
1. Introduction
The isotopic composition of surface water vapor flux (δE) is a key parameter in studies of the water cycle us-
ing isotopic tracer methods. It is used for estimating lake evaporation (Gibson et al., 1993; Xiao et al., 2017), 
constraining local moisture recycling (Bowen et  al.,  2019; Gat et  al.,  1994; Griffis et  al.,  2016; S. Wang 
et al., 2016; Xiao et al., 2018), characterizing sources of moisture in the atmospheric boundary layer (Lee 
et al., 2007; Simonin et al., 2014; Welp et al., 2008, 2012; Zannoni, Steen-Larsen, Stenni, et al., 2019), and 
partitioning of evapotranspiration in ecosystems (Good et al, 2014, 2015; Lu et al., 2017; Sun et al., 2019; Wei 
et al., 2018; Wen et al., 2016). The Keeling plot method and the flux-gradient method are two common meas-
urement strategies for determining δE. Each strategy requires certain conditions about atmospheric mixing 
near the ground. The Keeling plot method was originally developed for CO2. By extending it to water vapor, 
it assumes (1) that surface evaporation is solely responsible for observed variations in the isotopic compo-
sition of water vapor δv and in the water vapor concentration c and (2) that δE remains invariant during the 
observational period. If the two underlying assumptions are satisfied, the mixing of the evaporated vapor 
with vapor in the surface-layer air can be described by (X. Wang & Yakir, 2000; Yepez et al., 2003)

   v 1 /a b c (1)

where a = δE and b = c0 (δ0−δE) are intercept and slope coefficients, respectively, with c0 and δ0 denoting the 
background concentration and vapor delta value.

The flux-gradient method determines δE from the ratio of the vertical concentration gradient of the minor 
to that of the major isotopologue (e.g., Lee et al., 2007). The molar ratio of the H2

18O flux to the H2
16O flux 

is given by
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     E 2 1 2 1/i iR c c c c (2)

where ci and c denote the mean molar mixing ratio of H2
18O and H2

16O of an observation period, respec-
tively, and subscripts 1 and 2 denote the upper and the lower measurement level, respectively. The molar 
flux ratio RE is then converted to the δ scale to give δE. The flux-gradient method assumes that the diffusion 
of the H2

18O and H2
16O molecules is identically efficient in the atmospheric surface layer so that the diffu-

sivity coefficient cancels out when performing the flux ratio calculation (Griffis et al., 2005). Equation 2 is 
used when measurements are made at two heights. In some applications where measurements are made at 
more than two heights, RE can be obtained by linear regression of ci against c. Another implicit assumption 
is that the footprint of measurement at the upper level and that at the lower level lie in the same source 
area (Griffis et al., 2007). In situations where the two measurement heights are far apart vertically or where 
the fetch of the target surface is limited, the evaporation of a source upwind of the target surface can “con-
taminate” the upper measurement more than the lower measurement, causing errors in the measured flux 
and the flux ratio (Horst, 1999).

Before isotope ratio infrared spectroscopy (IRIS) instruments became available, application of the Keeling 
plot method involved measurement of water vapor concentration, c, and collection of water vapor via cold 
traps for determination of δv. In order to obtain enough trapped samples for the regression analysis, the 
observation period often extended several hours or longer (Delattre et al., 2015; Yepez et al., 2003, 2005; 
Zannoni, Steen-Larsen, Rampazzo, et al., 2019). However, temporal changes in atmospheric forcing, such 
as relative humidity, and cloudiness, can cause large short-term (minutes to hours) fluctuations in δE of 
land evapotranspiration (Dubbert & Werner, 2019; Good et al., 2012; Lee et al., 2007; Quade et al., 2019; 
Welp et al., 2008; Wen et al., 2016) and open-water evaporation (Xiao et al., 2017). One consequence of δE 
variations is that δv may no longer be linear with 1/c over longer integration intervals. When this occurs, 
the validity of the second Keeling plot assumption, that δE remains invariant during the observational 
period, is questionable (Pataki et al., 2003). Furthermore, if the observation period is too long, temporal 
changes in δv and c can result from mesoscale and synoptic-scale atmospheric events unrelated to surface 
evaporation, even at a measurement height very close to the surface, raising doubt about the first Keeling 
plot assumption, that surface evaporation is solely responsible for observed variations (Lee et al., 2006). 
Obviously, when one or both of the Keeling plot method assumptions are violated, the intercept coeffi-
cient a is no longer a true representation of δE, regardless of which regression model is used for parameter 
estimation.

With the IRIS technology, it is possible to apply the Keeling plot method to the high-frequency c and δv 
time series data collected in short observation periods (e.g., 1 h). The idea of applying the Keeling plot 
method to high frequency time series was first proposed by Bowling et al. (1999) before the emergence of 
the IRIS technology and was later tested with CO2 isotope data collected with an IRIS instrument (Griffis 
et al., 2004). Because the data are collected at a high frequency, the sample size is large (typically > 700 
in 1 h), effectively increasing the variability in the observed water vapor concentration and decreasing 
the uncertainty of parameter estimation (Good et al.,  2012). By restricting the regression based on the 
high-frequency data to a short period (hourly), errors arising from the two underlying assumptions should 
be small. Therefore, it is possible to determine δE using the same data with either the Keeling plot method 
or the flux-gradient method. A practical question is whether these two methods agree with each other 
under field conditions.

