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ABSTRACT

Wavelike oscillations are a common form of air motion in the forest canopy at night. This paper investigates
the canopy wave phenomenon using a two-dimensional inviscid linear wave model taking into account the drag
force exerted on the wave wind components by plant elements and the plant–air heat exchange induced by
temperature wave oscillations. The model appears to have adequately reproduced the salient features of a wave
event in a boreal aspen forest.

The wave dynamics are investigated as functions of parameters of the background states expressed in analytical
form. It is shown that canopy waves are generated by wind shear near the treetops and share features of a
Kelvin–Helmholtz disturbance. Because it is located close to the inflection point of the mean wind, the ground
exerts a strong stabilizing effect on the wave motions, particularly in a sparse forest. The main role of the canopy
drag in the wave dynamics is the creation of the inflection point; its damping effect on wave oscillations
themselves is limited to disturbances of wavelengths shorter than that of the fastest growing waves. Wavelength,
phase speed, and period of the fastest growing waves, those that are most likely to dominate observations, appear
insensitive to static stability.

1. Introduction

Recent forest turbulence experiments have demon-
strated that wavelike air motions (referred to as canopy
waves hereafter) frequently occur within and above the
forest canopy at night. Three mechanisms are commonly
invoked to explain wave generation in the lower at-
mosphere: convective penetration, topographic distur-
bance, and shear instability (Hooke and Jones 1986;
Rees and Mobbs 1988). The first two mechanisms are
not responsible for canopy waves as the experimental
sites were located on flat terrain and observations were
made at night when the whole boundary layer, and the
air layer near the canopy in particular, was strongly
stratified. One may also speculate that canopy waves
are waves that have propagated downward from higher
altitudes. This scenario is, however, unlikely because
canopy waves possess unique features, such as short
and monochromatic wave period and low phase speed,
that distinguish themselves from waves that originated
in the upper boundary layer.

In the framework of linear wave theory, one neces-
sary condition for shear instability to occur in the stat-
ically stable air is that the horizontal wave phase speed
must be equal to the background mean wind speed at
some height where the gradient Richardson number (Ri)
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is less than 0.25 (Miles 1961; Howard 1961). The drag
force exerted on the moving air by plant elements will
reduce the mean wind speed considerably within the
vegetation, and as a result a large shear will occur near
the canopy top. This shear is often large enough to
reduce Ri to values smaller than 0.25 and is most likely
to trigger wave generation. Examination of a limited
number of wave episodes supports this postulation (Lee
et al. 1997). Obviously plant elements are equally ef-
ficient in damping wave motions and in reducing the
mean wind speed through the bluff–body effect, thus
leading to the question of which of the two effects (gen-
eration of mean wind shear or damping of wave mo-
tions) is the more important one in wave dynamics and
the question of whether the critical Ri value of 0.25
derived by Miles and Howard for fluid free of drag
elements can be adopted as a criterion for study of can-
opy waves.

Waves in the course of their generation, propagation,
and dissipation can extract, transport, and deposit
amounts of momentum and energy large enough to be
significant to the state of the atmospheric motion over
a range of spatial scales. In the lower atmosphere, waves
will yield their momentum to the mean flow at the crit-
ical level where phase speed matches the background
mean wind speed (Bretherton 1969a,b) and can generate
a surface drag at least as large as those associated with
turbulent motions (Chimonas 1989; Nappo and Chi-
monas 1992). Turbulence is created and maintained by
random wave breaking or through transfer of kinetic
energy from the wave motions under strongly stratified



1 NOVEMBER 1997 2575L E E

conditions that otherwise would not permit turbulence
(Finnigan et al. 1984). Observational studies showed
that wave-associated heat and mass fluxes over the veg-
etation may be large in magnitude that defies interpre-
tation (Lee et al. 1996).

It is well established now that under neutral and un-
stable conditions the exchange of momentum, heat, and
masses between vegetation and the air above are dom-
inated by coherent eddy motions. Drawing an analogy
between canopy flow and flow in the plane mixing layer,
Raupach et al. (1989) postulated that the coherent eddies
are a result of an inviscid instability caused by the mean
wind shear near the canopy top. They deduced the ex-
istence of inclined double rollers that were supported
by mapping of spatial two-point correlation statistics
(Shaw et al. 1995). By comparing scales of the mean
shear to the mixing layer flow, but without actually per-
forming a linear analysis, they arrived at an estimate of
the coherent eddy length scale. One may then argue that
nighttime canopy waves resemble daytime coherent ed-
dies in the sense that both are generated by the mean
wind shear. By virtue of this resemblance and the fre-
quent occurrence of canopy waves, momentum, heat,
and mass exchange associated with them may play an
important role in the evolution of the nocturnal bound-
ary layer, although the exact mechanism of the exchange
is yet to be discovered.

In recent years increasing attention has been paid to
nighttime trace gas exchange over forest vegetation. The
CO2 flux, a measure of the ecosystem respiration rate,
is comparable in magnitude to the daytime values, but
the time or Reynolds averaging procedure often gives
unrealistic results. There is a disturbing possibility that
a large portion of the CO2 released by the forest escapes
through some unknown route, and past assessment of
the forest sink of the atmospheric carbon may have been
subject to large uncertainties. Evaluation of flux data is
not the focus of this study, but a fundamental under-
standing of nocturnal canopy flow is a prerequisite for
resolving the issue.

