (accounting for 43.2% of 
the global cities) and PVT (29.5%) showed a gradual increase in SUHII 
from mid-winter to mid-spring, which can be largely attributed to more 

Fig. 10. Relationships between the nighttime continuous seasonal surface urban heat island (SUHIsea) dynamics (the red lines) and the monthly mean ΔALB var-
iations (the blue lines), both calculated as the averages of all cities belonging to the same pattern. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 11. The nighttime light signal for different patterns of seasonal surface urban heat island (SUHIsea) dynamics during the day (a) and at night (b). (SPT: single- 
peak type; PVT: peak-valley type; SVT: single-valley type; VPT: valley-peak type; TPT: two-peak type; TVT: two-valley type). 
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vegetation in rural than in urban surfaces in warm temperatures and 
snow climates (ΔEVI < 0; Fig. 9a and 9b). From mid-spring to early 
autumn, SPT was characterized by a concave-up curve with a summer 
maximum, corresponding well to the concave curve shape of the ΔEVI 
during this period. In contrast, PVT demonstrated a gradual decreasing 
trend in SUHII, matching well with the increasing ΔEVI trend probably 
resulting from crop harvest (Zhou et al., 2016b). Starting from early 
autumn to mid-winter, the decreasing trend of the SPT was reasonable 
because of the understandable ΔEVI variation during this period in 
warm temperatures and snow climates. The increasing SUHII for PVT 
during this period might have resulted from the increased rural EVI 
arising from re-cultivated croplands (Zhou et al., 2016b), which led to a 
reduction in ΔEVI (Fig. 9b). In addition, the cities with PVT are more apt 
to distribute at high latitudes where there is usually more AHR from 
domestic heating (Peng et al., 2012). Moreover, the relatively higher 
AHR for the cities with PVT than those with SPT may contribute to the 
gradual SUHII increase in winter for the PVT pattern (Fig. 11a). 

For the second pair of daytime cases, both SVT (accounting for 8.3% 
of the global cities) and VPT (9.6%) showed a gradual SUHII decrease 
from mid-winter to mid-spring, which can be explained by the more 
vegetation in urban than in rural surfaces in arid climates (ΔEVI > 0; 
Fig. 9c and 9d). From mid-spring to early autumn, the concave-down 
shape of the SVT agrees well with the understandable concave-up 
shape of the ΔEVI variation in arid climates. Conversely, VPT is char-
acterized by a gradual increasing trend, matching well with the 
decreasing ΔEVI trend that results from the increasing rural EVI because 
of the gradual growth of natural vegetation and/or cultivated crops in 
the rural background during this period (Yao et al., 2019; Zhou et al., 
2016b). Starting from early autumn to mid-winter, VPT exhibited a 
gradual decrease in SUHII (Fig. 9d), which can be related to less 

precipitation, causing a lower rural EVI (a higher ΔEVI accordingly) for 
VPT, especially when compared with the relatively stable precipitation 
for SVT (Fig. 12a). 

For the third pair of daytime cases, both TPT (accounting for 3.5% of 
the global cities) and TVT (6.8%) showed two local SUHII peaks or 
valleys with entirely inverted curve shapes, which can be attributed to 
seasonal ΔEVI variations characterized by two annual maxima (Fig. 9e 
and 9f). Such characteristic seasonal ΔEVI variations can further be 
attributed to the precipitation dynamics exemplified by two annual 
maxima in the equatorial zone as well as to the impacts of urban-rural 
temperature differences in vegetation activity (Fig. 12a and 12c; Meng 
et al., 2020). The inverted curve shapes of these two patterns could be 
explained by the different rural land cover types (Fig. 13a): the cities 
with TPT are mostly surrounded by shrublands (57% of the rural 
background covered by shrublands), whereas the cities with TVT are 
overwhelmingly surrounded by grasslands and croplands (75%). The 
growth of shrublands is strongly dependent on precipitation; they start 
to grow rapidly after an increase in precipitation (Machado et al., 2004; 
Zhang et al., 2005) and, therefore, reach the ΔEVI peaks just around the 
occurrence of the precipitation maxima. In contrast, grasslands and 
croplands take a longer time to respond to precipitation (Machado et al., 
2004), thereby producing a phase shift between the maxima of ΔEVI and 
precipitation. Such a difference in the response of rural vegetation to 
precipitation likely leads to discrepancies in growth rate in rural vege-
tation (and accordingly the ΔEVI peaks) and further contributes to 
different and even entirely opposite curve shapes between TPT and TVT. 

