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A B S T R A C T   

Estimating future temporal patterns of Surface Urban Heat Islands (SUHIs) on multiple time scales is an ongoing 
research endeavor. Among these time scales, estimation of next-day SUHIs is of special significance to urban 
residents, yet we currently lack a simple but efficient approach for making such estimations. In the present study, 
we propose a statistical strategy for estimating next-day nighttime SUHIs, based on incorporating various SUHI 
controls into a support vector machine regression (SVR) model. The majority of both the surface controls 
(including factors related to land cover and solar radiation) and meteorological controls (including temperature 
fluctuations, relative humidity, accumulated precipitation, wind speed, aerosol optical depth, and soil moisture) 
that have previously been found to account for daily SUHI variations were used as estimators, and we provide 
estimations for both the overall SUHI intensity (SUHII) and pixel-by-pixel Gaussian-based LSTs over 59 Chinese 
megacities. For the overall SUHII, the mean absolute error (MAE) is 0.67 K on average, and the mean absolute 
percentage error (MAPE) is no more than 25% for more than 90% of the cities. For the pixel-by-pixel LSTs, the 
associated MAE is less than 2.0 K in most scenarios. In addition, the contribution from each selected estimator to 
SUHII estimation is assessed comprehensively. Among all the estimators, the contribution from relative humidity 
is the greatest, followed by rural surface temperature and surface air temperature. Moreover, for nearly 78% of 
the cities, the estimators related to day-to-day SUHI variations make a larger contribution than those related to 
intra-annual SUHI variations. We conclude that our simple yet effective statistical approach for estimating next- 
day SUHIs can potentially help urban residents to better adapt to urban heat stress.   

1. Introduction 

The Urban Heat Island (UHI), the phenomenon of elevated urban 
temperatures referenced to rural temperatures, is a widespread outcome 
of urbanization (Oke, 1982; Oke et al., 2017). Increasing attention has 
been paid to the UHI in the past few decades (Chakraborty et al., 2020; 
Chakraborty and Lee, 2019; Clinton and Gong, 2013; Hu and Brunsell, 
2015; Maimaitiyiming et al., 2014; Nichol et al., 2009; Nichol and To, 
2012; Pichierri et al., 2012; Stewart and Oke, 2012; Wang et al., 2017), 

mostly because of its direct impacts on human thermal comfort and the 
urban environment (Gong et al., 2012; Grimm et al., 2008; Knapp et al., 
2010). 

Studies of UHIs can generally be classified into two categories: UHIs 
within the canopy layer (canopy layer UHI, CUHI) and those within the 
surface layer (surface UHI, SUHI). CUHI studies have greatly benefited 
from the rapid development of climate modelling, as well as high- 
frequency sampling of the surface air temperature (SAT) (Lee et al., 
2016; Oke, 1981; Oke et al., 2017; Runnalls and Oke, 2000; Steeneveld 
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et al., 2011). The SUHI, by comparison, cannot be well represented by 
climate modelling or point-based measurements, due to its greater 
spatiotemporal variability. As a result, studies focusing on the SUHI 
were largely unavailable until the advent of periodically and spatially 
continuous satellite-based land surface temperature (LST) observations 
(Chakraborty and Lee, 2019; Feng and Myint, 2016; Fu and Weng, 2018; 
Huang and Wang, 2019; Imhoff et al., 2010; Keramitsoglou et al., 2011; 
Meng et al., 2018; Nichol, 2009; Schwarz et al., 2011; Shen et al., 2016; 
Voogt and Oke, 2003; Weng, 2009; Weng and Fu, 2014; Yang et al., 
2015; Yang et al., 2017). 

Recently, there have been an increasing number of studies focusing 
on the modelling of SUHIs (Zhou et al., 2019). An indispensable step 
towards SUHI modelling is the identification of the factors that 
contribute to their variations. Previous studies have clarified that the 
SUHI temporal variations can be separated into several components at 
different time scales (Fu and Weng, 2016; Quan et al., 2016), and diverse 
factors have been suggested as controls for these SUHIs on different 
scales. On the long-term scale (i.e., the inter-annual scale), factors related 
to the intensity of urban development, land cover changes, and climatic 
conditions, are the most important (Chen et al., 2006; Lin et al., 2018; 
Shen et al., 2016; Silva et al., 2018; Ward et al., 2016; Yao et al., 2017; 
Zhao et al., 2014). On the mid-term scale (i.e., the intra-annual scale), 
SUHI variations are dominated by land cover status, urban structures, 
anthropogenic heat release, and climatic conditions (Cao et al., 2016; Du 
et al., 2016; Imhoff et al., 2010; Lazzarini et al., 2013; Liao et al., 2017; 
Qiao et al., 2013; Zhao et al., 2014). On the short-term scale (i.e., the 
daily scale), weather conditions exert the greatest impact (Lai et al., 
2021; Quan, 2014; Shaposhnikova, 2018; Zhou et al., 2011). On an even 
shorter scale (i.e., the diurnal scale), vegetation status, urban forms, and 
weather conditions, all make considerable contributions to SUHI vari
ations (Lai et al., 2018). A combination of these different categories of 
factors can substantially advance the modelling of the SUHI temporal 
patterns over past periods (Li et al., 2019; Schwarz and Manceur, 2015; 
Wang et al., 2015; Ward et al., 2016; Weng et al., 2004; Xu et al., 2018; 
Zhou et al., 2011; Zhou et al., 2013; W. Zhou et al., 2014; Zhou et al., 
2017). By contrast, estimating the future SUHI is relatively difficult, 
mainly because most of the future status of these SUHI-related factors 
are more difficult to estimate and therefore are unable to serve as esti
mators (Mushore et al., 2017). 

Nevertheless, by integrating models that can estimate future land 
cover changes, several studies have estimated the future SUHI for 
several case cities: e.g., in Dhaka through the year of 2019 and 2029 
(Ahmed et al., 2013), in Hanoi through the year 2023 (Tran et al., 2017), 
in Harare through 2025, 2035, and 2045 (Mushore et al., 2017), and in 
Babol through 2045 (Firozjaei et al., 2018). Notably, land cover changes 
are significant only on the annual/seasonal scale, and therefore the 
future SUHIs estimated by this strategy are restricted to long-term/mid- 
term scales. A more effective adaptation to urban extra stress requires the 
estimation of SUHIs in the very near future and with a larger temporal 
variability: e.g., the daily SUHI on a short-term scale. However, the 
estimation of short-term SUHIs (e.g., next-day SUHI estimation) remains 
challenging, largely because of the high spatiotemporal heterogeneity of 
LSTs, together with insufficient understanding of the factors controlling 
short-term SUHIs. 