In addition to the evolution of the nocturnal boundary
layer and the process of trace gas exchange, there are
other reasons to investigate the wave phenomenon. Cer-
tain fungus spores (e.g., F. annosus) are released from
the forest floor at night (Schmidt and Wood 1972). Pres-
sure fluctuations at the soil surface associated with wave
motions may help the takeoff through a pressure pump-
ing effect (Baldocchi and Meyers 1991). Unlike inter-
mittent sweep events, which favor rapid settling of par-
ticulates to the forest floor (Miller et al. 1996), oscil-
latory motions will reduce the settling velocity of those
particulates whose response time is much shorter than
the oscillation period (Stout et al. 1995).

The objective of this study is to investigate the canopy
wave phenomenon using an inviscid linear wave model.
Governing equations of the model and its numerical
method are given in section 2. The model takes into
account the drag force exerted on the wave wind com-

ponents by plants and the plant–air heat exchange in-
duced by temperature wave oscillations. Section 3 com-
pares model outputs with the observation of a wave
event in a boreal aspen forest. This comparison shows
that the model is physically realistic and provides further
support for the notion that canopy waves are generated
by shear instability. In section 4, model calculations,
using analytical profiles of the mean wind speed and
temperature as inputs, yield information about wave
growth rate, boundary of the unstable mode, and the
influence of canopy density on wave properties. The
advantage of using analytical profiles, in addition to
speeding up the calculations and to overcoming the lack
of data of the mean fields, is the freedom of conducting
numerical experiments to investigate background pa-
rameters influencing the process, something that is dif-
ficult to achieve in field studies.

2. Model

a. Governing equations

We consider a two-dimensional wave propagation in
the x–z plane. The coordinate is defined such that z is
vertical and x is aligned with the azimuthal direction of
propagation. As noted by de Baas and Driedonks (1985),
results obtained for the two-dimensional system should
also be valid for a three-dimensional system according
to Squire’s theorem (Betchov and Criminale 1967; Dra-
zin and Reid 1981). The mean state represents a stably
stratified hydrostatic atmosphere with potential temper-
ature u, density r, and the x component of the horizontal
velocity u, all of which are functions of z only. Wave
components of the horizontal wind speed ũ, vertical
speed w̃, pressure p̃, and potential temperature areũ
governed by a set of linearized equations for inviscid
flow under the Boussinesq approximation and the as-
sumption of incompressibility as

]ũ ]ũ ]u 1 ]p̃
1 u 1 w̃ 5 2 2 F , (1)ũ]t ]x ]z r ]x

˜]w̃ ]w̃ 1 ]p̃ u
1 u 5 2 1 g 2 F , (2)w̃]t ]x r ]z u

]ũ ]w̃
1 5 0, (3)

]x ]z

˜ ˜]u ]u ]u
1 u 1 w̃ 5 2S , (4)ũ]t ]x ]z

where g is the gravitational acceleration and t denotes
time. Terms Fũ and Fw̃ represent drag forces exerted by
plant elements on the wave wind components ũ and w̃,
respectively, and are parameterized as

F 5 C Aũu,ũ d

F 5 C Aw̃u,w̃ d

where Cd is a dimensionless drag coefficient and A is a
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plant element area density with units of inverse meters.
Term represents heat exchange between plant ele-Sũ

ments and the air caused by wave temperature fluctu-
ations and is parameterized as

˜S 5 C Au,ũ H

where CH is a wind-dependent heat transfer coefficient.
For computational convenience and in the interest of
obtaining a nondimensional group from the wave equa-
tion (section 4), instead of the conventional parameter-
ization that CH is made proportional to u1/2 (Meyers and
Paw U 1987; Finnigan 1985), CH is related to the mean
wind as

CH 5 Chu,

where Ch is a dimensionless constant. Numerical dif-
ference between the two parameterizations is very small
for the range of u considered.

We seek a wave solution of the form

5 (5)˜ ˆ(w̃, u, ũ, p̃) (ŵ, u, û, p̂)(z) exp[i(kx 2 st)]

(with the understanding that only the real part be taken
as the true solution), where k is the horizontal wave-
number and s (5sr 1 isi) is the complex wave angular
frequency. Substituting Eq. (5) into Eqs. (1)–(4) yields
a set of equations for ( ). An elimination ofˆŵ, u, û, p̂
variables from these equations leads to

2 2 2 2d ŵ 1 d dŵ N k ik d u
21 (C Au) 2 1 1 k ŵ 5 0,d2 21 2dz a dz dz aa a dz1

(6)

where N is the Brunt–Väisäla frequency defined as

0.5du
N 5 g u ,1 @ 2dz

and

a 5 ik(u 2 c) 1 C Au,d

a 5 ik(u 2 c) 1 C Au,1 h

with c (5s/k) being the complex phase speed. In the
absence of plant elements, Eq. (6) reduces to the familiar
Taylor–Golstein equation (Gossard and Hooke 1975).