The Keeling plot results are sensitive to how measurement errors are specified. The ordinary least squares 
(OLS) regression model, the most common model for estimating the regression coefficients, assumes that 
all measurement errors occur in the dependent variable (δv, Equation 1) and no errors exist in the inde-
pendent variable (concentration, c). However, the concentration data can also suffer from measurement 
errors, although they are generally smaller than errors in isotope data. To account for errors in both, some 
researchers recommend that the geometric mean regression (GMR) model be used for parameter estima-
tion (e.g., Ogée et al., 2003; Pataki et al., 2003). The GMR model assumes that the normalized error in x is 
equal to the normalized error in y. More recently, Wehr and Saleska (2017) recommend that a general re-
gression model, named here the York's solution (YS) model, be used with the Keeling plot method. The YS 
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model takes into account error structures of x and y separately and also the correlation between these er-
rors. In Wehr and Saleska's evaluation of the YS model, errors in the dependent and independent variables 
are concentration-independent instrument precisions. In the case of water vapor isotope, the δv precision 
is generally dependent on the water vapor concentration (Salmon et al., 2019; Sturm & Knohl, 2010). Be-
cause this concentration dependence is often instrument-specific (even for the same instrument brand), 
error characterization in field conditions may help improve YS parameter estimation. Another reason for 
field characterization of instrument errors is that using high-frequency data may lead to strongly correlat-
ed errors in x and in y, as discussed by Wehr and Saleska (2017).

Another practical issue concerns bias errors of the Keeling plot and the flux-gradient methods due to non-
ideal experimental conditions. As mentioned earlier, in the case of the Keeling plot method, bias errors 
can occur even with a perfect statistical model, if the underlying assumptions about atmospheric mixing 
are not met. Assessment of systematic biases is challenging for land ecosystems because the true δE is not 
known a priori, even in isotopic steady state. In isotopic steady state, the isotopic composition of plant 
transpiration approaches that of the xylem water which is a measurable quantity, but δE of evapotran-
spiration is also influenced by soil evaporation whose isotopic composition is generally unknown (Yakir 
& daSternberg, 2000). To overcome a similar problem for CO2, some researchers used synthetic data that 
combines a hypothetical flux isotopic signal with Monte-Carlo type random variations superimposed on 
the concentration and the δ variable (Chen et al., 2017; Kayler et al., 2010; Vardag et al., 2016; Wehr & Sale-
ska, 2017; Zobitz et al., 2006). This synthetic approach is less feasible for water vapor because it is difficult 
to assign a representative value for δE due to its high temporal variability. According to in situ observations 
of Welp et al. (2008), δE can vary by as much as 40‰ in the course of a day. To overcome this drawback, we 
tested a new strategy to assess bias errors, using data collected at a lake site. Here, the benchmark is the 
δE calculated with the Craig-Gordon (CG) model of the isotopic composition of open-water evaporation 
(Craig & Gordon, 1965). Because the model is grounded on well-established principles of equilibrium and 
kinetic fractionation of open-water evaporation (Gonfiantini et al., 2018), it can provide an independent 
estimate of δE for evaluating the Keeling plot and the flux-gradient methods.

In this study, we report the results of a comparative evaluation of the Keeling plot method and the flux-gra-
dient method using high-frequency data collected with IRIS instruments at a cropland site and a lake site. 
Wehr and Saleska (2017) have conducted a comprehensive evaluation of the Keeling plot method for CO2. 
The analysis presented below can be viewed as a test of their findings for water vapor. The specific objec-
tives of this study are (1) to determine if concentration-dependent field characterization of error structures 
of the IRIS instruments can improve parameter estimation of the YS regression, (2) to characterize the 
relative agreement between the flux-gradient method and the Keeling plot method with three regression 
models (OLS, GMR, and YS), and (3) to evaluate bias errors of the Keeling plot method and the flux-gra-
dient method against the CG model prediction. Even though hydrogen isotopes were also measured in the 
two experiments, we restrict our analysis to oxygen isotopes.

2. Materials and Methods
2.1. Sites and Instruments

The data sets used in this study were obtained in two field experiments. The first experiment was conduct-
ed in an irrigated maize field in Zhangye, Gansu Province, in Northwest China (38° 51′ N, 100° 22′ E) in 
2012 (Wen et al., 2016). The fetch was greater than 200 m in all the directions. The H2O, HDO, and H2

18O 
concentrations were measured at two heights (0.5 and 1.5 m) above the canopy top, with an IRIS water 
vapor isotope analyzer (Model L1102-i, Picarro Inc., CA, USA) at 0.2 Hz. The canopy height varied from 
0.1 m at the beginning to 1.6 m at end of the experiment. The analyzer was customized to improve its time 
response. Switching between the two intake heights occurred every 2 min and the measurement became 
stable after 25 s (5 datapoints; Wen et al., 2016, their Figure 1). The last eight datapoints after each switch-
ing, corresponding to the last 40 s, were used in the analysis. The analyzer was calibrated in situ with a 
liquid vaporization module (Picarro Inc.) and a CTC Analytics Prep and Load liquid autosampler (LEAP 
Technologies, Carrboro, NC, USA) using a single liquid water standard with a δ18O value of −14.29‰. 
There were three concentrations of calibration vapor, each measured for 25 min. After each calibration, 3 h 
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were spent on the measurement of ambient air. A linear interpolation between two consecutive calibration 
cycles was used to obtain the span for correcting the ambient air measurements (Huang & Wen, 2014; Wen 
et al., 2008, Wen, Lee, Sun, Wang, Hu, et al., 2012).