SUHI variations (especially for nighttime) on the short-term scale 
have in some cities been shown to be predominantly influenced by 
changes in weather conditions (Feng et al., 2019; Quan, 2014; Sha
poshnikova, 2018; Zhou et al., 2011). More recently, on a continental 
scale, Lai et al. (2021) decomposed the short-term variations of nighttime 
SUHIs into two components - mid-term and day-to-day SUHIs - and in 
addition a comprehensive investigation of the factors controlling both 
components was conducted. The results revealed that for the mid-term 
component of nighttime SUHIs, factors related to land cover and solar 
radiation contribute the most; whereas for the day-to-day SUHIs, 
dominant controls from weather conditions, including relative humidi
ty, accumulated precipitation, temperature fluctuations, wind speed, 

soil moisture and aerosol optical depth (AOD), were demonstrated (Lai 
et al., 2021). 

These previous studies have together improved our understanding of 
the mechanisms of nighttime SUHI variations on the short-term time
scale. More importantly, due to the advancement of weather forecasting 
techniques, the next-day values of some key meteorological variables 
that contribute to short-term nighttime SUHIs (e.g., relative humidity, 
precipitation, wind speed and surface air temperature (Quan, 2014; 
Zhou et al., 2011)) can be predicted with high accuracy (Bauer et al., 
2015). This significantly raises the prospect of incorporating these var
iables as estimators and lays the foundations for estimation of next-day 
nighttime SUHIs. 

The present study proposes a statistically robust strategy which ad
dresses the difficulty of estimating next-day nighttime SUHIs. Various 
factors that were reported closely related to the daily SUHI variations 
were used as estimators. They include the factors related to land cover, 
solar radiation, temperature, relative humidity, accumulated precipita
tion, wind speed, aerosol optical depth, and soil moisture (Feng et al., 
2019; Lai et al., 2021; Quan, 2014; Shaposhnikova, 2018; Zhou et al., 
2011). By incorporating these estimators into a support vector machine 
regression (SVR) model, the estimation accuracy was examined and the 
contribution from each estimator was further evaluated. We demon
strate that our simple statistical approach is easily implemented and 
applicable to other cities, and therefore it can help bridge the knowledge 
gap in next-day SUHI estimation. 

2. Study area 

Mainland China was selected as the study area due to the reported 
widespread occurrence of the SUHI phenomenon (D. Zhou et al., 2014). 
A total of 59 cities were chosen (Fig. 1), based on a series of criteria 
including urban area (>100 km2), the availability of weather station 
data (at least one weather station must exist within the administrative 
boundary), and sufficient numbers of valid daily nighttime SUHI ob
servations (we adapted the criterion that there must be at least 50 valid 
observations for each city for an entire year). The cities are distributed 
within six different climatic zones (Zheng et al., 2010). For a further 
demonstration of the estimated pixel-by-pixel LST results (see Section 
3.2 for more details), we selected six megacities located in the six cli
matic zones. These six megacities are: Harbin (HRB), Xi’an (XA), Lhasa 
(LS), Nanjing (NJ), Kunming (KM), and Nanning (NN) (Fig. 1). The 
delineation of urban and rural areas for each city was according to the 
MODIS land cover product (see Section 3.1.1). The classified ‘urban and 
built-up’ pixels were aggregated as urban areas, and the aggregation 
distance was set as 2 km (D. Zhou et al., 2014), then the rural areas were 
defined as the 15-km buffer zone of the urban areas (Bechtel, 2015). 

3. Data and methodology 

3.1. Data 

3.1.1. MODIS data 
The LST, land cover type, normalized difference in vegetation index 

(NDVI), aerosol optical depth (AOD), and albedo products from MODIS 
for 2012 were employed in this study (see Table 1). The LST data were 
obtained from the MOD11A1 (from Terra satellite) and MYD11A1 (from 
Aqua satellite) products (with a spatial resolution of 1 km). The MODIS 
LST data were ensured to have a good degree of accuracy using the 
generalized split-window algorithm (Wan, 2008). We only used the 
nighttime data, considering the lower uncertainty induced by surface 
thermal anisotropy at night, and the demonstrated significant meteo
rological controls on nighttime SUHIs. The LST images from the Terra 
and Aqua satellites were aggregated each day to minimize the impacts 
from data gaps. For the aggregated images, those with more than 50% 
cloudy urban/rural pixels were excluded from further analysis (Huang 
et al., 2019). Yearly land cover type data were derived from the 
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MCD12Q1 product (with a resolution of 500 m), and a total of 17 land 
cover types were identified under the International Geosphere- 
Biosphere Program (IGBP) classification scheme. The spatial resolu
tion of land cover type was resampled to 1 km to match the LST product, 
using the nearest neighbor strategy (Clinton and Gong, 2013). The NDVI 
data were derived from the MOD13A3 (from Terra satellite) and 
MYD13A3 (from Aqua satellite) products (with a resolution of 1 km). 
The AOD data were retrieved at 660 nm, obtained from the MOD04_3K 
(from Terra satellite) and MYD04_3K (from Aqua satellite) products 
(with a resolution of 3 km). For the NDVI and AOD data, the images from 
the Terra and Aqua satellites were also aggregated each day. The albedo 
data were the black sky albedo (BSA) in the shortwave band (0.3–5.0 
μm) extracted from the 16-day MCD43C3 product (with a resolution of 
0.05◦). 

3.1.2. In-situ data 
In-situ measurements used include daily mean surface air tempera

ture (SAT), relative humidity, wind speed, and accumulated precipita
tion (Table 1), obtained from 449 weather stations in the selected cities. 
Note that the daily accumulated precipitation corresponds to the total 
amount of precipitation during an entire diurnal cycle from 20:00 to 
20:00 (local time) of the next day. All of the meteorological data were 
derived from the China Meteorological Administration (CMA, 
http://www.cma.gov.cn); all of them have undergone a series of quality 
controls, including assessment of climatic range, internal and spatio
temporal consistency, and man–machine interaction (Ren et al., 2015). 

3.2. Methodology 

The first step in achieving a statistical estimation of next-day 
nighttime SUHIs is to quantify appropriately the SUHIs. Both the over
all SUHI intensity (i.e., the SUHII) as well as its spatial patterns (i.e., the 
pixel-by-pixel LSTs) were quantified for estimation (see Section 3.2.1). 
We then selected various factors that contribute to the nighttime SUHI 
variations on the short-term time scale (daily scale), as already identified 
partly by previous studies (Lai et al., 2021; Quan, 2014; Zhou et al., 
2011), as estimators for the next-day SUHIs (see Section 3.2.2). All of the 
estimators were then incorporated into an SVR model to estimate the 
next-day SUHIs for each single city (see Section 3.2.3). Finally, the 
contributions from these input estimators were quantified to obtain a 
better understanding of their performance in estimation (see Section 
3.2.4). 