In Eq. (6), profiles of u, u, and A are either provided
by observations (section 3) or by a set of analytical
expressions (section 4). The solution of ŵ is found from
a numerical procedure described below. The wave dis-
turbances of temperature, horizontal wind speed, and
pressure are then given by

ŵ du
û 5 2 , (7)

a dz1

1 dŵ
û 5 2 , (8)

ik dz

r a dŵ du
p̂ 5 2 ŵ . (9)1 2ik ik dz dz

b. Numerical method

The perturbation of the vertical velocity satisfies the
condition at the lower boundary,

ŵ 5 0 at z 5 0. (10)

At the upper boundary z → `, both N and u are assumed
to be invariant with height, and therefore ŵ satisfies

dŵ
5 ik ŵ (11)zdz

(Lalas and Einaudi 1976; de Baas and Driedonks 1985).
Here kz is the vertical wavenumber and is related to N
and u as

1/2
2N

2k 5 6 2 k . (12)z 2[ ](c 2 u)

The sign is chosen so that the imaginary part of kz is
positive. This ensures that the wave amplitude decreases
with height, or in other words, the wave is trapped in
the vertical at higher altitudes.

Equations (6), (10), and (11) constitute an eigenvalue
problem. For a given k, ŵ at z 5 0 is a complex function
of cr (real part of c) and ci (imaginary part of c). An
iteration routine is developed to find the roots of

ŵ(cr, ci)|z50 5 0.

For a given k, initial values of cr and ci are assumed
and Eq. (6) is integrated, using a fifth-order Runge–
Kutta method with adaptable stepsize control, from a
reference height, z 5 zr, beyond which u and N are
virtually constant and Eq. (11) holds, to z 5 0. If ŵ|z50

deviates significantly from zero, new values of cr and
ci are tried. Strategy for the selection of new cr and ci

values is based on Broyden’s method of root finding for
nonlinear systems of equations (Press et al. 1992). The
process is repeated until the deviation is smaller than a
preset convergence criterion. At this step cr and ci values
are taken as the true eigenvalues and the corresponding
ŵ as the true eigenfunction of w. Once ŵ is found, Eqs.
(7)–(9) allow the three other eigenfunctions, û, andû,
p̂, to be determined. Wave amplitude (Ab) and phase
angle (fb) are then calculated as

ˆA 5 |b|, (13)b

21 ˆ ˆf 5 tan (b /b ), (14)b i r

where br and bi are the real and imaginary parts of b,ˆ ˆ ˆ
which can be any one of ŵ, û, or p̂.û,

In the following, computations have been performed
with Cd 5 0.15 and Ch 5 0.10 unless stated otherwise.
The Cd value is a typical one for use in canopy flow
models (Meyers and Paw U 1986; Lee et al. 1994), and
the Ch value is based on the leaf boundary layer resis-
tance formulation of Campbell (1977) and accounts for
the effect of turbulence, leaf dimension, and the effect
of linearizing the CH–u relation. Only the results of un-
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FIG. 1. Plant area density distribution in the boreal aspen forest.

stable modes (ci or si positive) will be presented since
they are the modes that can grow into waves.

3. Results for an observed mean flow

a. Site and data

Details of the site and instrumentation have been doc-
umented by Black et al. (1996) and Lee et al. (1997).
Only the essential information is reproduced here.

The site (53.78N, 106.28W) is located on flat terrain
in Saskatchewan, Canada. The forest is an extensive
stand of aspen trees about 21 m tall. At the time of
observation, the overstory and understory leaf area in-
dices were 1.8 and 3.2, respectively, and are partitioned
with height using triangular distributions as shown in
Fig. 1.

The platform of turbulence observations was a scaf-
folding tower 40 m tall. High-frequency (5–20 Hz) time
series were provided by three sonic anemometer–ther-
mometers mounted at z 5 5.5, 27.7, and 39.1 m and
twelve precision fine wire thermocouples at z 5 2.2,
4.1, 6.4, 9.5, 12.6, 15.7, 18.8, 21.9, 25.0, 27.7, 31.4,
and 39.1 m. These sensors were in operation for most
of the BOREAS (Boreal Ecosystem Atmosphere Study)
1994 field campaigns. At a nearby small clearing, a
tethersonde carrying a set of wind, temperature, hu-
midity, and ozone sensors was used to probe the air
layer at increments of 3 m up to z 5 300 m, providing
profiles of the mean state needed in model calculations.

The tethersonde system was operated mostly in daylight
hours, with a few runs made at night. In the following,
a 60-min wave event (0239–0339 local time, 4 August),
the only event for which tethersonde observation is
available, will be used in the model study.

A visual inspection of the temperature time series of
this wave event reveals that wavelike motions were clear
near the treetops and diminished quickly with distance
away from this height, indicating a critical level there
(Fig. 2). Clear periodic patterns lasted the full 60-min
duration.