Fig. 12. Monthly variations in precipitation intensity (PI) (a – b) and in urban-rural difference of surface air temperature (ΔSAT) (c – d) for six typical patterns of the 
seasonal surface urban heat island (SUHIsea) dynamics. (SPT: single-peak type; PVT: peak-valley type; SVT: single-valley type; VPT: valley-peak type; TPT: two-peak type; 
TVT: two-valley type). 
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4.2. Taxonomy of the diurnal SUHI dynamics 

4.2.1. Identified typical patterns of continuous SUHIdiu dynamics 
According to Fig. 14, the SC values reach a local maximum with the 

lowest variability when the cluster number K is again equivalent to six. 
Therefore, we identified six typical patterns of continuous SUHIdiu dy-
namics (Fig. 15 and Fig. 16). Like those of the continuous SUHIsea dy-
namics, we termed these patterns as the SPT, SVT, PVT, VPT, TPT, and 
TVT (Table 3). These six patterns included three opposing pairs, that is, 
SPT versus PVT, SVT versus VPT, and TPT versus TVT (see details in 
Section 4.2.2). 

The SPT and PVT patterns are mainly located in warm temperate and 
snow climates, SVT and VPT in arid climates (Fig. 17), and TPT and TVT 
across global cities. Among these patterns, the single-peak and single- 

valley types (i.e., the SPT, SVT, PVT, and VPT) have been reported 
previously by Lai et al. (2018). Here, we identified two other patterns 
with two peaks or valleys (TPT and TVT), probably because cities in 
China are insufficient to provide full insight into the taxonomy of 
SUHIdiu dynamics over global cities. 

4.2.2. Analysis of the dominant determinants of continuous SUHIdiu 
dynamics 

Similar to previous studies that focused on the spatial dimension 
(Peng et al., 2012; Zhou et al., 2014, 2016b), our study confirmed a 
significant negative correlation between daytime SUHII and ΔEVI (r =
− 0.50, p < 0.05; see Table A2) and a positive correlation between 
nighttime SUHII and ΔALB (r = − 0.44, p < 0.05; see Table A2). Note 
that this statistical analysis differs from that in Section 4.1.2, which was 
conducted between the SUHIsea dynamics and ΔEVI and ΔALB on the 
temporal dimension (refer to Section 3.3 for more details on the domi-
nant determinants of SUHIdiu dynamics). Studies have indicated that 
other factors, such as AHR (represented by ΔNL) and SMr can also affect 
SUHIIs by regulating energy absorption and release (Zhou et al., 2014; 
refer to Table A2). Therefore, we mainly analyzed the variations in 
SUHIdiu dynamics depending on these four dominant determinants 
(ΔEVI, ΔALB, ΔNL, and SMr). 

Fig. 18 shows the variations in continuous SUHIdiu dynamics under 
different values of these four determinants. The results again suggest 
that SUHIdiu dynamics are governed mainly by ΔEVI, but are also 
impacted by the other three determinants. 

For the scenario where urban EVI is lower than rural EVI (ΔEVI < 0) 
in the daytime, the faster heating of urban impervious surfaces 
compared with rural dense vegetation forces the rapid SUHII increase 
after sunrise (Lai et al., 2018), resulting in the SPT pattern (see line a1 in 
Fig. 18a). For the scenario where urban EVI is greater than rural EVI 
(ΔEVI > 0), usually corresponding to cities in an arid climate, the faster 

Fig. 13. Distribution of rural land cover types for the cities with the two-peak type (TPT) and two-valley type (TVT) patterns during the day (a) and at night (b).  