3.2.1. SUHI quantification by the Gaussian model 
We used the frequently used Gaussian model proposed by Streutker 

(2002) to facilitate characterization of the SUHIs, given (1) its recog
nized efficiency and stability for simulating both the intensity and 
overall feature of the nighttime SUHIs (Anniballe and Bonafoni, 2015; 
Quan et al., 2014; Tran et al., 2006; Zhou et al., 2011), and (2) its 

Fig. 1. Distribution of cities within the study area. The red dots represent the locations of the 59 megacities, with dot size denoting their annual mean nighttime SUHI 
intensity (SUHII) in 2012. HRB (Harbin), XA (Xi’an), LS (Lhasa), NJ (Nanjing), KM (Kunming), and NN (Nanning) are the six representative cities used for further 
demonstration of pixel-by-pixel estimations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Information on the satellite and in-situ data used in this study.  

Data type Data source Spatial 
resolution 

Temporal 
resolution 

LST MOD/ 
MYD11A1 

1 km daily 

land cover MCD12Q1 500 m yearly 
NDVI MOD/ 

MYD13A3 
1 km monthly 

AOD MOD/ 
MYD04_3K 

3 km daily 

albedo MCD43C3 0.05 degree 16-day 
SAT in-situ 

observation 
point-based daily 

relative humidity in-situ 
observation 

point-based daily 

wind speed in-situ 
observation 

point-based daily 

accumulated 
precipitation 

in-situ 
observation 

point-based daily  
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relatively low susceptibility to data gaps induced by clouds. 
The SUHI characterization with the Gaussian model complied with 

the following three steps: First, the rural LSTs were fitted into a planar 
surface using Eq. (1). Then the SUHI signature was extracted as the 
difference between the urban and the fitted rural LSTs, according to Eq. 
(2). Finally, the SUHI signature extracted by Eq. (2) was fitted to a 
Gaussian surface, using Eq. (3). 

Tr(x, y) = T0 + a1x+ a2y (1)  

where Tr(x, y) denotes the LST for an rural pixel at the location (x, y); T0 
is the rural mean surface temperature; and a1 and a2 are two coefficients. 

ΔT(x, y) = Tu(x, y) - Tr(x, y) (2)  

where ΔT(x, y) denotes the SUHI signature for the urban pixel at the 
location (x, y); Tu(x, y) is the LST for this urban pixel; and Tr(x, y) de
notes the fitted rural LST for this pixel, which is derived from Eq. (1).  

where a0 is the maximum SUHI intensity (SUHII); ax and ay represent the 
half long and short axises of the Gaussian-simulated SUHI ellipse; (x0, 
y0) denotes the location of the SUHI centroid; and Φ represents the 
orientation of the Gaussian-simulated SUHI ellipse. 

To reduce the possible uncertainties induced by the Gaussian 
modelling, we evaluated the modelling performance using the correla
tion coefficient (r) and root-mean-square error (RMSE) between the 
Gaussian-simulated and the original LSTs. All the results with the r < 0.7 
or RMSE > 1.0 K were recognized as inaccurately modelled (Lai et al., 
2021) and were therefore excluded from further analysis. For the 
remaining valid results, the SUHII (I) and the pixel-by-pixel Gaussian- 
based LSTs (TG) were then obtained with the following equation: 

{
I = a0

TG(x, y) = ΔT(x, y) + Tr(x, y) (4)  

where I is the SUHII; a0 is the parameter derived from Eq. (3); TG(x, y) is 
the Gaussian-based LST for a certain pixel located at coordinate (x, y); 
ΔT(x, y) is the Gaussian-fitted SUHI feature for this pixel derived from 
Eq. (3); and Tr(x, y) denotes the fitted rural LST for this pixel derived 
from Eq. (1). 

3.2.2. Selection of the SUHI estimators 
For the estimation of next-day SUHIs, the controls that drive daily 

SUHI variations should be selected as estimators. As reported by Lai 
et al. (2021), the daily SUHI variations can be decomposed into two 
components: the mid-term and day-to-day SUHI variations, each with 
different categories of control. The decomposition of the SUHI variations 
can be generally expressed by Eq. (5); and an illustration of the complete 

dynamics for the SUHI intensity over different scales is given in Fig. 2. 

λd(t) = λa + Δλa(t)
⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟

mid - term variation

+ Δλd(t)
⏟̅̅̅⏞⏞̅̅̅⏟

day - to - day variation

= λmid(t) +Δλd(t) (5)  

where λd(t) is the daily value of the chosen SUHI feature λ (i.e., I and TG 
used in this study) on day t; λa is the annual mean value of the SUHI 
feature; Δλa and Δλd are the intra-annual and day-to-day SUHI varia
tions, respectively. λd, λmid (the combination of λa and Δλa), and λa 
represent the short-, mid-, and long-term SUHI dynamics respectively. 

Two groups of factors that account for the mid-term SUHIs (λmid) and 
day-to-day SUHIs (Δλd) respectively should therefore be used as esti
mators. Ten factors were first selected based on the illustrated controls 
on these two components of the daily SUHIs (Chen et al., 2006; Lai et al., 
2021; Lazzarini et al., 2013; Zhou et al., 2011). They include: the 

Fig. 2. SUHI intensity (I) dynamics on different time 
scales for the Xi’an city. Subplot a shows the SUHIIs 
over the long-term scale (i.e., the annual mean SUHII, 
termed Ia, in dashed grey line), mid-term scale (i.e., the 
intra-annual SUHII, termed Imid, in green line), and 
short-term scale (i.e., the observed daily SUHII, termed 
Id, in dots with the dot color denoting the values of the 
day-to-day SUHII variations: ΔId). Here the mid-term 
SUHII (Imid) was calculated as the mean Id within the 
period of 10 days before and after the specified day 
(Lai et al., 2021). Subplots b and c illustrate the 
calculation of ΔImid and ΔId based on Eq (5), respec
tively. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web 
version of this article.)   

⎧
⎪⎪⎨

⎪⎪⎩

ΔT = a0⋅exp
(

-
1
2

⋅U
)

U = {a - 1
x ⋅[(x − x0)cosϕ + (y − y0)sinϕ]}2

+ \{ a - 1
y ⋅[(y − y0)cosϕ − (x − x0)sinϕ]\} 2

(3)   
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daytime length (DL), albedo (ALB), urban–rural contrast in NDVI 
(NDVIu-r), rural surface temperature (Tr), relative humidity (RH), accu
mulated precipitation (PREP), surface air temperature (SAT), wind 
speed (WDS), rural diurnal temperature range (DTRr), and aerosol op
tical depth (AOD). Among them, the former four factors are related to 
the mid-term SUHIs (Chen et al., 2006; Lai et al., 2021; Lazzarini et al., 
2013; Zhou et al., 2011), whereas the latter six are related to the day-to- 
day SUHIs (Lai et al., 2021; Zhou et al., 2011). The variable DL was 
calculated following Göttsche and Olesen (2009); NDVIu-r was calcu
lated as the difference between urban and rural averaged NDVI); the Tr 
and DTRr were computed respectively as the mean surface temperature 
and mean diurnal temperature range across rural areas; while all the 
other variables were calculated as the mean values of all the available 
satellite observations or in-situ measurements (see Section 3.1 for the 
used dataset to calculate these variables) within the administrative 
boundary of each city. 