Fourier transformation is applied to each of the
10-min segments of the time series and composite spec-
tra and cospectra are formed for the full hour. The spec-
tral analysis yields an estimate of the wave frequency
fw 5 0.020 Hz (wave period 50 s). To facilitate the
comparison with model outputs, the wave amplitude of
the time series b is taken as

Ab 5 ( fSb)1/2 at f 5 fw, (15)

where f is natural frequency in hertz and Sb is the power
spectrum of b. It is found that for a time series with
clear periodicity, Ab from Eq. (15) agrees quite well with
wave amplitude interpreted visually. Likewise, wave
phase angle between b and a reference signal y is es-
timated as

fb 5 tan21(Qby/Cby) at f 5 fw, (16)

where Qby and Cby are the quadrature spectrum and co-
spectrum between b and y, respectively.

b. Comparison of model results with observations

Figures 3a and 3b show the profiles of vector wind
speed, wind direction, and potential temperature ob-
tained from a tethersonde accent during 3:37–3:57 local
time. Since the wave model is for a two-dimensional
system, an estimate of the azimuthal direction of wave
propagation must be made so that the vector wind can
be projected along this direction to produce the u profile.
This direction has been found from wave-associated
wind speed and direction fluctuations (Gossard and
Munk 1954; Gossard and Hooke 1975) observed at z
5 27.7 m to be 1058, 188 off the mean wind direction
at this height. Tenth-order polynomials are then pro-
duced by best fitting with a least squares procedure to
the observed u and u profiles and are used in the model
calculations.

Figure 3c shows N 2 and Ri profiles based on these
polynomials. The value of Ri is below the critical value
of 0.25 in the air layer between z 5 19 and 36 m. Wind
shear at all other heights is not strong enough to trigger
instability. (The negative Ri values near the ground and
at z 5 113 m are an artifact of the polynomial fitting.)

The numerical integration starts at zr 5 6h or 126 m,
where h denotes the height of the forest. A range of k
values have been tried. Table 1 lists model outputs for
three k values to give a sense of the model sensitivity
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FIG. 2. A 10-min segment of temperature time series in the aspen forest starting at 0239 local time on 4
August.

TABLE 1. Modeled wave parameters for the wave event at the boreal
aspen forest. The observed wave angular frequency is 0.126 rad s21.

Parameter Values

Wavenumber (k, rad m21)
Angular frequency (sr, rad s21)
Growth rate (si, s21)
Phase speed (cr, m s21)
Wavelength (l, m)

0.102
0.126
0.0012
1.23

61

0.205
0.251
0.0008
1.24

31

0.051
0.062
0.0020
1.22

123

FIG. 3. Tethersonde profiles of (a) vector wind speed (solid line)
and direction (dotted line), (b) potential temperature, and (c) the
gradient Richardson number for the wind component projected to the
azimuthal direction of wave propagation (solid line) and the Brunt–
Väisäla frequency squared (dotted line).

to k. In the following, the solution whose frequency
matches the observed one is chosen as the true solution.

The calculated phase speed is believed to be accurate
because it matches the mean wind speed near the tree-
tops, thus producing a wave amplitude maximum in
accord with observations (Fig. 4). The calculated value
also agrees well with the estimate made previously (Lee
et al. 1997) with a procedure utilizing the vertical and

horizontal wind speed fluctuations (Hooke et al. 1973).
The results in Table 1 also indicate that the phase speed
estimate is not sensitive to the choice of k.

The growth rate is similar to the estimates for waves
in the lower boundary layer (de Baas and Driedonks
1985) and is faster than those for waves at higher al-
titudes (Einaudi and Finnigan 1993). Such growth is not
visible during the selected 60-min period but may have
occurred prior to that. What is observed is a wave event
that had reached some form of quasi-steady state, per-
haps because of nonlinear effects, at amplitudes larger
than the infinitesimal one to which the linear solution
strictly applies (Einaudi and Finnigan 1993). This
should be kept in mind when interpreting the model
results.

Figure 4 compares the observed and modeled wave
amplitudes in the lower 40-m air layer. All eigenfunc-
tions from the linear model, which share a single con-
stant multiplier, have been scaled so that the modeled
w amplitude matches the observation at z 5 27.7 m. At
z 5 5.5 and 39.1 m, the modeled w amplitude is correct
in order of magnitude.
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FIG. 4. Comparison of modeled wave amplitudes with observations at the boreal aspen forest:
solid line, model output (k 5 0.102 rad m21); bullet, observation. The dashed line represents
calculations from Eq. (7) by substituting N with observations made on the scaffolding tower.

The agreement for Au is not satisfactory, except that
the model produces a peak near the treetops that is in-
dicative of a critical level there. The model gives a peak
value (2.48C) two times larger than the observed one.
It underestimates Au in the air layer above z 5 25 m
and overestimates Au below z 5 15 m. The difference
is, however, not an indication of a deficiency in the
model itself; rather, it is caused by the fact that the
tethersonde temperature profile, which was measured in
a clearing of 40 m radius, did not represent accurately
the mean state in the forest. The w disturbance is in-
sensitive to the mean u profile as shown by the sensi-
tivity tests in the next section. This is not the case with
the u disturbance because error in the Au calculation is
proportional to any error in the u gradient measurements
according to Eqs. (7) and (13). A much better agreement
is achieved when N values in Eq. (7) are replaced with
observations made on the scaffolding tower (dashed line
in Fig. 4).

The model predicts a sharp peak for the longitudinal
velocity amplitude, the peak value being 0.8 m s21. No
fast-sampled time series are available for the height of
the peak to allow a direct comparison. A slow-response
propeller anemometer, located at 2 m above the canopy
on a small tower about 150 m away from the scaffolding
tower, registered a standard deviation of the horizontal
wind speed of 0.25 m s21 for the period of the wave
event. After correction for the sensor inertia, the actual
wave amplitude might have been comparable to the pre-
dicted peak value. It is possible that the predicted peak
is real but, as with Au, the peak may have been too
sharp.