The other experiment was in the northern part of Lake Taihu conducted at Meiliangwan (MLW, 31° 15′ N, 
120° 13′ E) as part of the Taihu Eddy Flux Network (Lee et al., 2014) between August 2012 and Septem-
ber 2016. Lake Taihu is located in the Yangtze River Delta in Eastern China. The H2O, HDO, and H2

18O 
concentrations were measured at two heights (1.1 and 3.5 m) above the water surface with an IRIS water 
vapor isotope analyzer (Model 911-0004; Los Gatos Research, Mountain View, CA, USA) at 2 Hz. This 
analyzer was also modified to allow high sampling flow to improve its time response. Switching between 
the two intakes occurred every 30 s, and the measurement became stable in 5 s (about 10 datapoints; Xiao 
et al., 2017, their Figure 3). In this study, the last 15 datapoints, corresponding to the last 7.5 s, were used 
for calculations. The measurement site was located 250 m from the northern shore. To minimize land in-
fluence on the measurement, we restricted most of our analysis to the data collated in the wind direction 
sector of 140°–315°, corresponding to a fetch of 8–50 km. The only exception is the analysis of the δE bias 
errors in relation to footprint where data collected under all wind directions were used (Section 3.3). The in 
situ calibration vapor was generated by a water vapor isotope standard source (Model 908-0003-9002; Los 
Gatos Research). The calibration was performed every 3 h. Each calibration cycle consisted of 5 concen-
trations and lasted for 30 min in total. The five calibration concentration values varied between different 
calibration cycles. Other details of this experiment can be found in Xiao et al. (2017).

Errors in the vapor isotope ratio measured by IRIS analyzers can arise from concentration dependence 
and from scale expansion or delta stretching, but with the former dominating the latter (Wen et al., 2008, 
Wen, Lee, Sun, Wang, Tang, et al., 2012). An ideal calibration strategy is to correct the measurement for 
both errors. However, cycling through vapor standards at multiple concentration and multiple delta values 
would take too much instrument time away from ambient measurement. At Zhangye and Lake Taihu, the 
calibration method deployed only one isotopic standard but at multiple concentration values, which aimed 
at removing the concentration dependence. A comparison between calibration using one delta standard 
versus that using multiple delta standards indicates that the one-delta calibration may introduce an error 
of about 0.1‰ (Wen, Lee, Sun, Wang, Tang, et al., 2012).

2.2. Regression Models

In this study, three regression models were used with the Keeling plot method to obtain the intercept of 
Equation 1: OLS, GMR, and YS. The OLS seeks to minimize the sum of the squared residuals between the 
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Figure 1. Temporal variation of H2O mixing ratio (a) and δv (b) at the lower inlet (blue dots) and higher inlet (red dots) 
at Lake Taihu between 16:00 and 17:00 local time on October 22, 2014. Panels (c and d) are the corresponding zoom-in 
plot of the dotted box in panels (a and b).
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expected values of the dependent variable y and the data points. The result is unbiased only if errors in 
the independent variable x are negligible and errors in y are constant. The GMR seeks to minimize both the 
y and x residuals. The result is unbiased only when the normalized error in x, or error in x divided by the 
variance of x, is equal to the normalized error in y (Kermack & Haldane, 1950). In addition, the correlation 
between errors in x and in y is set to be zero for the OLS and the GMR methods. In other words, the OLS and 
GMR methods are two special cases of YS (Wehr & Saleska, 2017). The YS method is a general solution for 
the best fit line where observations are independent of each other, the errors in x and error in y are normally 
distributed, and these errors can be correlated (Wehr & Saleska, 2017; York, 1966, 1969; York et al., 2004). 
Other details on the regression models can be found in Chen et al. (2017) and Wehr and Saleska (2017).

2.3. Characterization of Error Structures

The error parameters in the YS model,   ix ,   iy , and ri, for Lake Taihu were determined with the 2-Hz 
field calibration data. Here   ix  and   iy  are errors in horizontal (1/c) and vertical (δv) coordinates at 
the ith datapoint, and ri is correlation between errors in xi and errors in yi. A calibration cycle consisted 
of five concentrations, each lasting for 6  min. An example of the calibration stepping is given by Xiao 
et al. (2017; their Figure 4). The standard deviation of 1/c, the standard deviation of δv and the correlation 
coefficient between 1/c and δv were calculated for each concentration interval. We assumed that these vari-
ations originated purely from measurement errors. The data during transition from one concentration level 
to the next were excluded from the calculation.

For Zhangye, the instrument calibration was done in the field, but the field calibration data cannot be used 
to characterize the measurement errors because the concentration of the water vapor generated by the liq-
uid vaporization module was not stable during the calibration phase. To obtain the error parameters, we car-
ried out additional measurements after the field experiment had been completed, using the same IRIS water 
vapor isotope analyzer but a different calibration unit. The analyzer was configured to measure at 0.2 Hz the 
water vapor concentration and the isotopic composition of a water vapor stream generated by a standard 
delivery module (Model A0101; Picarro Inc.), which a different calibration unit than what was deployed in 
the field (Picarro Inc.). This new delivery module was fed with liquid water of known delta value (−9.17‰). 
Each measurement cycle included three water vapor concentrations and lasted for 1 h. These concentration 
values varied between different measurement cycles. A total of 141 measurement cycles were performed, 
with the vapor concentration ranging from 7,900 to 27,690 ppm. This concentration range spanned the 
concentration variations during the field experiment. The same method used for Lake Taihu was used to 
calculate the error parameters.

