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Abstract

We examine the analysis by Lee (1998) of the scalar conservation budget in advective ¯ows. Lee treated the budget in a

one-dimensional framework, neglected horizontal derivatives of turbulent quantities and proposed that mean ¯ow advection,

simpli®ed to its vertical component, can be used to improve budget closure, when data from only a single tower are available.

We conclude:

� that the appropriate analysis framework for constructing such budgets is unavoidably two- or three-dimensional because 2D

and 3D mean velocity fields always induce streamwise variation in the eddy fluxes of scalars.

� that in such flow fields it is generally incorrect to assume that the vertical component of advection �w@�c=@z is everywhere

much larger than the horizontal component �u@�c=@x The vertical component can only provide a good measure of total

advective flux divergence in the special circumstance where the tower is located beneath the vertical stagnation streamline of

a recirculating flow. By referring to a linear model of scalar transport over a hill we show that the relationship between

�u@�c=@x and �w@�c=@z is entirely dependent on particular flow conditions and that, in general, �w@�c=@z cannot even be used to

provide a bound on the magnitude of total advection.

� that for measurements at heights small compared to the horizontal scale of the advective flow, the horizontal gradient of

turbulent flux @u0c0=@x can probably be neglected relative to its vertical equivalent @w0c0=@z and,

� by using simple hydrodynamic models of 2D flows it can be shown that the vertical gradient of mean vertical velocity is

approximately constant over tower heights small compared to the horizontal scale of the advective flow.

We also comment on the proper choice of coordinate frame for analysis. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Lee (1998) has produced a timely reevaluation

of the way that the mass conservation equation is

used to deduce net ecosystem exchanges (NEE) of

carbon and energy between the biosphere and atmo-

sphere, given measurements of the appropriate eddy

¯ux (e.g. Goulden et al., 1996). In this note we will

argue that, while Lee's approach goes some way

towards improving the current practice in particular

circumstances, it is not generally applicable because it
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ignores the essential two- or three-dimensionality of

advective ¯ows.

Lee considers the situation where two- or three-

dimensional ¯ow ®elds are superimposed on a one-

dimensional, horizontally homogeneous background

¯ow. The inhomogeneous ¯ows he considers to be

generated by the passage of the cells of the convective,

planetary boundary layer, by `mesoscale circulations'-

convective cells driven by local contrasts in the surface

energy balance and, therefore, ®xed in the landscape-

and especially by anabatic or katabatic ¯ows

caused by the interplay of topography and diabatic

forcing.

In circumstances where the measuring height and

the scale of vertical variation in mean quantities is

much smaller than the horizontal scale of the advec-

tive ¯ow, it is reasonable to expect that @ ��=@x

� @ ��=@z where �� is an arbitrary mean quantity

and it is on these grounds that Lee has argued that

in such ¯ows the horizontal advection term �u@�c=@x

may be neglected relative to the vertical advection

term �w@�c=@z. Unfortunately, exactly the same scaling

arguments suggest that in these situations �w� �u to the

degree that �u@ ��=@x��w@ ��=@z and the question of

whether one or the other term may be neglected in

particular circumstances cannot be resolved without

considering ¯ow dynamics. In this note simple

dynamic models of relevant ¯ows will be used to test

this and other assumptions in Lee (1998).

2. Theory

The conservation of a scalar c is governed by:

@c

@t

� �
� @uc
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� �
� @wc

@z

� �
� s�x; z; t� (2.1)

where x is aligned with the local mean wind direction

(assumed to be invariant with z in the measurement

domain), z is perpendicular to the local terrain

surface and u, w are velocity components parallel to

x and z, respectively. s(x, z) is the specific source

strength of c and molecular diffusion has been

ignored. For simplicity, throughout this note we

will restrict ourselves to 2D flows. The extension to

3D is obvious and adds nothing essential to the dis-

cussion.

After Reynolds decomposition and averaging we

obtain:
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where overbars denote ensemble mean quantities and

primes departures therefrom. The grouping of terms in

Eq. (2.2) is somewhat more natural than in Lee's

equation (XL2) as the fourth term on the LHS of

(2.2) is identically zero by continuity. (prefix XL will

denote equation numbers in Lee (1998)).

We wish to obtain the net ecosystem exchange,

NEE, that is the ¯ux of carbon or energy across the

boundary between the atmosphere and the soil and

vegetation. We make this the lower boundary of a

control volume whose upper and lateral boundaries are

located in the air. Writing Eq. (2.2) in tensor form, we

can express mass conservation in this control volume

as
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where the horizontal extent of the control volume is a

rectangle of side 4LxLy and its height is zr. We can

stipulate that the control volume be of unit width in the

y direction (Ly = l/2) and integrate (2.2) according to

(2.3) to obtain:
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where L = Lx and as well as integrating dx we have

divided by the streamwise extent of the control volume

so we are considering average values of all quantities
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that vary with x. We have also written w0c0�0� as

shorthand for the surface flux of c, which must of

course be effected by molecular diffusion at the sur-

face, and we have ignored complications caused by the

spatial variation of mean quantities in the canopy,

which requires us to apply a volume as well as a time

average in order to obtain meaningful within-canopy

variables. These technical details can be followed in

various sources, e.g., Kaimal and Finnigan (1994) and

do not affect the current arguments.

Eq. (2.4) is the appropriate framework in which to

discuss mass conservation when the ¯ow®eld is two-

dimensional. In his discussion of (2.4) Lee makes four

assumptions:

� a) That the mass conservation equation can be

treated as if it were one-dimensional even though

the underlying flow field is two-dimensional, that

is, values of variables at (x = 0, z) equal their

horizontal averages, viz.