The predicted pressure amplitude peaks at 4 m above
the stand and remains essentially constant with height
in the trunk space. The amplitude at the soil surface
(0.18 Pa) is comparable to the observation by Shaw et
al. (1990) in a temperate deciduous forest (median value
of 0.20 Pa for 52 half-hourly runs), but is 1–2 orders
of magnitude smaller than that associated with wave
motions in the upper boundary layer (Egger et al. 1993;

Einaudi and Finnigan 1993; Hook et al. 1973; Davis
and Peltier 1976). This reinforces the notion that canopy
waves and waves in the boundary layer are distinctly
different. One alternative interpretation of the surface
pressure fluctuations is that they are the vertical integral
of the Poisson equation, which expresses the relation
between the pressure source term to the fluctuating wind
and density fields (Thomas and Bull 1983), and hence
the small magnitude is a direct consequence of the char-
acteristic that the air layer undergoing wave perturba-
tions is very shallow.

Figure 5 compares modeled and observed phase an-
gles, both referenced to the vertical velocity at z 5 27.7
m [cf. Eq. (16)]. A negative phase angle indicates that
the signal maximum precedes the w maximum at z 5
27.7 m. According to the model, the w oscillations
should be in phase above the forest and should have a
positive phase up to 408 within the stand. This trend
appears to reflect the observation in the aspen forest,
although previous field studies under mostly convective
conditions showed that the w time series were in phase
everywhere (Shaw and Zhang 1992). The observed
sharp transition in the temperature phase near the tree-
tops, symptomatic of a critical-level phenomenon, is
well reproduced by the model. It is noted here that the
phase calculation is not prone to the uncertainty in the
temperature gradient observation, as it cancels out when
the imaginary part is divided by the real part of [Eqs.û
(7) and (14)]. The u phase within the stand deviates
from 6908, an angle anticipated for boundary layer
waves (de Baas and Driedonks). The agreement for the
u phase is poor for reasons that are not clear. The pre-
dicted phase for the pressure is negative in reference to
w at z 5 27.7 m, as shown in Fig. 5, or if the local w
signal is used as the reference, which agrees in a qual-
itative sense with Shaw et al. (1990), who reported that,
on average, upward fluid motion precedes an increase
in pressure at the soil surface in their forest.

It should be pointed out that there are a number of
problems with the mean field observation. The most
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FIG. 5. Same as in Fig. 4 but for phase angle.

FIG. 6. Analytical profiles of the nondimensional mean wind speed
(un) and the Brunt–Väisäla frequency (Nn) with parameter values a1

5 3.0, a2 5 2.85 (L 5 4.0), g1 5 0.2, and g2 5 2.0, and plant element
area density divided by plant area index (An/L).

serious one is that the tethersonde profiles are a short
snapshot of the state of motions rather than the true
averages because of the operational procedure. A second
source of uncertainties arises from the mismatch in the
time of observation: the tethersonde ascent was made
when the wave event was almost over, with only a 2-min
overlap. A third problem is the spatial separation be-
tween tethersonde and tower observations as noted
above. Bearing this in mind, it seems fair to conclude
that the linear model has reproduced adequately the sa-
lient features of the observed wave event. Because of
the uncertainties in the mean fields, an assessment of
the canopy drag effect on the wave wind and temper-
ature components is not appropriate here. This is best
done with the analytical mean profiles.

4. Results for analytical mean flow

a. Mean fields

In this section, characteristics of canopy waves are
investigated as functions of parameters of the back-
ground states that are expressed in analytical form (Fig.
6). The nondimensional plant element area density An

(5 Ah, h denoting height of the stand) is described by
a Gaussian distribution,

L
2 2A 5 exp[2(z 2 0.65) /(2 3 0.125 )],n n

0.125Ï2p

(17)

where zn 5 z/h, and L is the plant area index noting that
L 5 An dzn. The Brunt–Väisäla frequency decreases1∫0

exponentially with height as

5 N 2/ 5 (1 2 g1) exp[2g2(zn 2 1)] 1 g1, (18)2 2N Nn h

where Nh is the Brunt–Väisäla frequency at z 5 h, and
g1 and g2 are parameters to be specified. The value2Nn

reaches a maximum at the ground surface and ap-
proaches a constant of g1 at high altitudes to simulate
the constant potential temperature gradient above the
surface inversion due to radiative cooling (Mahrt et al.
1979).

The mean wind speed follows an exponential function
within the stand and a hyperbolic tangent function
above, with an inflection point at zn 5 1:

exp[a (z 2 1)], z # 12 n nu 5 (19)n 5a tanh[(a /a )(z 2 1)] 1 1, z . 1,1 2 1 n n

where un(5u/uh) is the wind speed normalized by that
at z 5 h(uh). The first derivative of un is continuous
everywhere, but the second derivative shows disconti-
nuity at zn 5 1. As zn increases, un approaches the bound-
ary layer wind equal to (a1 1 1). Parameter a2 deter-
mines how fast the wind attenuates with depth into the
canopy and mainly depends on L. Since one objective
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FIG. 7. Boundary of the unstable mode in the wavenumber–static
stability plane.