2.4. Data Processing

The high-frequency IRIS data were used to calculate δE for each hourly observation interval. In the flux-gra-
dient method, after each switching between the higher and lower intakes, the data were averaged to obtain 
the mean concentration differences between the two measurement heights, and δE was determined from the 
gradient ratio according to Equation 2 after span correction as described by Lee et al. (2007). And then the 
hourly δE and its corresponding standard deviation can be obtained.

In the Keeling plot method, the three regression models described above were used to determine δE. Each 
observation, including data obtained for both measurement heights, consisted of about 200 and 1,800 data 
points for Zhangye and Lake Taihu, respectively. Figure 1 shows the time series of the water vapor mixing 
ratio and the calibrated vapor δv from a typical observation period at Lake Taihu, and Figure 2 shows the 
corresponding linear regression plot.

Three criteria were used to screen the data. The flux-gradient method becomes noisy at times of small 
vertical concentration gradients. To ensure a robust comparison, we restricted our analysis to observations 
whose hourly mean vertical vapor concentration difference between the two measurement heights was 
larger than 200 ppm in magnitude. About 2/3 of the 3,026 and 1,622 valid observations satisfy this criterion 
at Zhangye and Lake Taihu, respectively. The second criterion was the standard deviation of δE calculated 
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by the flux-gradient method; we used a threshold value of 20‰. The third 
criterion required that the P value obtained from the Keeling plot method 
be smaller than 0.05 to ensure that the relationship between 1/c and δv 
passes the significance test (Unger et al., 2010). A total of 1,084 and 817 
hourly observations remained for Zhangye and Lake Taihu, respectively, 
after the three data screening criteria were applied.

2.5. CG Model of Lake δE

The CG model was used to evaluate the bias errors of the Keeling plot and 
the flux-gradient methods for the lake site. The model computes δE as,

 
 

  


    


  

1
eq L v eq k

E
k

1
1 0.001 1

h h
h h

 


 (3)

where eq  (>1) is the equilibrium fractionation factor which is a known 
function of water surface temperature (Majoube, 1971), L  is the isotop-
ic composition of the lake surface water, h is relative humidity in fraction, 
εeq = 103 (1–1/αeq) is the equilibrium factor in delta notation (‰), and εk is 
isotopic kinetic fractionation factor (‰). The calculation was performed 
at hourly intervals using the measured variables as inputs. The kinetic 
factor was calculated with the wind-dependent parameterization of Mer-
livat and Jouzel  (1979). In Merlivat and Jouzel  (1979), εk is an implicit 

function of wind speed. Here we solved their function numerically and then fit the numerical solution with 
the following polynomial function,

 (4)

where εk is in ‰ and in u is wind speed in m s−1. This parameterization was independently validated by Xiao 
et al. (2017) against the measured local evaporation line and the isotopic mass balance of the lake. They 
found that the D and 18O isotopic compositions of evaporation calculated with this parameterization fall 
right on the line of the D and 18O compositions of the lake water.

2.6. Miller-Tans Method

The Miller-Tans method is also a popular method in the calculation of δE (Miller & Tans, 2003). Different 
to the Equation 1, in the Miller-Tans method (Equation 5), the slope parameter is equivalent to the isotopic 
composition of surface evaporation, by establishing the relationship between δvc and (c–c0),

    v 0c d a c c (5)

where a = δE and d = δ0c0 are slope and intercept coefficients, respectively.

3. Results and Discussion
3.1. YS Model With Two Different Error Structures

The relationships between the water vapor concentration and the standard deviation of 1/c, the standard 
deviation of δv and correlation coefficient r, established with the data collected during the instrument cali-
bration cycles, are shown in Figure 3. Unsurprisingly, the standard deviation of 1/c was greater at lower 
concentrations, with the Picarro analyzer (used at Zhangye) and the LGR analyzer (used at Lake Taihu) 
giving similar performance. The standard deviation of 1/c was 4.02 × 10−7 and 4.07 × 10−7 ppm−1 at a wa-
ter vapor concentration of 10,000 ppm and 1.29 × 10−7 and 7.26 × 10−8 ppm−1 at a concentration of about 

         4 4 3 25.7818 10 0.01825 0.2107 1.1428 8.8617k u u u u
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Figure 2. An illustration of the three regression models applied to the 
data in Figure 1. YS: red-dot-dashed line, δE = −21.02‰; OLS: blue-dashed 
line, δE = −21.43‰; GMR: black-solid line, δE = −40.21‰; blue dots: 
observations at lower inlets; red dots: observations at higher inlet. In this 
hour, the δE obtained from the flux-gradient method is −21.00‰, with 
a standard deviation of 4.78‰. GMR, geometric mean regression; OLS, 
ordinary least squares; YS, York's solution.
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30,000 ppm, for Zhangye and Lake Taihu, respectively. The standard deviation of δv showed opposite trends 
for the two sites. At Zhangye, the standard deviation of δv was relatively constant at concentrations lower 
than about 20,000 ppm and increased slightly with increasing concentration beyond this threshold. At Lake 
Taihu, the standard deviation of δv showed a general decreasing trend with increasing concentration. At 
Zhangye, the correlation between measurement errors in 1/c and in δv was slightly positive at low concen-
trations (∼10,000 ppm) and varied around zero at high concentrations (∼25,000 ppm). At Lake Taihu, the 

error correlation was mostly positive and did not seems to depend on the 
vapor concentration.