Fig. 14. Variations in the silhouette coefficient of the k-mean algorithm 
depending on cluster number K (from 3 to 10) for identifying the typical pat-
terns of continuous SUHIdiu dynamics. 
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heating of rural bare soils than urban surfaces forces a rapid SUHII 
decline after sunrise (Lai et al., 2018), leading to the SVT pattern (see 
line a2 in Fig. 18a). For the scenario when urban albedo is lower than 
rural albedo (ΔALB < 0), usually corresponding to cities in an arid 

climate surrounded by sparse vegetation and bare lands, the faster 
nocturnal cooling of rural bare soils, than urban surfaces with more 
vegetation, canyon effect, and more AHR could enhance the SUHIIs 
throughout the night (see line b2 in Fig. 18b). When urban albedo is 

Fig. 15. Six typical patterns of the continuous diurnal surface urban heat island (SUHIdiu) dynamics over global cities (a - f). These patterns include the single-peak 
type (SPT), peak-valley type (PVT), single-valley type (SVT), valley-peak type (VPT), two-peak type (TPT), and two-valley type (TVT), with the descriptions of their shapes 
given in Table 3. For each panel, the thick line denotes the mean SUHIdiu dynamics of all cities grouped in the same category, while the thin lines denote the examples 
of SUHIdiu dynamics in typical cities. 

Fig. 16. Six typical patterns of the diurnal surface urban heat island (SUHIdiu) dynamics as illustrated by the SUHI intensity (SUHII)–rural land surface temperature 
(Tr) plots. Each dot represents a single city in a certain hour of day; each alphabetical symbol (i.e., A – L) represents the mean value of Tr and SUHII for the cities 
belonging to the same category for a specific hour of day (e.g., ‘A’ means the time of sunrise, ‘B’ denotes 2 h subsequent to sunrise, and so on in the same fashion); and 
the bars around each alphabetical symbol are the associated standard deviations. 
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greater than rural albedo (ΔALB > 0), which generally corresponds to 
cities surrounded by dense vegetation, the SUHII continues to decrease 
at night (see line b1 in Fig. 18b). This is probably because rural surfaces 
with dense vegetation can trap more energy during the day and then 
release it at night, which suppresses the nocturnal cooling of rural sur-
faces and, therefore, leads to a continuously decreasing SUHII (see line 
b1 in Fig. 18b). For the scenario in which the urban-rural contrast in 
AHR is relatively low (i.e., the ΔNL is low), the daytime SUHII is un-
derstandably lower (see line c1 in Fig. 18c), whereas for the case when 
ΔNL is relatively high, the nocturnal cooling of urban surfaces is further 
suppressed owing to the large amount of AHR, which makes the 

nighttime SUHII variations relatively stable (see line c2 in Fig. 18c). In 
contrast, SMr shows an opposite effect on daytime and nighttime SUHII. 
Increased SMr enhances the daytime SUHII as rural moist lands experi-
ence slower daytime heating because of their higher heat capacity, 
which, in turn, decreases the nighttime SUHII by slowing the nocturnal 
cooling of rural surfaces (see line d1, Fig. 18d). 

For the first pair, both SPT (accounting for 39.0% of the global cities) 
and PVT (27.5%) presented an increasing first and decreasing later 
daytime SUHII curve, which should be a result of the greater rural EVI 
than urban EVI (ΔEVI < 0) for the cities located in the warm temperate 
and snow climates (Fig. 19a). During the night, a comparatively lower 
ΔALB can force the nighttime SUHIIs of the PVT pattern to increase 
because of the negative relationship between ΔALB and nighttime 
SUHIIs (Fig. 19b and Table A2). The gradual increase in SUHII for PVT 
could also be explained by the extensive AHR over cities characterized 
by such a pattern (Fig. 19c). 

For the second pair, both SVT (12.9%) and VPT (9.2%) exhibited a 
decreasing first and increasing later daytime SUHII curve, which can be 
attributed to the higher urban EVI than rural EVI (ΔEVI > 0), mainly for 
the cities in the arid climate (Fig. 19a). Instead, the decline in SUHII at 
night for the VPT pattern was probably related to the relatively higher 
SMr when compared with that for SVT, as high SMr could decrease the 
nighttime SUHII by slowing the rural cooling (Fig. 19d). 