is to investigate how wave features change in response
to changes in stand density, a quantitative relationship
between a2 and L is desired. Establishing the relation-
ship involves three steps: simulating the within-stand
mean wind profile with a second-order closure model
(Wilson and Shaw 1977) for a range of L values, de-
termining a2 for each L value by fitting the exponential
function in Eq. (19) to the model output, and relating
a2 to L by a least squares procedure. The end result is
a working formula:

a2 5 20.0296L2 1 0.6565L 1 0.7010. (20)

As with the mean profiles, it is convenient to reduce
all wave quantities by uh and h to nondimensional forms,
which are denoted by a subscript n (e.g., kn 5 hk). The
nondimensional form of Eq. (6) is

2d ŵ 1 d dŵn n1 (C A u )d n n2dz a dz dzn n n n

2 2 2 2 2N h N k ik d uh n n n n 22 1 1 k ŵ 5 0. (21)n n2 21 2u a a a dzh n 1n n n

The solution of Eq. (21) is now dependent on the non-
dimensional profiles un, An, and Nn, as well as a non-
dimensional group, r 5 h2/ , which is a stability2 2N uh h

measure. Since a unique relation exists between r and
the more familiar parameter Rm (minimum gradient
Richardson number) for a given set of Nn and un profiles,
it is convenient to discuss the stability dependence of
the solution using Rm instead of r.

In the following, all computations except sensitivity
tests have been performed with parameter values a1 5
3, g1 5 0.2, and g2 5 2, and three L values, 2, 4, and
6, representing sparse, dense, and very dense stands,
respectively. Each L value specifies a un profile through
the a2 parameter [Eq. (20)], an An profile, and the unique
relation between r and Rm. The Rm value is allowed to
change from zero corresponding to neutral stability at
all heights to an upper limit at which no unstable modes
can be found. Integration starts at zrn 5 7.

b. Results

Figure 7 plots boundary curves that, together with
the horizontal axis, bound the regions into which all
unstable solutions will fall. The boundaries are deter-
mined in the following manner. For each Rm value, ei-
genvalues of cr and ci are calculated for a series of kn

at small increments. The bound of the unstable mode
is found by interpolating the two consecutive kn values
at the zero crossing of ci. In cases when no stable so-
lutions (ci , 0) can be found, the kn value at which cin

is smaller than 0.001 is regarded as the bound of the
unstable mode. The uncertainty in the kn bound esti-
mates from this procedure is no greater than 0.01. As
can been seen from Fig. 7, canopy drag effect reduces
the critical Rm value from the limit of 0.25 by an amount

depending on stand density: No unstable solutions can
be found with Rm greater than 0.14, 0.19, and 0.20 for
L 5 2, 4, and 6, respectively. The range of kn over which
unstable solutions exist increases with L, and for all
simulations the wavenumber is bounded by an upper
limit of 2.0. No additional modes have been found, con-
sistent with earlier results by Lalas and Einaudi (1976)
and Davis and Peltier (1976), who showed that the pres-
ence of the ground very close to the inflection point in
the mean wind speed profile, as is the case here, will
inhibit secondary modes.

Figure 8 plots phase speed and growth rate as func-
tions of wavenumber for selected static stability con-
ditions. Information about the fastest growing waves (sin

maximum), waves that are most likely to dominate ob-
servations, is given in Table 2, where tn denotes the
reduced wave period and zcn height of the critical level.
The growth rate increases rapidly as Rrn decreases and
as L increases. For a given L, the wavenumber of the
fastest growing wave is insensitive to static stability,
which once again appears to be symptomatic of the
inflection point being close to the ground. A similar
behavior is suggested by Lalas and Einaudi’s simula-
tions (their Fig. 7). The wavenumber varies from 0.36
for sparse forests to 0.80 for very dense forests (Table
2), corresponding to an actual wavelength range of 17–
9h, where h is the height of the stand.

All previous investigations using the linear wave the-
ory have shown unequivocally the property that the
wavenumber of the fastest-growing wave is proportional
to the inverse of the half-shear-layer depth (Davis and
Peltier 1976; Lalas and Einaudi 1976; Raupach et al.
1989; Chimonas and Grant 1984), with the proportion-
ality coefficient falling in the range 0.40–0.46 for



2582 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 8. Growth rate (sin) and phase speed (crn) as functions of
wavenumber for selected static stability classes and plant area indices
(solid line, Rm 5 0; dashed line, Rm 5 0.1; dotted line, Rm 5 0.175).
All calculations are made with a1 5 3, g1 5 0.2, and g2 5 2.

TABLE 2. Properties of fastest growing waves calculated with a1

5 3, g1 5 0.2, and g2 5 2 for selected plant area indices and static
stability conditions. The half-shear-layer depth (ln) is given by Eq.
(22).