For comparison, Figure 3 also shows error structures based on man-
ufacturers' specifications. Specifically, the 0.1 Hz error (precision) is 
20 ppm for water vapor and 0.20‰ for δ18O for Zhangye and the 1 Hz 
error is 0.002c for water vapor and 0.15‰ for δ18O for Lake Taihu, and 
the correlation between the two variables is set to zero. The δ18O error 
is independent of concentration in both cases, and the 1/c error can be 
expressed as 20/c2 and 0.002/c for Zhangye and Taihu, respectively. To 
match the observation frequency, the manufacturers' errors were mul-
tiplied by 2  on the assumption that errors are inversely proportion-
al to the square root of sample size. Generally, field errors were much 
larger than those specified by the manufacturers except for 1/c at the 
high concentration range at Lake Taihu where the two were similar.

Results of regression fitting (Table S1) to the data shown in Figure 3 
were used to determine parameters   ix ,   iy , and ri in the YS 
regression model as functions of the measured concentration at ob-
servation i, ci. For example, the error in the vertical axis (δv) at time i is 
given as   iy  = fy (ci), where fy is the regression fitting equation on ci.
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Figure 3. Relationships between water vapor concentration and errors in 1/c, errors in δv and correlation coefficient 
between errors in δv and errors in 1/c for Zhangye (a–c) and Lake Taihu (d–f). The solid red line and black dash line 
indicate the regression fit and the precision given by the manufacturers, respectively. The regression equations are 
given in Table S1. Color indicates data density. The data shown here are high-frequency (0.2 Hz at Zhangye and 2 Hz at 
Lake Taihu) calibration data.
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Figure 4. Comparison of the York's solution (YS) regression results with 
concentration-independent factory error structure and with concentration-
dependent measured error structure for Zhangye (a) and Lake Taihu 
(b). Solid black lines are the 1:1 comparison and gray dash line is linear 
regression. The regression equation is shown in each panel along with the 
correlation coefficient R, mean bias (MB, ‰), and root mean square error 
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axis (±50‰). Color indicates data density.
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Figure 4 compares the YS calculation using the concentration-independent factory and concentration-de-
pendent measured error structures. Nearly identical results were obtained for Zhangye using the two 
different error structures (panel a, linear correlation R  =  1.00, RMSE  =  0.42‰). This contrasts sharply 
with Lake Taihu, where the YS model with the manufacturer's error specification performed poorly 
against the YS estimate with field errors (R = 0.40, RMSE = 32.60‰, Figure 4b), or against the OLS model 
(R = 0.42, RMSE = 32.44‰), the flux-gradient method (R = 0.33, RMSE = 33.15‰), and the CG model 
(R = 0.32, RMSE = 34.29‰; Figure S1). At the lake site, use of the concentration-dependent field error 
structures significantly improved the YS estimate in comparison with the OLS regression model (R = 0.99, 
RMSE = 1.45‰), the flux gradient method (R = 0.84, RMSE = 4.60‰) and the CG calculation (R = 0.65, 
RMSE = 6.93‰; Table 2). The disparity between the two YS estimates resulted from the fact the reported 
manufacturer's concentration-independent error for δv is too small, but the actual error was higher and was 
also very sensitive to concentration (Figure 3; Salmon et al., 2019; Sturm & Knohl, 2010). The problem is 
particularly severe at the low concentration range, where according to the manufacturer, the normalized 
error in 1/c is 0.018 and is only marginally better that the normalized error in δv (0.029) whereas the actual 
normalized error in 1/c (0.026) is much better than the actual normalized error in δv (0.12; Table 3). When 
normalized errors in the dependent and independent variables are comparable, the YS model behaves like 
the GMR model (Wehr & Saleska, 2017).

In the following, we will restrict our discussion to the YS results using the concentration-dependent meas-
ured error structures.

3.2. Comparison Between the Flux-Gradient and the Keeling Plot Methods

3.2.1. Comparison Statistics

A comparison between the flux-gradient method and the Keeling plot method using the three regression 
models is summarized in Tables 1 and 2. Figure 5 shows the comparison in 1:1 plots, where each data 
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Figure 5. Comparison of the evaporation isotopic signature δE obtained with the flux-gradient method and with the 
Keeling plot method for Zhangye (a–c) and Lake Taihu (d–f). Panels (a and d): YS regression model; panels (b and e): 
OLS regression model; panels (c and f): GMR regression model. Solid lines are the 1:1 comparison and dashed lines are 
linear regression. Refer to Tables 1 and 2 for regression statistics. Color indicates data density. GMR, geometric mean 
regression; OLS, ordinary least squares; YS, York's solution.
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point represents one hourly δE calculated using data from two measurement heights above the surface. 
The Keeling plot results with the YS and OLS regression models and the flux-gradient results were 
comparable, with the relative mean biases (MBs) less than 1.01‰ among each other and high linear 
correlations (R > 0.70) for both Zhangye and Lake Taihu.

In contrast, the GMR results were rather poor in comparison with the OLS, the YS or the flux-gradient 
method results. For example, the MB against the flux-gradient method was large, at 6.97 and −1.66‰ 
for Zhangye and Lake Taihu, respectively. An implicit assumption of GMR is that the normalized errors 
in x and y are equal (Kermack & Haldane, 1950). This assumption was not satisfied here. Table 3 shows 
the mean errors in 1/c and δv, and these errors normalized by the ranges of 1/c and δv for three levels of 
water vapor concentration. Here the range of a variable is defined as the difference between the maxi-
mum and the minimum value of the high-frequency data in a given 60-min observational period. Errors 
existed both in the horizontal coordinate, 1/c, and the vertical coordinate, δv. The normalized error in δv 
was, however, much larger than the normalized error in 1/c, by a factor of 6–10 at Zhangye and of 4–6 
at Lake Taihu.