To estimate the next-day SUHIs, the predicted next-day status of the 
chosen ten factors should be employed as estimators. For the factor DL, 
its next-day status (termed DLd+1) can be directly calculated (Göttsche 
and Olesen, 2009). For the four primary meteorological variables (RH, 
PREP, SAT and WDS) with their next-day values being predicted well 
with numerical weather forecast system (Bauer et al., 2015), we directly 
employed their next-day measurements as estimators (respectively 
termed RHd+1, PREPd+1, SATd+1 and WDSd+1). We acknowledge that, 
under real estimation cases, the forecasting errors of these four variables 
do exist and they would reduce the estimation accuracy consequently. 
More discussions related to this issue are provided in Section 5.2. For all 
the other variables including ALB, NDVIu-r, Tr, DTRr, and AOD with their 
next-day values hard to obtain under real scenarios, we indirectly 
employed their preceding status as estimators: They were respectively 
termed ALBpre, NDVIu-r_pre, Tr_pre, DTRr_pre, and AODpre, with the former 
two being calculated as the nearest available preceding observations 
while the latter three being calculated according to Eq. (2). The pre
ceding status of the SUHI feature to be estimated (i.e., Ipre or TG_pre for 
estimation of the next-day I and TG respectively) was used as the addi
tional estimator considering its close relationships with the mid-term 
SUHIs. The preceding status Ipre (or TG_pre) was calculated using the 
following equation: 
{ βpre(t) = N - 1

∑

k∈ΩPRE

β(k)

ΩPRE = {t, t − 1, t − 2, ..., t − 9}
(6)  

where βpre(t) represents the preceding status of the variable β on day t; 
β(k) represents the value of variable β on day k, where k belongs to the 
preceding period of the specific day t (i.e., ΩPRE); and N is the number of 
valid daily results during ΩPRE. Note that the discussions in Section 5.3 
demonstrate that by enlarging the distance between the preceding period 
(i.e., ΩPRE) and the day to be estimated (i.e., the t), the estimation for the 
next-day SUHI can potentially be extended to the estimation of SUHIs for 
the next few days. 

Finally, a total of 11 estimators were obtained, including the five 
estimators related to the mid-term SUHI component (λmid) and the six 
estimators related to the day-to-day SUHI components (Δλd). By 
combining these two groups of estimators, the statistical estimation of 
the next-day nighttime SUHIs can be performed using the following 
formula: 
⎧
⎨

⎩

λd + 1(t) = λd(t + 1) = λmid(t) + Δλd(t + 1) = f (βmid, βΔd)

βmid = {DLd + 1, ALBpre, NDVIu - r pre, Tr pre, λpre}

βΔd = {RHd + 1, PREPd + 1, SATd + 1, WDSd + 1, DTRr pre, AODpre}

(7) 

where λd+1(t) is the next-day value of SUHI feature λ (i.e., I and TG) 
for day t; λd, λmid, and Δλd have the same meaning as in Eq. (5); βmid and 
βΔd denote the two categories of SUHI estimators related to λmid and Δλd, 
respectively; f(∙) represents the function between λd and SUHI 

estimators (i.e., βmid and βΔd); and the variable definitions contained in 
βmid and βΔd are provided in Table 2. Note that for the pixel-based next- 
day Gaussian LST estimation (i.e., when the λ is TG), all the estimators 
except the λpre have the same daily values across all the pixels within 
each city. Details on the derivation of f(∙) are given in Section 3.2.3. 

3.2.3. Implementation of the statistical estimation 
To estimate statistically the next-day SUHIs with the estimators listed 

in Table 2, the function between the SUHIs and the associated estimators 
(i.e., f(∙) given in Eq. (7)) needs to be obtained first for each city. This 
study used an SVR model to derive the in-between function through an 
implicit style. The SVR is very efficient for modelling non-linear in-be
tween relationships. It has a strong generalization ability and is very 
capable of avoiding overfitting by introducing slack variables which 
allow regression errors to exist (but penalizes the errors) (Durbha et al., 
2007; Mountrakis et al., 2011; Vapnik, 1995). More importantly, it has 
been shown to outperform several other simple regression models and 
appropriate for nighttime SUHI modelling (Zhou et al., 2011). 

Before training the SVR model in each single city, all of the input 
estimators listed in Table 2 were normalized to the range from 0 to 1 in 
order to eliminate the scaling effect of different magnitudes. The 
following equation was used: 

βin = (βi - βmin)⋅(βmax - βmin)
− 1 (8)  

where βin is the i-th value of the normalized variable set β; βi is the 
associated value before normalization; and βmax and βmin are respec
tively the maximum and minimum value of the variable set before 
normalization. 

The radial basis function (RBF) was chosen as the kernel function, 
considering its reported high efficiency for modelling SUHIs (Zhou et al., 
2011). Hyper-parameter C and kernel parameter γ of the RBF kernel are 
critical for the model performance (Hsu et al., 2010; Vapnik, 1995). We 
used the grid search technique and ten-fold cross-validation strategies to 
determine the best values of these two parameters among various 

Table 2 
Definitions of the input estimators for the next-day SUHI estimation.  

Estimator 
name 

Description Data 
source 

Group 
* 

DLd+1 next-day daytime length calculation βmid 

ALBpre preceding status of average albedo MODIS βmid 

NDVIu-r_pre preceding status of the urban–rural 
difference in NDVI 

MODIS βmid 

Tr_pre preceding status of the rural mean LST MODIS βmid 

Ipre
a preceding status of I MODIS βmid 

TG_pre
b preceding status of LSTG MODIS βmid 

RHd+1 next-day average relative humidity in-situ data βΔd 

PREPd+1 next-day average accumulated 
precipitation 

in-situ data βΔd 

SATd+1 next-day average surface air temperature in-situ data βΔd 

WDSd+1 next-day average wind speed in-situ data βΔd 

DTRr_pre preceding status of the rural mean DTR MODIS βΔd 

AODpre preceding status of the average AOD MODIS βΔd  

* ‘βmid’ and ‘βΔd’ are the two categories of estimators related to mid-term and 
day-to-day SUHIs, respectively. 

a This estimator is only used for estimating the next-day SUHII (termed Id+1). 
b This estimator is only used for estimating the next-day Gaussian-based LSTs 

(termed TG_d+1). 