L a2 ln Rm kn crn sin zcn tn lnkn

2 1.90 1.05 0
0.1

0.38
0.33

1.43
1.44

0.11
0.03

1.23
1.24

11.6
13.2

0.40
0.32

4 2.85 0.70 0
0.1
0.175

0.65
0.59
0.59

1.54
1.59
1.67

0.28
0.14
0.03

1.19
1.21
1.24

6.3
6.7
6.4

0.46
0.41
0.41

6 3.57 0.56 0
0.1
0.175

0.81
0.77
0.81

1.60
1.68
1.79

0.42
0.22
0.04

1.17
1.20
1.23

4.8
4.9
4.3

0.45
0.43
0.45

Rm 5 0 or neutrally stratified flow. The proportionality
implies that there always exists a size of wave distur-
bance that is most efficient in smoothing the shear. To
apply the finding to canopy flow, Raupach et al. (1989)
recommended that the half-shear-layer depth ln be cal-
culated as the inverse of the wind speed derivative at
the inflection point. From this they arrived at an estimate
of 0.8 for kn for canopy flow. Their argument implies
the relation ln 5 1/a2 in the present study. It can be
shown from data in Table 2 that the resulting product

lnkn falls in the range 0.13–0.20, which is much smaller
than values obtained by other investigators.

A new method of defining ln is proposed here that
can reconcile the apparent inconsistency. Because wind
shear intensities are different within and above the stand,
the two air layers must be treated separately. Following
the convention (Drazin and Reid 1981), the depth of the
shear layer above zn 5 1 is a1/a2. Similarly, the depth
of the shear layer below zn 5 1 can be taken as the
inverse of the exponent in the wind model (1/a2). The
half-shear-layer depth is then given by

1 1 a1l 5 . (22)n 2a2

This leads to the desired property lnkn 5 0.40–0.46 for
Rm 5 0 (Table 2). Equation (22) suggests that the wave-
number of the fastest growing waves is a function of
the shear near the canopy top, as captured in parameter
a2, and the boundary layer wind. Provided that the
boundary layer wind is the same, sparser stands favor
formation of waves of longer wavelength because the
shear layer is thicker. These results indicate that the
actual wavelength of canopy waves is a function of a
number of parameters including h, L, and a1 (and is
only weakly dependent on static stability). This is at
variance with Raupach et al. (1989), who suggested that
the wavelength can be scaled by h alone. But they also
cautioned that their result should be considered as an
order-of-magnitude estimate only.

The mean fields differ from those in earlier numerical
studies in two respects: 1) the ground is very close to
the inflection point as noted above, and 2) wave motions
are subject to the canopy drag effect. Two sets of ad-
ditional calculations are made for neutral stability (Rm

5 0) in order to isolate their influence on the wave
characteristics. In one case, the ground is hypothetically
lowered to zn 5 210, thus reducing its effect to a min-
imum. The resulting wavenumbers of the fastest grow-
ing wave remain essentially the same as in Table 2, but
the growth rates are faster, with values of 0.32, 0.46,
and 0.57 for L 5 2, 4, and 6, respectively. The relative
high percentage of change in the growth rate for the
small L value indicates that the ground effect is felt
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FIG. 9. Real and imaginary part of the w wave disturbance of the fastest growing mode for
Rm 5 0 (solid line), 0.1 (dashed line), and 0.175 (dotted line).

TABLE 3. Magnitude of the ratio of the real part to the imaginary
part of the vertical wavenumber at selected heights for the fastest
growing waves.

L Rm zn

0.1 1.0 2.0

2 0
0.1

0.12
0.24

0.30
0.50

0.05
0.02

4 0
0.1
0.175

0.16
0.30
0.44

0.36
0.59
0.82

0.03
0.01
0.00

6 0
0.1
0.175

0.20
0.34
0.46

0.34
0.58
0.80

0.02
0.00
0.00

more strongly in a sparse stand. This can be explained
by the relationship between the shear layer depth and
the stand density: in a sparse stand the shear layer is
deep (Table 2) and therefore the ground is located close
to the center of the shear layer in a relative sense. It is
possible that when L drops below some critical value
the ground effect will become so pronounced that no
disturbance can grow into waves.

In the second case, the canopy drag effect is removed
by setting both drag coefficient Cd and heat transfer
coefficient Ch to zero values. The wavenumbers of the
fastest growing waves are identical to the values in Table
2. The corresponding growth rates are slightly higher
(0.18, 0.37, and 0.52 for L 5 2, 4, and 6, respectively).
The range of kn of unstable solutions is twice as broad
as in Fig. 7, suggesting that the canopy drag is more
effective in stabilizing disturbances of wavelengths
shorter than that of the fastest growing waves.

To put the values of phase speed in perspective, it is
worth noting that shear-generated waves must travel at
a speed exactly equal to the mean wind speed at the
inflection point in an unbounded shear flow modeled by
a perfectly antisymmetric profile (Tatsumi and Gotoh
1960). The equality holds approximately for neutral air
when the ground barrier is introduced at a location far
away from the inflection point (Lalas and Einaudi 1976;

Davis and Peltier 1976). In the present study, phase
speed of the fastest growing waves is always greater
than unity or the mean wind speed at the inflection point
(Table 2) as a result of the asymmetry of the mean field.
Calculations for the hypothetical scenario that the
ground is lowered to zn 5 210 indicate that for current
flow configurations phase speed will match roughly the
mean wind speed at the center of the whole shear layer,
which is located at zn 5 1.52, 1.35, and 1.28 for L 5
2, 4, and 6, respectively. The actual phase speed is re-
duced from this upper limit by the ground effect and
hence the height of the critical level (zcn) will lie below
the center of the whole shear layer (Table 2).