For the third pair, the TPT (6.4%) and TVT (6.0%) patterns showing 
inverted curve shapes can be closely related to different statuses of 
ΔEVI, characterized by a positive ΔEVI for TPT and a negative one for 
TVT (Fig. 19a). The observed perturbations of daytime SUHII for TPT 
and TVT might have resulted from the combination of the above- 
mentioned four determinants, including ΔEVI, ΔALB, ΔNL, and SMr 
(Allen et al., 2017; Lai et al., 2018, 2021a, 2021b; Oke et al., 2017). 
Other plausible drivers, such as urban geometry, may also partly 
contribute to short-term SUHII perturbations by influencing SUHII 
through the shading effect of urban buildings, which, for instance, can 
delay the urban heating around sunrise when solar altitudes are low 
(Allen et al., 2017; Lai et al., 2018). 

4.3. Discussion 

We performed a joint investigation of the taxonomy of continuous 
SUHIsea and SUHIdiu dynamics over global cities by combining the ATC 
and DTC models. The patterns of the prevalent SUHIsea and SUHIdiu 
dynamics were identified using the k-means clustering algorithm, and 
the dominant determinants, such as the associated patterns of the 
continuous SUHIsea and SUHIdiu dynamics, were examined. To our 

Table 3 
Detailed descriptions of the identified typical patterns of continuous diurnal 
surface urban heat island (SUHIdiu) dynamics over global cities.  

Shape of SUHIdiu 

dynamics 
Definition Descriptions Spatial distribution 

Single-peak 
type (SPT) 

A major peak 
during the day and 
a gradual decrease 
at night 

Warm and snow 
climate regions with 
less vegetation in 
urban than in rural 
surfaces 

Peak-valley 
type (PVT) 

A major peak 
during the day and 
a gradual increase 
at night 

Warm and snow 
climate regions where 
urban surfaces have 
less vegetation and 
high population 
density than rural 
surfaces 

Single-valley 
type (SVT) 

A major valley 
during the day and 
a gradual increase 
at night 

Arid climate regions 
with less vegetation in 
rural than in urban 
surfaces 

Valley-peak 
type (VPT), 

A major valley 
during the day and 
a gradual decrease 
at night 

Arid climate regions 
where rural surfaces 
have less vegetation 
and high soil moisture 
content than urban 
surfaces 

Two-peak 
type (TPT) 

Two distinct peaks 
around noon and 
early evening 

Regions with less 
vegetation in urban 
than in rural surfaces 

Two-valley 
type (TVT) 

Two distinct valleys 
around noon and 
early evening 

Regions with more 
vegetation in urban 
than in rural surfaces  

Fig. 17. Spatial distributions of cities with the six typical patterns of continuous diurnal surface urban heat island (SUHIdiu) dynamics.  
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knowledge, this is the first study to provide a global perspective on the 
simultaneous investigation of the SUHIsea and SUHIdiu dynamics. 
Consistent with previous reports (Lai et al., 2018; Zhou et al., 2013a; 
Manoli et al., 2020), we observed the patterns of SUHIsea and SUHIdiu 
dynamics with one peak or valley within an annual cycle (i.e., SPT, PVT, 
SVT, and VPT; Fig. 4 and Fig. 15). Yet we found two additional patterns 
with two peaks or valleys within an annual cycle (i.e., TPT and TVT; 
Fig. 4 and Fig. 15), which suggests that an accurate taxonomy of the 
SUHIsea dynamics needs to be conducted from a global perspective. In 
addition, the simultaneous investigation of SUHIsea and SUHIdiu dy-
namics highlighted that the SUHI dynamics differ by time scale due to 
the temporal variability of surface-climate conditions and human ac-
tivities. For example, a closer investigation shows that a certain city may 
be characterized by the SPT pattern for both SUHIsea and SUHIdiu dy-
namics, while another may not (Fig. A1). Therefore, the results provide 
an adequate basis for generalization, which is otherwise unobtainable 
with the data of only a limited number of cities. The results reveal that 
the patterns (curves) of the identified SUHI dynamics encode several 
processes and mechanisms that impact SUHII dynamics, which may help 
in the design of heat mitigation strategies by capturing the possible 
timing of the mitigation requirement (Lai et al., 2018; Manoli et al., 
2020; Zhou et al., 2013a). 