Some researchers advocate for the Miller-Tans equation (Equation 5) instead of the Keeling plot equa-
tion (Equation 1) when using the GMR model. We used the OLS and the GMR models to estimate the 
slope parameter in Equation 5 and compared the results with the Keeling plot method using the OLS 
model (Figure S2). The Miller-Tans slope from OLS was nearly identical to the Keeling plot intercept 
from OLS. However, the Miller-Tans slope from GMR showed large deviations from the Keeling plot in-
tercept from OLS. Comparison of the Miller-Tans method using GMR with estimates from Keeling plot 
method with YS, the flux-gradient method or the CG calculation yielded similarly large deviations. It ap-
pears that the GMR was not a good regression model for the high-frequency water vapor data deployed 
in this study, regardless of whether the Keeling plot equation or the Miller-Tans equation was used.

In CO2 studies, increasing CO2 concentration range will reduce the systematic bias associated with the 
δ13C signature of respired CO2 inferred from the Keeling plot method with the OLS model. This is true 
for observations made with flasks (Pataki et al., 2003; Zobitz et al., 2006) and IRIS instruments (Chen 
et al., 2017; Zobitz et al., 2006) and for synthetic CO2 datasets (Kaylor et al., 2010; Wehr & Saleska, 2017). 
In the case of water vapor, the performance of the OLS model, in reference to the flux-gradient method 
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FG Keeling with YS Keeling with OLS

Keeling with YS Equation y = 0.95x + 0.59 − −

R 0.70

MB 0.93

RMSE 4.48

Keeling with OLS Equation y = 0.92x + 0.17 y = 0.97x – 0.41 −

R 0.70 1.00

MB 0.73 −0.20

RMSE 4.39 0.48

Keeling with GMR Equation y = 1.73x + 12.47 y = 1.82x – 11.40 y = 1.88x + 12.16

R 0.52 0.72 0.69

MB 7.48 6.75 6.75

RMSE 11.40 9.68 10.01

Note. The mean bias is calculated as the estimate using the method in the column header minus that using the method 
listed in the row header.
Abbreviations: FG, flux-gradient; GMR, geometric mean regression; MB, mean bias; OLS, ordinary least squares; 
RMSE, root mean square error; YS, York's solution.

Table 1 
Comparison Between the FG Method and the Keeling Plot Method With YS, OLS, and GMR Regression Models for 
Zhangye, Showing the Linear Regression, Correlation Coefficient (R), MB (‰), and RMSE (‰)
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or the YS estimate, did not show obvious dependence on concentration range (Figures S3 and S4). The 
lack of range dependence may be because the normalized error in δv is about five times the normalized 
error in 1/c at both the high and low concentration ranges (Table 3). In other words, the error structures 
assumed by the OLS method are a good approximation regardless of concentration range.

3.2.2. Results From Keeling Plot Method With Single-Height Data

Logistically, it is much easier to measure the water vapor isotopic composition at a single height than at 
multiple heights involving valve switching. Indeed, the great majority of the published IRIS water vapor 
isotope measurements have been conducted with single-height configurations (Fiorella et al., 2018; Wei 
et al., 2019; Yao et al., 2018; Zannoni, Steen-Larsen, Stenni, et al., 2019). Here, we applied the Keeling 
plot method to data collected at the lower and higher measurement height and compared the results 
with the flux-gradient method (Figures S5 and S6). All the three regression models performed less well 
when only data from the lower or higher height was used than when data from both heights were used 
to perform the regression (Figure 5). For example, at Lake Taihu, the mean difference of the OLS against 
the flux-gradient method changed to 0.44‰ (Figure S5e) from 0.14‰ (Figure 5e) and the correlation 
between the Keeling plot method and the flux-gradient method was reduced to 0.33 from 0.83.

The deteriorated performance in Figures S5 and S6 resulted mostly from a narrower concentration range 
which increase the uncertainty of the Keeling plot results (Chen et al., 2017; Pataki et al., 2003; Zobitz 
et al., 2006), with a reduced sample size being another (minor) factor. The sample size was halved when 
only one-height measurement was used. The mean concentration ranges were 2,063 and 1,137 ppm for 
Zhangye and Lake Taihu, respectively, for the data shown in Figure S5, whereas the mean ranges were 
larger, at 2,534 and 1,712 ppm for Zhangye and Lake Taihu, respectively, in Figure 5. Similarly, Good 
et al.  (2012) reported that the uncertainty of the isotopic composition of evapotranspiration associat-
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CG FG Keeling with YS Keeling with OLS

FG Equation y = 0.99x + 0.18 − − −

R 0.72

MB 0.31

RMSE 5.96

Keeling with YS Equation y = 1.02x + 1.86 y = 1.00x + 1.07 − −

R 0.65 0.84

MB 1.50 1.01

RMSE 6.93 4.60

Keeling with OLS Equation y = 0.96x − 0.10 y = 0.96x − 0.45 y = 0.96x − 1.47 −

R 0.66 0.83 0.99

MB 0.48 0.14 −0.87

RMSE 6.51 4.59 1.45

Keeling with GMR Equation y = 4.18x + 46.02 y = 4.21x + 45.24 y = 4.19x + 40.73 y = 4.39x + 47.20

R 0.53 0.68 0.79 0.80

MB −0.91 −1.66 −2.67 −1.80

RMSE 30.18 28.64 27.64 27.72

The mean bias is calculated as the estimate using the method in the column header minus that using the method listed 
in the row header.
Abbreviations: CG, Craig-Gordon; FG, flux-gradient; GMR, geometric mean regression; MB, mean bias; OLS, ordinary 
least squares; RMSE, root mean square error; YS, York's solution.