The nondimensional wave period (tn) shows little
variation with the static stability (Table 2). Under neutral
conditions, it decreases from 11.6 for L 5 2 to 4.8 for
L 5 6, emphasizing once again that uh and h alone are
not enough to collapse wave parameters to universal
forms. A similar range of variations for coherent eddy
motions has been found from a partial survey of ob-
servational studies (Raupach et al. 1989). The tn values
in Table 2 are much higher than that for the wave event
in the aspen forest discussed earlier (tn 5 2.9), a dis-
crepancy presumably caused by the inadequacy of the
mean wind profile model [Eq. (19)] in representing the
reality for that particular night.

Figure 9 shows the w disturbance of the fastest grow-
ing waves. A feature common to all the disturbance
profiles is the abrupt shift in phase at zn 5 1, the shift
being larger in magnitude for more stable conditions.
For L 5 4 the phase angles are 288, 508, and 758 for
Rm 5 0, 0.1, and 0.175, respectively at zn 5 1, and are
about 108 higher at zn 5 0.1. Similar magnitudes and
patterns exist for L 5 2 and 6. Additional information
concerning the disturbance is given in Table 3, where
the vertical wavenumber kz is defined such that

ŵ 5 exp(ikzz).

The waves are trapped in the vertical or evanescent if
the ratio of the real part to the imaginary part of kz is
much smaller than unity and propagating otherwise. As



2584 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

TABLE 4. Test of sensitivity of model outputs to the mean fields
for L 5 4, Rm 5 0.1, and g1 5 0.2.

a1 g2 kn boundary

Properties of fastest
growing waves

kn crn sin tn lnkn

3.0
3.6
2.4
3.0
3.0

2.0
2.0
2.0
2.4
1.6

0.21–1.06
0.18–0.84
0.26–1.36
0.22–1.05
0.21–1.06

0.59
0.48
0.74
0.60
0.59

1.59
1.70
1.47
1.65
1.55

0.14
0.11
0.17
0.14
0.15

6.7
7.7
5.8
6.4
6.9

0.41
0.39
0.44
0.42
0.41

can be seen from Table 3, canopy waves are trapped
waves, except in a thin layer close to the canopy top
where they appear to be propagating, in accord with the
view that the fastest growing waves in a shear layer
should be mostly trapped as long as the linear theory
holds (Lalas and Einaudi 1976; Rees 1987).

Results of tests of model sensitivity to parameters of
the mean field are given in Table 4. In each test, one
of the two model parameters (a1 and g2) is changed by
20% from the control. A higher a1 value, signifying a
higher boundary layer wind speed, favors formation of
longer waves. A 20% variation in a1 results in change
of a similar proportion in kn of the fastest growing wave.
The product lnkn, on the other hand, is not sensitive to
a1 variations, supporting the use of Eq. (22) as a measure
of the half-shear-layer depth. All wave properties are
insensitive to parameter g2, which describes the distri-
bution of thermal stratification with height. This appears
to be a common feature of shear-generated waves (e.g.,
Davis and Peltier 1976).

5. Summary and conclusions

The linear model appears to have adequately repro-
duced the salient features of a wave event in the boreal
forest including a slow phase speed, an amplitude max-
imum and a sharp phase transition of temperature os-
cillations near the treetops, and a wave pressure fluc-
tuation that appears correct in order of magnitude. Ac-
curate observation of the background state will bring
further improvement to the model results.

It is shown that canopy waves are generated by the
wind shear near the canopy top. More specifically, they
share features of a Kelvin–Helmholtz instability: a phase
speed equal to the background wind near the center of
the shear layer, a horizontal wavelength proportional to
the depth of the shear layer, and an amplitude that decays
rapidly away from the region of shear (Davis and Peltier
1976). Some important points from the calculations with
the analytical mean profiles are summarized as follows.

1) The critical minimum Richardson number (Rm) is
smaller than the theoretical limit of 0.25, the differ-
ence depending on stand density (L). An important
question is then whether and how frequently Rm re-
mains subcritical in the field. The fact that there ex-
ists an air layer of high turbulence or wave intensity

a few meters above the treetops [Lee et al. (1996)
for a temperate forest; unpublished data from X. Lee
et al. for the aspen forest) seems to suggest that the
wind shear is often intense enough to generate
waves, which in turn break into turbulence, although
a definite answer will have to await a detailed ex-
amination of the wave climatology.

2) The main role of the canopy drag in the wave dy-
namics is the creation of an inflection point in the
mean wind profile. Its damping effect on wave mo-
tions themselves is limited to disturbances of wave-
lengths shorter than that of the fastest growing wave.

3) The ground exerts a strong stabilizing influence on
the wave motions, particularly on those in a sparse
stand. It is possible that, when L drops below some
critical value, the ground effect will become so pro-
nounced that no disturbance can grow into waves.

4) The wavenumber of the fastest growing wave is pro-
portional to the inverse of the half-shear-layer depth
calculated as the average of the shear layer depth
within the stand, which is a function of stand density
or, more precisely, of the rate of attenuation of the
mean wind with depth into the stand, and that above
the stand. The value of the proportionality coefficient
is between 0.40 and 0.46 for Rm 5 0, in accord with
previous linear analyses of boundary layer waves,
and drops slightly as air becomes stably stratified.

5) The wave phase speed is greater than the mean wind
speed (uh) at the top of the stand (z 5 h). The critical
level is probably located between z 5 h and the
center of the whole shear layer.
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