However, uncertainties remain, and further efforts are required. 
First, the ATC and DTC models chosen in this study have been widely 

used and validated by previous studies (Fu and Weng, 2018; Hong et al., 
2018; Huang et al., 2016; Lai et al., 2018). Although the modelling er-
rors of the ATC and DTC models as shown in previous studies are not 
very low (around 1 to 3 K), we consider that such uncertainties would 
not largely bias the major conclusions, mostly because we focused on the 
temporally smoothed seasonal and diurnal patterns (i.e., SUHIsea and 
SUHIdiu dynamics) from a climatological perspective, rather than the 
day-to-day SUHI fluctuations (generally due to weather and surface 
changes) from which the modelling errors of the ATC and DTC models 
are mostly derived. We acknowledge that there exist other ATC models 
with a relatively higher accuracy by improving the modelling of day-to- 
day LST fluctuations (Liu et al., 2019). However, such models may yield 
additional information on short-term LST fluctuations responding to 
weather and surface changes, which are not necessary to identify the 
temporally smoothed SUHIsea and SUHIdiu dynamics. In addition, in the 
modeling of continuous SUHI dynamics, similar to previous studies (Lai 
et al., 2018; Zhou et al., 2016a), the SUHI dynamics extracted by the 
ATC and DTC models can only represent the scenario of clear-sky 
climatology, yet the SUHI dynamics are expected to change under 
overcast conditions (Lai et al., 2018; Zhou et al., 2011). For example, the 
effect of SUHI may be partly or completely eradicated on windy days 
(Lai et al., 2021b; Zhou et al., 2011). To acquire accurate SUHI dy-
namics, more advanced models that can simulate all-weather LSTs are 
worthy of investigation (Fu et al., 2019; Liu et al., 2019). In addition, the 

Fig. 18. Variations in continuous diurnal surface urban heat island (SUHIdiu) dynamics under different values of enhanced vegetation index (ΔEVI) (a), albedo 
(ΔALB) (b), ΔNL (c), and rural soil moisture (SMr) (d). 
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diurnal LST dynamics can be over-simplified by the used DTC model, 
forcing the associated dynamics into specific predetermined shapes and 
therefore yielding uncertainties in taxonomy. A previous study has 
shown that such uncertainties by using parametric models (e.g., the DTC 
model) are minor by comparing the modelled hourly LSTs with geo-
stationary LSTs over several megacities (Lai et al., 2018), yet more 
validations with geostationary LSTs over a larger scale may still be 
necessary to consolidate the obtained taxonomy of the continuous 
diurnal SUHI dynamics. 

Second, during the extraction of typical SUHI dynamics, the typical 
patterns of SUHI dynamics were determined based on the k-means 
cluster algorithm and SC, which were also employed by previous studies 
(Rousseeuw, 1987; Zhou et al., 2013a). Therefore, the identified pat-
terns represent the optimal clustering results. The selection of clustering 
methods may slightly alter the pattern clustering of continuous SUHI 
dynamics (Liu et al., 2018). Thus, further attempts of algorithm selection 
are required to improve the clustering accuracy. We also need to clarify 
that, although the SUHI dynamics were categorized into six groups here, 
there was no clear boundary among the different patterns: the pattern of 
an individual city could deviate from any of the six identified patterns 
because of the specific background climate, topography, and surface 
properties. 