Table 3 
Strategies for selecting validation and training samples.  

SUHI 
feature 

Validation sample Training sample 

Id+1 randomly selected 20% of the 
samples 

remaining 80% of the 
samples 

TG_d+1 patterns on one randomly selected 
day 

patterns on the remaining 
days  
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possible combinations of them to avoid overfitting (Hsu et al., 2010). 
Specifically, for each combination of these two parameters, we cross- 
validated the model by dividing the training set into 10 subsets of 
equal size and repeated the model training and validation 10 times, with 
each subset as the testing samples whereas the remaining 9 as training 
samples. The average estimation accuracy of the cross-validation was 
calculated, and the best parameter values were finally determined, i.e., 
as the combination of parameter values with the highest estimation 
accuracy. 

To evaluate the accuracy of the estimation strategy, some of the 
samples were used for training the SVR model while the rest were used 
for validation. For the next-day SUHII (Id+1) estimation within each city, 
20% of the daily results were randomly selected as validation samples 
(see Table 3). In order to eliminate possible biases induced by 
randomness, the estimation procedures were repeated five times within 
each city. For each of the five random samplings, the model performance 
was evaluated using the mean absolute error (MAE) and mean absolute 
percentage error (MAPE) between the estimated and reference results of 
the validation samples, and the final MAE/MAPE was calculated as the 
mean value of the five random samplings. For the next-day Gaussian- 
based LST (TG_d+1) estimation, the LST image on one randomly selected 
day was used for validation each time. Model performance was then 
evaluated using the MAE between the estimated and reference LST im
ages on that selected day. 

3.2.4. Quantification of the factor contributions to SUHI estimation 
In addition to the assessment of the overall performance of the SVR- 

based model, we further quantified the contributions from each or a 
specific group of estimators with reference to the overall estimation 
performance, using the model-independent permutation-based method 
(Genuer et al., 2010; Ho et al., 2014; Strobl et al, 2009). The contribu
tion of each estimator was assessed using the following steps: (1) The 
SVR model was trained with the same training process as introduced in 
Section 3.2.3. (2) The values of this estimator in the validation samples 
were randomly permuted, and a new estimation was produced. (3) The 
contribution of this estimator was finally evaluated as the increase in the 

MAE (as a percentage, termed MAEinc) caused by the permutation. Note 
that permutation was repeated five times for each estimator, and the 
estimator contribution was calculated as the mean MAEinc obtained from 
these five results. 

In order to evaluate and then compare the combined contributions 
from the two groups of estimators (i.e., βmid and βΔd), further assess
ments were conducted. All of the associated assessment procedures were 
identical to those of individual estimators, except that permutations for 
a group of estimators, rather than for a single one, were made simulta
neously each time. 

The overall framework of this study is given in Fig. 3. 

4. Results 

4.1. Accuracy of the estimated SUHII 

The performance of the proposed approach to estimate next-day 
nighttime SUHIIs is illustrated in Fig. 4. A high estimation accuracy 
was achieved, with a mean MAE of 0.67 K across the chosen cities, and 
the R2 between the estimated and observed SUHIIs is 0.60. For more 
than 90% of these cities, the MAE is less than 1.0 K, and the MAPE is no 
more than 25%. Note that the MAE is relatively high (1.45 K) in one 
single city located within the NS zone (Fig. 4a). This poorer estimation 
performance is attributable to the relatively worse performance of the 
Gaussian modelling for the SUHII characterization over this specific city 
(discussions on the uncertainties of the Gaussian modelling are provided 
in Section 5.1). 

The results further exhibit a latitudinal discrepancy in terms of the 
accuracy of the estimated SUHIIs, with the MAE generally larger in 
northern than in southern cities (Fig. 4a). Specifically, higher MAEs tend 
to occur for the cities located in the WT or eastern MT zone (the mean 
MAEs for cities in this two zones are 0.70 and 0.74 K respectively), while 
relatively lower errors occur for the cities in the MS and SS zones (the 
associated mean MAEs are 0.51 and 0.64 K for these two zones) (Fig. 5a). 
This spatial pattern of estimation performance was determined to be 
regulated by the day-to-day SUHIIs (i.e., ΔId): in cities where the SUHII 

Fig. 3. Framework of this study. Definitions on the SUHI estimators in Step 2 were given in Table 2. More details for Steps 1 – 4 can be found in Sections 3.2.1–3.2.4.  
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Fig. 4. Estimation performance of the next-day SUHIIs in the chosen cities. (a) shows the spatial distribution of the MAE (K). (b) provides the relationship between 
the estimated next-day SUHIIs and observed SUHIIs, with the dot colors representing the estimated absolute errors. (c) exhibits the boxplot for MAE. (d) displays the 
MAPE histogram, with the x- and y- axis denoting the MAPE (%) and city number respectively. 

Fig. 5. Estimation performance (denoted by the MAE) of the next-day SUHIIs within different bioclimatic zones (a), and the relationship between the MAE and the 
annual mean absolute value of ΔId (b). Dot colors denote the latitude. 

Fig. 6. Comparison of the annual mean absolute values of the intra-annual SUHII variations (ΔIa, subplot a) and those of the day-to-day SUHII variations (ΔId, 
subplot b). The dots with a black boundary denote a higher annual mean absolute value for ΔId than that for ΔIa. 
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shows a larger day-to-day fluctuation (with a larger annual absolute 
mean of ΔId, see Fig. 2 for the calculation of ΔId), the estimated MAE 
becomes higher (Fig. 5b). This indicates that the errors of the approach 
to estimating the next-day SUHIIs come mainly from the estimation of 
their day-to-day components (ΔId) rather than from estimation of their 
mid-term components (Imid). This phenomenon can be partly explained 
by the results shown in Fig. 6, which demonstrates that the day-to-day 
SUHIIs generally have a larger variability than the mid-term SUHIIs in 
most (>70%) cities, and consequently they are more difficult to esti
mate. In addition, previous studies have shown that day-to-day SUHIIs 
(ΔId) are under a combined control of various factors (Lai et al., 2021; 
Quan, 2014; Zhou et al., 2011), and the selected estimators belonging to 
βΔd can only capture a portion of day-to-day SUHIIs (ΔId). By compar
ison, the selected estimators belonging to βmid are relatively more 
capable of representing mid-term SUHIIs (Imid) (Chen et al., 2006; Meng 
et al., 2018; Yao et al., 2017). 