Table 2 
Comparison Among the FG Method, the CG Model Calculation and the Keeling Plot Method With YS, OLS, and GMR 
Regression Models for Lake Taihu, Showing the Linear Regression, Correlation Coefficient (R), MB (‰), and RMSE (‰)
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ed with high-frequency time series measured at a single height is 25% 
larger than with a combined use of time series measured at multiple 
heights.

While the systematic biases of the GMR regression in Figures S5 and S6 
(panels c and f) are mathematical in nature (as in Figure 5 panels c and 
f), the biases of the OLS and the YS regression here may be related to foot-
print influences, especially at Zhangye where the fetch was short (about 
200 m). Griffis et al. (2007) found that the Keeling plot method with one-
height data yields lower estimates of the δ13C composition of ecosystem 
respiration of a C4 crop than the flux-gradient method. They attributed 
this difference to a footprint mismatch: the single-height concentration 
has a much larger source area and is therefore more influenced by the 
surrounding C3 crops, than the flux-gradient data. Interestingly, Good 
et al.  (2012) also found higher δE values with the Keeling plot method 
using single-height data than using data from multiple heights (mean dif-
ference about 16‰ for 18O, black triangles in their Figure 8).

3.3. Comparison With the CG Model

It is believed that the CG model accurately predicts the δE of evaporat-
ing water bodies, and we tested the δE determined with the flux-gradient 
method and the Keeling plot method using each of the three regression 
models at Lake Taihu against this benchmark (Figure 6). The comparison 
statistics are summarized in Table 2. Once again, the GMR result showed a 
very large RMSE (30.18‰). The flux-gradient method and the Keeling plot 
method with the OLS and the YS regression were comparable in terms of 
linear correlation and RMSE. Of these three estimates, the flux-gradient 
and the OLS regression showed a small MB of 0.31‰ and 0.48‰, respec-
tively, and the MB of the YS regression was larger, at 1.50‰.

The relative larger bias between YS and CG begs the question of whether the CG model of isotopic evapo-
ration can be used to benchmark the performance of the flux-gradient method or the Keeling plot method. 
For a given hourly period, measurement errors in the CG input variables can propagate through the model 
to cause errors in the calculated δE. This type of error should be random. One potential source of systematic 
CG error lies in the parameterization of the kinetic fractionation of evaporation. In the present study, we 
used the wind dependent parameterization of Merlivat and Jouzel (1979), which has been validated inde-
pendently against the observed local evaporation line and the observed lake evaporation (Xiao et al., 2017). 
The mean kinetic factor for the observations shown in Figure 6 was 7.3‰. Forcing the CG model to remove 
the MB with the YS result would require that the mean kinetic factor be lowered to 5.8‰. Such a small 
kinetic factor seems unphysical because it is lower than other values used in the literature for inland water 
bodies (Gonfiantini et al., 2018; Jasechko et al., 2014) and is even lower than that for the open ocean (Mer-
livat & Jouzel, 1979). Instead, we suggest that the relative bias between YS and CG stemmed from the error 
structure used for YS. The instrument errors were highly sensitive to concentration. The error structure 
shown in Figure 3 was based on measurement taken during instrument calibration cycles. While it was 
much better than the error structure based on the instrument specification, it may still deviate from the true 
measurement errors.

The results presented above were based on open-fetch conditions. Here, we investigated the relationship of 
the bias errors to flux footprint. The flux footprint model of Kljun et al. (2015) was used to determine the 
fractional contribution from the land surface for each hourly observation (Figure S7). The main input varia-
bles (measurement height, friction velocity, the Obukhov length, standard deviation of the cross-wind com-
ponent, wind direction, and wind speed) were provided by our measurement system. The roughness length 
was set to 8.04 × 10−4 m according to the locally tuned momentum transfer coefficient (Xiao et al., 2013). 
The boundary layer height was provided by the Global Data Assimilation System of the US National Oce-

HU ET AL.

10.1029/2020EA001304

11 of 15

Figure 6. Comparison of the evaporation isotopic signature δE against 
the Craig-Gordon (CG) model calculation for Lake Taihu: flux-gradient 
method (a), and Keeling plot method with the YS (b), the OLS (c), and the 
GMR (d) regression models. Solid lines are the 1:1 comparison and dashed 
lines are linear regression. Refer to Table 2 for regression statistics. Color 
indicates data density. GMR, geometric mean regression; OLS, ordinary 
least squares; YS, York's solution.
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anic and Atmospheric Administration (https://ready.arl.noaa.gov/gdas1.php). The fractional contribution 
by the land surface to the total flux varied from zero to about 12% (Figure  S8). Figure  7 compares the 
flux-gradient and the Keeling method (with OLS) against the CG model for observations made under two 
flux footprint conditions: those with “clean” footprint (panels a and c; fractional land contribution less than 
1%) and those with “contaminated” footprint (panels b and d; fractional land contribution greater than 3%). 
At land fractional contributions less than 1%, both the flux-gradient method and the Keeling plot with OLS 

were in good agreement with the CG model (MB 0.32‰), consistent with 
the assessment based on the data collected under open-fetch conditions 
(Figure 6). During periods when the land source contribution exceeded 
3%, the flux-gradient method showed a larger magnitude of MB of 0.98‰ 
than the Keeling method (0.41‰). It appears that, by also incorporating 
time variations caused by atmospheric turbulence within each hourly ob-
servation, the Keeling method was less sensitive to footprint influence 
than the flux-gradient method which relied on the hourly mean concen-
tration values only for the determination of δE.