Finally, during the analysis of the determinants of the continuous 
SUHI dynamics, the coarser resolutions of some auxiliary data were 
resampled to 1 km to match those of the LST product, which may 
introduce uncertainties. In addition, we chose only a limited number of 
determinants to examine the continuous SUHI dynamics, mainly 

considering their global availability for analysis. We acknowledge that 
these selected determinants may be inadequate to fully explain the un-
derlying cause of SUHIsea and SUHIdiu dynamics. For example, cities 
with tall buildings should experience a lower SUHI effect because of 
their higher convection efficiency (Zhao et al., 2014) and larger shadows 
(Schläpfer et al., 2015), while dense buildings dissipate less heat than 
rough structures, especially during the night (Grimmond and Oke, 1999; 
Huang and Wang, 2019; Zhao et al., 2014). These issues highlight the 
importance of considering auxiliary data with higher spatiotemporal 
resolutions and involving more variables (e.g., urban density and 
morphology, cloud coverage, and wind speed) in the future to help 
investigate the continuous SUHIsea and SUHIdiu dynamics. Moreover, we 
are aware that the analysis of the determinants of SUHI dynamics is only 
based on a statistical approach, and the captured results remain pre-
liminary. Future studies should conduct a further in-depth analysis of 
both urban and rural surface energy balance to help disentangle the key 
drivers of SUHI dynamics (Manoli et al., 2020), especially across global 
cities under various background climates and city sizes. 

5. Conclusion 

Previous studies have examined either diurnal or annual SUHI dy-
namics on single or several time-nodes, but the accurate pattern tax-
onomy of the continuous SUHI dynamics over these two timescales, 
especially over global cities, remains unclear. Using the MODIS LSTs and 
auxiliary data, we investigated both continuous SUHIsea and SUHIdiu 
dynamics across global cities by combining the ATC and DTC models 

Fig. 19. Mean values of enhanced vegetation index (ΔEVI) (a), albedo (ΔALB) (b), nighttime lights (ΔNL) (c), and rural soil moisture (SMr) (d) for the six patterns of 
diurnal surface urban heat island (SUHIdiu) dynamics in summer. 
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along with the k-means clustering algorithm. We further identified the 
typical patterns of the continuous SUHIsea and SUHIdiu dynamics and the 
associated determinants. 

The findings of this study are as follows: (1) Both continuous SUHIsea 
and SUHIdiu dynamics showed six typical patterns, including the SPT, 
SVT, PVT, VPT, TPT, and TVT. These six patterns included three oppo-
site pairs, with SVT versus SPT, VPT versus PVT, and TVT versus TPT. 
(2) The daytime SUHIsea dynamics were closely related to the back-
ground climate, with SPT and PVT mainly occurring in the warm 
temperate and snow zones, SVT and VPT in the arid zone, and TPT and 
TVT in the equatorial zone. The nighttime SUHIsea dynamics were more 
dependent on the rural land cover type, with SPT, PVT, and TPT mainly 
occurring in cities surrounded by barren land with high albedo and SVT, 
VPT, and TVT in cities surrounded by dense vegetation with low albedo. 
In addition, daytime SUHIsea dynamics were negatively correlated with 
ΔEVI (r = − 0.66, p < 0.05), while the nighttime SUHIsea dynamics were 
negatively correlated with ΔALB (r = − 0.57, p < 0.05). (3) For SUHIdiu 
dynamics, SPT and PVT mostly appeared in cities with higher vegetation 
coverage in rural areas than in urban surfaces, while the opposite status 
of the urban-rural contrast in vegetation coverage led to the occurrence 
of the SVT, VPT, and TPT. The SUHIdiu dynamics were controlled syn-
thetically by the urban-rural contrast in vegetation and albedo. We also 
found the evidence of other factors, such as AHR and SMr, regulating the 
pattern of continuous SUHIdiu dynamics. We consider that these findings 

can advance the understanding of the SUHI dynamics and their associ-
ated determinants on multiple timescales; they can also be helpful in 
designing heat mitigation strategies through the identification of the 
possible timing of mitigation requirements. 
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Appendix 

See Fig. A1, Tables A1 and A2 

Fig. A1. Comparisons of daytime SUHIsea and SUHIdiu dynamics and their determinants in two representative megacities in China (i.e., Beijing and Hangzhou). (a-b) 
Relationships between the SUHIsea dynamics (the red lines) and monthly mean enhanced vegetation index (ΔEVI) variations (the green lines). (c-d) Relationships 
between SUHIdiu dynamics and determinants including ΔEVI, albedo (ΔALB), nighttime lights (ΔNL), and rural soil moisture (SMr). 
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Table A1 
Correlations between the daytime and nighttime seasonal surface urban heat 
island (SUHIsea) dynamics and each determinant across global cities.  