4.2. Accuracy of the estimated Gaussian-based LSTs 

In addition, a pixel-by-pixel estimation for the next-day Gaussian- 
based LSTs (TG_d+1) was achieved, and our assessments show that the 
estimated MAE is less than 2.0 K for nearly 80% of the cities. Detailed 
evaluations of the six megacities (see Fig. 1 for the locations) demon
strate that the proposed approach is capable of estimating the next-day 
LSTs with an acceptable accuracy (the MAE is less than 2.0 K) (Fig. 7). By 
incorporating various SUHI-related estimators, the preceding LSTs 
(TG_pre) can be significantly adjusted to the next-day LSTs (TG_d+1), with 
an adjustment up to 3 K (e.g., the MAE decreased by 3.4 and 3.3 K in 
Fig. 7b and d). To provide a detailed insight into the estimated pixel-by- 
pixel LSTs, we present the estimations for Xi’an on five randomly chosen 
days (see Fig. 8). Xi’an was chosen for the following reasons: (1) a 
satisfactory performance of the Gaussian modelling had been achieved 
for this city (the mean RMSE and r is 0.40 K and 0.88), and (2) the city is 
located in the WT zone where the daily SUHI variations are more 
strongly regulated by our selected SUHI estimators (Lai et al., 2021). 

The comparisons shown in Fig. 8 support the competence of our 
approach in estimating next-day pixel-based LSTs. Specifically, the as
sessments indicate that the incorporated SUHI estimators can generally 
capture the high day-to-day LST fluctuations: the associated estimated 
MAEs are all less than 1.5 K, and the LST ranges of the estimated next- 
day images correspond well with those of the reference images (the 

observed next-day images). These assessments also imply that the pro
posed approach is able to capture the spatial patterns of the LST images 
in most cases (Fig. 8): The Gaussian-based SUHI ellipses for the esti
mated LST images have similar shapes and orientations to those of the 
reference LST images on most days (e.g., on DOYs 111, 310, and 366). 
Note that the estimated SUHI ellipse may deviate from the reference one 
on a few days: e.g., the SUHI ellipse has a different orientation from the 
reference one on DOY 70. Such estimation biases may be caused by the 
inconsistency between the spatial resolution of pixel-by-pixel LST data 
and point-based in-situ measurements. In addition, both the estimated 
and reference next-day LST images in Fig. 8 should be spatially smoother 
than the true LSTs, as a result of the over-simplification of the Gaussian 
model; this issue is further discussed in Section 5.1. 

4.3. Contributions of input estimators to SUHII estimation 

The contributions of each estimator to the estimation of next-day 
SUHIIs are shown in Fig. 9. The analysis demonstrates that RHd+1 is 
the most important estimator, and its permutation would cause an in
crease of 35% in the MAE on average (Fig. 9a). This greater importance 
of RHd+1 compared with other estimators corresponds well to its pre
viously determined dominant control on daily SUHII variations (Quan, 
2014; Zhou et al., 2011). Another two estimators related to day-to-day 
SUHIs, SATd+1, and WDSd+1, also contribute greatly to the next-day 
SUHII estimation: permutations of these two estimators would in
crease the MAE by 14% and 8%, respectively. These previous three es
timators, which are respectively related to surface thermal admittance, 
surface air temperature fluctuations, and atmospheric movement, are 
shown to significantly contribute to the next-day SUHII estimation. By 
comparison, the other three estimators, which also belong to βΔd (i.e., 
DTRr_pre, AODpre, and PREPd+1), make only a moderate contribution to 
the next-day SUHII estimation (all with MAEinc less than 5%), despite 
the determined close relationships between these variables and the 
SUHII (Cao et al., 2016; Zhao et al., 2014; Zhou et al., 2011). We 
consider that the moderate contribution from DTRr_pre and AODpre to the 
SUHII estimation may results from the fact that we used their preceding 
status rather than their next-day values as estimators. The small 
contribution from PREPd+1 can be explained by its high correlation with 
RHd+1, as was also shown by Lai et al. (2021). In other words, the in
formation loss by the permutation of PREPd+1 is anticipated to be largely 
compensated by RHd+1. 

Fig. 7. Estimation accuracies for the Gaussian-based LSTs for the six megacities for one randomly selected day. The red lines denote the error histograms of the input 
preceding LSTs (the TG_pre images) referenced to the real next-day LST observations (the TG_d+1 images), and the blue lines denote the error histograms of the 
estimated next-day LSTs (the estimated TG_d+1 images) referenced to the real next-day LST observations. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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Among the estimators related to mid-term SUHI (βmid), the contri
butions from Tr_pre and DLd+1 are the greatest, with an averaged MAEinc 
of 14% and 11%. The highlighted effects of these two variable corre
spond well to the previously determined close relationships between 
them and the mid-term SUHIIs (Zhou et al., 2011; Zhou et al., 2013). The 
contributions of the two estimators related to land cover type (NDVIu- 

r_pre and ALBpre) are relatively lower (associated MAEinc are 8% and 2%, 
respectively), despite their notable effects on mid-term SUHI variations 
(Lazzarini et al., 2013; Quan et al., 2014). Incorporation of the pre
ceding status of the SUHII (Ipre) also contributes to the estimation, 
although the averaged MAEinc is relatively low (5%). The relatively 
small contributions from these three estimators (NDVIu-r_pre, ALBpre, and 
Ipre) likely result from their dependence on the estimator DLd+1 (a sub
stitute for solar radiation and surface phenology). 

Although the contribution of each individual estimator appears to be 
not especially high (i.e., the associated MAEinc are all less than 15%, 

except for RHd+1), we nevertheless emphasize that their combined 
contributions are substantial. Specifically, the mean MAEinc induced by 
the permutation of βmid (estimators related to mid-term SUHIs) is 31%, 
and that for βΔd (estimators related to day-to-day SUHIs) is 51% 
(Fig. 9b). Further analysis suggests that, for nearly 78% of the cities, a 
higher contribution from βΔd than βmid is observed (Fig. 10). Such a 
contrast can be partly explained by the fact that the daily SUHII is 
expressed more by its day-to-day dynamics than by its mid-term varia
tions (i.e., a larger ΔId than ΔIa is shown for most cities (Fig. 6)). In other 
words, an accurate estimation of ΔId can capture more of the actual 
changes in the daily SUHIIs, and therefore it contributes more to the 
next-day SUHII estimation. The higher contributions of some estimators 
belonging to βΔd may also result from their capacity to explain not only 
the day-to-day but also the mid-term components of the SUHIs: the 
monthly/seasonal SUHIs have been determined to be partly regulated by 
monthly/seasonal changes in some meteorological variables (e.g., RH, 

Fig. 8. Comparison of the input preceding LST (TG_pre) images (the first row), the estimated next-day LST images (the estimated TG_d+1 image, the second row), and 
the reference LST images (the real TG_d+1 images, the third row) on five randomly selected days for Xi’an. The blue lines denote the boundary of urban areas (see 
Section 2 for the delineation of urban areas), and the green ellipses show the Gaussian-estimated SUHI ellipses (see Section 3.2.1 for derivation of the SUHI ellipse). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Contribution of each single estimator 
(a) and those from the two groups of esti
mators (b) to the next-day SUHII estimation, 
represented by the increased MAE percent
ages (i.e., MAEinc, unit: %) generated using 
the model-independent permutation anal
ysis. The green boxes represent the contri
bution from estimators belonging to βΔd, 
while the orange ones represent that from 
estimators belonging to βmid. (For interpre
tation of the references to color in this figure 
legend, the reader is referred to the web 
version of this article.)   
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SAT, and PREP) (Du et al., 2016; Zhou et al., 2016). 