4. Summary and Conclusions
Implementation of Keeling plot method requires that measurement er-
rors in the concentration and in the isotopic composition be known ac-
curately. The OLS and GMR regressions assume extreme error structures: 
In OLS, error is zero for x and is equal across the data range for y; in 
GMR, the normalized error in x and y are equal. In principle, YS is the 
best choice of the three regression models if measurement errors in the 
concentration and in the isotopic composition and their correlations are 
known (Wehr & Saleska, 2017). Wehr and Saleska (2017) found that the 
YS regression with concentration-independent errors yields the least bi-
ased result for CO2 isotopes. In the present study, the YS regression with 
concentration-independent (factory-specified) isotope errors worked 
well for one instrument (Picarro at Zhangye) but not for the other (LGR 
at Lake Taihu). Use of the concentration-dependent error structures from 
field observations significantly improved the YS estimate in comparison 
with the OLS regression, the flux-gradient method and the CG model cal-
culation. This difference resulted mainly from the fact that the manufac-
turer default error value for δv is invariant with the vapor concentration 
whereas the actual error was highly dependent on the concentration.
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Quantile
Mean c 
(ppm) Error in 1/c (ppm−1) Error in δv (‰)

c range 
(ppm) δv range (‰)

1/c range 
(ppm−1)

Error in 1/c/(1/c 
range)

Error in δv/
(δv range)

Zhangye

 0–25 7,688 5.86 × 10−7 (4.81 × 10−7) 0.57 (0.28) 1,856 3.48 3.64 × 10−5 0.016 (0.013) 0.16 (0.081)

 25–75 12,984 3.32 × 10−7 (1.68 × 10−7) 0.53 (0.28) 2,659 3.50 1.65 × 10−5 0.020 (0.010) 0.15 (0.081)

 75–100 18,930 2.16 × 10−7 (7.89 × 10−8) 0.55 (0.28) 3,566 3.95 1.02 × 10−5 0.021 (0.008) 0.14 (0.072)

Lake Taihu

 0–25 9,171 4.58 × 10−7 (3.08 × 10−7) 0.88 (0.21) 1,262 7.43 1.73 × 10−5 0.026 (0.018) 0.12 (0.029)

 25–75 21,213 1.25 × 10−7 (1.33 × 10−7) 0.49 (0.21) 1,697 3.29 4.27 × 10−6 0.029 (0.031) 0.15 (0.065)

 75–100 30,879 6.96 × 10−8 (9.16 × 10−8) 0.40 (0.21) 2,232 3.11 2.35 × 10−6 0.030 (0.039) 0.13 (0.068)

Notes. Errors are calculated as one standard deviation of high frequency data (0.2 Hz at Zhangye and 2 Hz at Lake Taihu). Here c and δv denote water vapor 
concentration and vapor δv, respectively. Numbers in parentheses are using error estimates from instrument manufacturers.

Table 3 
Measurement Errors in Three Quantiles of Water Vapor Concentration

Figure 7. Comparison of the evaporation isotopic signature δE against the 
Craig-Gordon (CG) model calculation for Lake Taihu: the flux-gradient 
method (a and b) and the Keeling plot method with OLS (c and d) under 
different footprint conditions. Panels (a and c) are for observations with 
“clean” footprint (fractional contribution from land less than 0.01), and 
panels (b and d) are for observations with “contaminated” footprint 
(fractional contribution from land greater than 0.03). The solid line is 1:1 
and the dashed line is the linear regression with regression statistics noted. 
MB, mean bias; OLS, ordinary least squares; RMSE, root mean square 
error.
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The Keeling plot results with the YS (using field error structures) and OLS regression and the flux-gradient 
results were comparable, with the mean difference in the hourly δE of less than 1.01‰ and with high linear 
correlation (R = 0.70–1.00) for both Zhangye and Lake Taihu. These results were obtained with high fre-
quency measurements made at two heights above the surface. The agreement with the flux-gradient meth-
od deteriorated (R = 0.29–0.49) if one-height data was used to perform the YS and the OLS regression. In 
general, the GMR results were poor in comparison with the OLS and the YS regression or with the flux-gra-
dient method. Unlike in studies of carbon isotopes, here the GMR bias in reference to the OLS regression 
could be either positive or negative. Use of the Miller-Tans instead of the Keeling plot equation did not bring 
improvement to the GMR performance.

At Lake Taihu, the flux-gradient method and the Keeling plot method with the OLS and the YS regression 
(using field error structures) were comparable to the CG model calculation in terms of linear correlation R 
(0.66–0.72) and RMSE (5.96–6.93‰). The MB error in δE was small for the flux-gradient method (0.31‰) 
and the Keeling plot method with the OLS regression (0.48‰), indicating that these methods were both 
robust, at least for this site with large fetch conditions. The MB of the YS regression was larger (1.50‰), 
suggesting room for further improvement of the error structures used for YS. Compared with the periods 
when the land source contribution was smaller than 1%, both the flux-gradient method and the Keeling 
plot method showed a larger magnitude of MB of 0.98‰ and 0.41‰, respectively, when the land source 
contribution exceeded 3%. The Keeling method with OLS regression may be less sensitive to fetch than the 
flux-gradient method.

Data Availability Statement
The water vapor isotope data used in this study are available on the website https://vapor-isotope.yale.edu.
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