Determinants Seasonal SUHI dynamics 

Daytime Nighttime 

r p r p 

ΔEVI  − 0.66 < 0.05  0.21 > 0.05 
ΔALB  0.14 > 0.05  − 0.57 < 0.05 
MAT  0.32 < 0.05  − 0.23 < 0.05 
PI  − 0.34 < 0.05  − 0.21 > 0.05 
SMr  0.21 > 0.05  − 0.19 > 0.05 
ΔNL  0.19 > 0.05  0.33 < 0.05 

Here, ΔEVI, ΔALB, ΔNL, MAT, and PI represent the urban-rural contrasts in the 
enhanced vegetation index (EVI), albedo (ALB), nighttime lights (NL), mean air 
temperature (MAT), rural soil moisture (SMr), and precipitation intensity (PI), 
respectively, and r and p are the statistical correlation coefficient and signifi-
cance value, respectively. 

Table A2 
Correlations between daytime (or nighttime) surface urban heat island intensity 
(SUHII) and each determinant across global cities in summer.  

Determinants Daytime SUHII Nighttime SUHII 

r p r p 

ΔEVI  − 0.48 < 0.05  − 0.26 < 0.05 
ΔALB  − 0.16 > 0.05  − 0.41 < 0.05 
ΔNL  0.34 < 0.05  0.30 < 0.05 
SMr  0.29 < 0.05  − 0.27 < 0.05 
MAT  − 0.16 > 0.05  − 0.09 > 0.05 
PI  − 0.27 < 0.05  − 0.15 > 0.05  

Z. Liu et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0924-2716(22)00061-2/h0005
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0005
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0010
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0010
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0015
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0015
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0020
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0020
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0020
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0025
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0025
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0030
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0030
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0030
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0035
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0035
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0035
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0040
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0040
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0040
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0045
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0045
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0045
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0045
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0050
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0050
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0050
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0050
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000761
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000761
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0060
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0060
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0065
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0065
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0065
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0065
https://doi.org/10.1016/j.scs.2021.103119
https://doi.org/10.1016/j.scs.2021.103119
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0075
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0075
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0075
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0085
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0085
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0085
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0090
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0090
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0090
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0095
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0095
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0095
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0100
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0100
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0110
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0110
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0115
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0115
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0115
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0120
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0120
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0120
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0125
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0125
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0125
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0125
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0130
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0130
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0130
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0135
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0135
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0135
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0135
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0140
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0140
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0140
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0145
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0145
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0145
https://doi.org/10.1016/j.rse.2020.112198
https://doi.org/10.1016/j.rse.2020.112198
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0155
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0155
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0160
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0160
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0160
https://doi.org/10.1088/1748-9326/ab9be3
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0170
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0170
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0175
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0175
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0180
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0180
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0180
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0185
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0185
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0185
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0185
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0190
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0190
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0190
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0195
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0195
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0195
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0200
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0200
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0205
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0205
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0205
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0205
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0210
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0215
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0215
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0220
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0220
http://refhub.elsevier.com/S0924-2716(22)00061-2/h0220


ISPRS Journal of Photogrammetry and Remote Sensing 187 (2022) 14–33

33

Román, M.O., Schaaf, C.B., Lewis, P., Gao, F., Anderson, G.P., Privette, J.L., Strahler, A. 
H., Woodcock, C.E., Barnsley, M., 2010. Assessing the coupling between surface 
albedo derived from MODIS and the fraction of diffuse skylight over spatially- 
characterized landscapes. Remote Sens. Environ. 114 (4), 738–760. 

Rousseeuw, P.J., 1987. Silhouettes: A graphical aid to the interpretation and validation 
of cluster analysis. J. Comput. Appl. Math. 20, 53–65. 

Rubel, F., Kottek, M., 2010. Observed and projected climate shifts 1901–2100 depicted 
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