4.4. Sensitivity analysis of the duration of the preceding period 

For the SUHI estimation, this study has employed various estimators 
(i.e., ALBpre, NDVIu-r_pre, Ipre, Tr_pre, DTRr_pre, and AODpre) for which the 
mean values during the preceding period were calculated to help the 
estimation (see Eq. (6)). Arguably, different definitions of the preceding 
period would introduce uncertainties into the estimation. A sensitivity 
analysis was therefore conducted to investigate the impacts from the 
duration of the preceding period in terms of the contributions from the 
four estimators (including Ipre, Tr_pre, DTRr_pre, and AODpre) on the SUHII 
estimations (see Fig. 11a) as well as on the SUHII estimation perfor
mance (see Fig. 11b). Here we did not analyze the impacts from pre
ceding period duration in terms of the contributions from ALBpre and 
NDVIu-r_pre because these two estimators possess a relatively lower 
temporal variability and would therefore remain insensitive to the pre
ceding period duration. 

The results show that this duration, although does influence the 

contributions of some estimators (e.g., Tr_pre, Fig. 11a), would not sub
stantially distort the estimation performance: the mean MAE remains 
stable along with the duration change (Fig. 11b). One reason for such a 
low degree of sensitivity is that the combined contributions from the 
remaining estimators (i.e., RHd+1, WDSd+1, PREPd+1, SATd+1, and 
SHd+1) have already captured a large portion of the daily SUHII varia
tions (see Fig. 9). 

5. Discussion 

Characterization and modelling of the temporal variations of the 
SUHIs are critical for improving our understanding of the urban thermal 
environment. Insights have been provided on SUHI dynamics on various 
time scales (Chakraborty et al., 2017; Lai et al., 2018; Meng et al., 2018; 
Quan et al., 2014; Yang et al., 2019; Zhou et al., 2019). These studies, 
however, are mainly restricted to the analysis of past (or elapsed) SUHI 
dynamics. A recent study further endeavored to offer a nowcasting (a 
real-time estimation) of the urban thermal environment (Keramitsoglou 
et al., 2016). Our study has made further progress through the 

Fig. 10. Comparison of the contributions of the estimators related to mid-term SUHIs (βmid, subplot a) and those related to day-to-day SUHIs (βΔd, subplot b) to the 
next-day SUHII estimation, represented by increased MAE percentages (unit: %). The dots with a black boundary indicate that the contribution from βΔd is higher 
than that from βmid in the associated city. 

Fig. 11. Results of sensitivity analysis of the SUHII estimation with reference to the definition of the preceding period. The results are represented by changes in the 
increased MAE percentage for each estimator (a) and by the changes of the estimated MAE (b), along with the changes in the duration of the preceding period (the 
range from 5 to 15 days). The red boxplot in (b) represents the estimation performance in this study (i.e., the duration was set to 10 days). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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estimation of next-day SUHIs. In addition, the estimated pixel-by-pixel 
next-day LSTs, when combined with forecasted meteorological condi
tions (e.g., relative humidity, SAT, and wind speed), is able to generate a 
next-day map of human thermal comfort (Ge et al., 2017). 

This study has mainly adopted a statistical approach to estimating 
SUHIs. Its statistical nature endows it with simplicity (low computa
tional complexity) and efficiency in estimation; and in addition its 
generalizability has been demonstrated by the incorporation of the SVR 
to obtain the statistical relationships between the SUHIs and their 
associated estimators (Mathew et al., 2019; Quan, 2014; Zhou et al., 
2011). Further, the reported statistically close relationship between the 
SUHIs and estimators lays the foundation for the design of diagnostic 
equations for more accurately estimating daily nighttime SUHIs, as 
already proposed for CUHIs (Theeuwes et al., 2017; Zhang et al., 2019). 
We nevertheless need to emphasize that the statistical approach does not 
invalidate - and therefore is not intended to replace - numerical weather 
forecasting (e.g., those based on the Weather Research and Forecasting 
Model), which possesses much greater flexibility for SUHI estimations/ 
predictions in more complex scenarios and environments (Li and Bou- 
Zeid, 2014; Zhao et al., 2018). In the following section, we discuss 
several additional issues regarding the uncertainties and prospects of 
this study. 

5.1. Uncertainties related to the Gaussian-quantified SUHIs 

With the assistance of the SVR model and various estimators related 
to the daily SUHI variations, we proposed a statistical approach for 
estimating the next-day nighttime SUHIs. The performance of the pro
posed approach was evaluated by the indicators that measure the 
magnitude and spatial patterns of the SUHI respectively (i.e., the SUHII 
and pixel-by-pixel LSTs), which were both obtained through the 
Gaussian model. Despite the frequent use of the Gaussian model to 
quantify the SUHI intensity as well as its capability for overall charac
terization of SUHIs (Anniballe and Bonafoni, 2015; Quan et al., 2014; 
Tran et al., 2006; Zhou et al., 2011), additional errors may still be 
induced by this model (Lai et al., 2021). Although such errors can be 
largely suppressed by the strict selection of daily samples based on the 
performance of Gaussian model, distortions may remain for some cities 
(see Section 3.2.1). For example, in cities with thermal landscape that 
does not follow the Gaussian distribution, the Gaussian model may 
become less appropriate for the SUHI intensity quantification. For such 
cities, we can use other indicators to quantify the SUHI intensity 
(Schwarz et al., 2011, Bechtel et al., 2019), such as the mean LST dif
ference between the urban surface and rural buffer (Voogt and Oke, 
2003), the difference between the maximum and mean of LST (Rajase
kar and Weng, 2009), or the LST difference between the urban area and 
cropland (Jin, 2005). It is anticipated that even with a different SUHI 
indicator, its next-day value can as well be estimated using the proposed 
approach by combining the chosen SUHI-related estimators and an SVR 
model. 

The Gaussian model also has deficiencies in estimating LST patterns, 
despite its relatively low sensitivity to cloud cover. The Gaussian-based 
LSTs (TG), which were designed from the perspective of global charac
terization, can only represent the overall spatial variations of the SUHIs. 
As a result, the exhibited Gaussian-based next-day LSTs (see Fig. 8) are 
of only global significance, and they are less capable of representing the 
local LST variations with occasional high heterogeneity. Solutions to 
these issues require the design of an enhanced model that is more sen
sitive to both the overall and local SUHI features. Over cities with very 
few clouds, one compromise solution can be the direct use of the original 
LSTs, in which case the Gaussian model is unnecessary. 

5.2. Uncertainties related to SUHI estimators 

Different categories of factors have been reported as controls of SUHI 
variations on different timescales, as discussed in the Introduction. This 
study chose a series factors as estimators for the next-day nighttime 
SUHI estimations, based on previous investigations of the controls on 
daily nighttime SUHI variations (Lai et al., 2021; Quan, 2014; Zhou 
et al., 2011). A generally high estimation accuracy was achieved, 
assisted by the close relationship between these estimators and SUHIs, as 
well as the four estimators (i.e., RH, PREP WDS, and SAT) that are 
predictable by numerical weather forecast system. Uncertainties related 
to the estimators however exist, mainly in the following two aspects. 

First, for these four meteorological variables (including RH, PREP, 
WDS, and SAT), we directly used their next-day measurements in sub
stitute for their forecasted values as estimators. Although such a sub
stitute should be reasonable in most cases in consideration of the 
increasing reliability of weather forecasting results in recent years 
(Bauer et al., 2015), uncertainties in terms of the weather forecasting 
errors do exist, and may therefore decrease the estimation accuracy of 
the next-day SUHIs. To quantify the impacts of such uncertainties on the 
proposed approach, we conducted a sensitive analysis that complied 
with the following three steps: (1) for each of these four variables, 8 
groups of random errors were generated whose absolute values account 
for 0 ~ 5%, 5 ~ 10%, 10 ~ 15%, 15 ~ 20%, 20 ~ 25%, 25 ~ 30%, 30 ~ 
35%, and 35 ~ 40% of the real daily measurements; (2) new estimators 
with an MAPE ranging from 0 to 40% were derived for each variable, by 
adding each group of errors with the corresponding measurements; (3) 
by replacing the original estimators (with an MAPE of 0%) with the new 
ones and re-conducting the estimation, the impacts from the forecasting 
errors of these four variables were assessed using the increased MAEs in 
the estimated next-day SUHIIs (see Fig. 12). 

Second, although the estimators incorporated in this study have 
successfully supported the estimation (Section 4.3), they are still unable 
to capture fully the daily SUHI variations. Future attempts to improve 
the accuracy of SUHI estimation should consider the integration of more 
estimators, especially those related to short-term SUHI variations. For 
example, the variables related to anthropogenic heat (AH) release are 
anticipated to contribute to SUHI estimation, because AH changes the 
surface energy balance and therefore affects the urban thermal envi
ronment, especially at night (Kato and Yamaguchi, 2005). It would also 
be helpful if daily measurements related to radiation (including both 
short-wave/long-wave radiation) are incorporated as estimators, 
because the LST, when compared to the SAT, is more responsive to ra
diation (Oke et al., 2017). 

5.3. Applications of the approach to SUHI estimations under other 
scenarios 

The proposed approach is found to be efficient in estimating next-day 
nighttime SUHI intensity and pixel-by-pixel LSTs under clear-sky. 
Moreover, the approach has the potential for SUHI estimation under 
scenarios far beyond this restricted case, and we provide some examples 
below. First, the strategy can be applied to estimate SUHIs under all- 
weather conditions, if cloud coverage is incorporated as one of the 
input estimators, and the LSTs under clouds are reconstructed using a 
specific method (Fan et al., 2015). Second, the approach can be used to 
estimate SUHIs for daytime, once the issue of strong daytime thermal 
anisotropy is addressed by adjusting the slant observations into the nadir 
with a correction algorithm (Hu et al., 2016; Voogt, 2008). Third, with 
hourly or sub-hourly geostationary satellite thermal data, the estimation 
of next-day SUHIs can be extended from an instantaneous time into a full 
diurnal cycle. Forth, the assessments in Fig. 13 show that the 
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performance of the approach is generally good for longer periods (longer 
than the next-day), on condition that the forecasted weather conditions 
are sufficiently accurate (the sensitivity analysis of the estimation ac
curacy to the weather forecasting errors is provided in Section 5.2). This 
demonstrated robustness indicates that, using a comparable approach, 
the SUHIs in decades can be potentially better predicted by combining 
the climate-model-projected future climate conditions (including RH, 
WDS, PREP, and SAT) and projected future urbanization processes 
(Firozjaei et al., 2018; Mushore et al., 2017; Tran et al., 2017). 

6. Conclusion 

The estimation of SUHI dynamics on multiple time scales is a major 
focus of efforts to improve understanding of the urban surface climate. 
Most previous studies have modelled the SUHI variations for past pe
riods, whereas estimation for future SUHIs, especially at the daily (i.e., 
day-to-day) scale, is rarely investigated. To address this gap, the present 
study incorporates both meteorological and surface controls to estimate 
next-day nighttime SUHIs, using an SVR model. 

The results show that the proposed approach performs well in esti
mating both SUHI intensity (SUHII) and the pixel-by-pixel Gaussian- 
based LSTs. The mean MAE of the estimated SUHII is 0.67 K across the 
chosen Chinese cities, and the MAPE is no more than 25% for more than 
90% of the cities. For the Gaussian-based LSTs, the estimated MAEs are 
mostly less than 2.0 K. Further assessment shows that, for nearly 78% of 
the chosen cities, the combined contributions from estimators related to 
day-to-day SUHIs (βΔd) are greater than estimators related to mid-term 
SUHIs (βmid), with associated mean MAEinc of 51% and 31%, respec
tively. Among all the SUHI estimators, the contribution from RHd+1 is 
the largest, whose permutation can generate an estimated MAE increase 
(i.e., MAEinc) of 35%. The contributions from the other two estimators 
related to day-to-day SUHIs (i.e., SATd+1, and WDSd+1) are also relevant, 
with the associated mean MAEinc reaching 14% and 8%, respectively. 

We acknowledge that some uncertainties exist in terms of the 
Gaussian modelling and SUHI estimators, which may limit estimation 
accuracy. Nevertheless, by providing a feasible yet simple approach for 
estimating next-day nighttime SUHIs, this study fills a knowledge gap in 
the SUHI estimation and is consequently helpful for supporting adap
tation to and mitigation of SUHI. 
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