1

2L

Z L

ÿL

��x; z� dx���0; z� (2.5a)

where �(x, z) is an arbitrary variable.
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everywhere in the flow,

� c� @u0c0

@x

� �
� @w0c0

@z

� �
(2.5c)

everywhere in the flow, and

� d� @�w

@z
� �wr

zr

(2.5d)

We will ®rst follow Lee and develop (2.4) using

these assumptions and then go back and examine them

critically. Using assumptions (2.5 a,b,c), (2.4)

becomes:
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And using assumption (2.5d) we obtain:
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where,
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The last term in (2.7) is the result of the following

integration by parts:Zzr
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and so relies on assumption (2.5d) in an essential way.

Let us now examine in detail the four assumptions

(2.5) that led from (2.4) to (2.7).

2.1. Assumption (2.5a)

Imagine we have steady 1D ¯ow in which a constant

source or sink �s�x; 0� at the surface together with a 1D

turbulent ¯ow generates a ¯ux of c with a concentra-

tion pro®le �c�z�. We can abandon the complication of

a canopy for this simple example. The situation is

described by:

�uj
@�c

@xj

� ÿ @u0Jc0

@xj

� �s��x; 0� (2.9)

where �(x, z) is the Dirac delta function. Everywhere

except at the ground surface the advective flux is

balanced by the divergence of turbulent flux and in

the 1D situation, both are equal to zero.

We now let the ¯ow be perturbed by any of the

mechanisms we discussed in the introduction so that a

steady 2D ¯ow®eld results from the addition of the

perturbation to the original lD ¯ow. Spatial variation

in the mean ¯ow inevitably results in the generation of

spatial variation in the turbulent ¯uxes through four

mechanisms. These have been analysed in an illumi-

nating way by Raupach et al. (1992) in the context of

¯ow over a low hill. They are:

J. Finnigan / Agricultural and Forest Meteorology 97 (1999) 55±64 57



1. Variation of radiant energy ¯ux as a function of

the angle the solar beam makes with the surface.

This mechanism produces a streamwise variation

in sensible and latent heat ¯ux at the surface and,

usually, in the ¯ux of CO2 as well. Obviously it is

only important in complex topography but the

next three mechanisms operate on ¯at ground as

well as on hills.

2. Change of surface stress with x. This feeds into the

scalar ¯ux boundary condition. If we suppose a

logarithmic description still to be valid at the

surface, that is that if the ¯ow is relatively slowly

varying in x, then the scalar ¯ux near the surface is

described by a ¯ux-gradient relationship with

diffusivity (�u*z), � being Von Karman's constant

and u* the friction velocity. It is the x dependence

of the near-surface wind®eld that produces a

streamwise variation in u*.

3. Change of turbulent stresses in response to the 2D

wind®eld. Spatial variation develops in the

turbulent stresses in response to the 2D wind®eld.

These in turn generate spatial variation in the eddy

¯uxes of the scalar as can easily be seen by

considering the production terms of the relevant

eddy ¯ux rate equations, where the turbulent

stresses multiply mean concentration gradients in

terms that typically take the form, u0iu0j@�c=@xj

(Kaimal and Finnigan, 1994).

4. Changes in the mean scalar concentration ®eld

develop as isoconcentration lines (which were

parallel to the ground in the lD case) are convected

along the converging and diverging streamlines of

the 2D ¯ow®eld. This 2D structure in mean

concentration also feeds into the production terms

of the eddy ¯ux rate equations as seen in (3)

above.

Even if the surface ¯ux of c is maintained constant

with x, the last three mechanisms set out above will

ensure that horizontal variations will develop in

w0c0�x; zr� and in u0c0�x; zr�, invalidating assumption

(2.5a).

2.2. Assumption (2.5b)

This is that the streamwise advection term �u@�c=@x

is negligible relative to the vertical advection �w@�c=@z

We can examine the consistency of this assumption

best by a simple thought experiment. Remaining with

the steady, 2D ¯ow®eld discussed above (Eq. (2.9)),

we see that at any point in the interior of the ¯ow, the

divergence of eddy ¯ux generated by mechanisms a-d

must be balanced by the divergence of advective ¯ux:

�u
@�c

@x
� �w

@�c

@z
� ÿ @u0c0

@x
� @w0c0

@z

� �
(2.10)

The simplest conceivable situation is one where the

imposed 2D ¯ow is essentially inviscid and generates

no eddy ¯ux perturbation so the right hand side of

(2.10) remains zero but @�c=@x and @�c=@z both change

from their 1D values as the ¯uid is advected along the

2d streamlines (mechanism (4) of the last example).

The terms �u@�c=@x and �w@�c=@z are now individually

non-zero but, as the RHS of 2.10 is still zero, they must

be equal and opposite everywhere in the ¯ow.

Consider next a more realistic 2D ¯ow, a perturba-

tion of an originally 1D ¯ow®eld by convection cells

that span the boundary layer. The unperturbed lD

¯ow®eld contained no mean streamwise velocity

and convectively driven turbulence maintained the

steady 1D ¯ux of �c�z�. We impose upon this a set

of symmetrical circulation cells generated by a suc-

cession of vortices of alternating sign, spaced regu-

larly in the x direction and with their axes aligned in

the y direction (Fig. 1). This ¯ow pattern reproduces

the essential elements of real, convectively generated,

recirculating ¯ows and, near the surface at least, we

would expect a 2D pattern of eddy ¯ux divergence to

accompany the 2D mean ¯ow.Ascending and descend-

ing stagnation streamlines ��u � 0� are located alter-

nately between each pair of vortices. Directly above a

vortex the ¯ow is parallel to the ground, ��w � 0� (Fig.

1). On a vertical stagnation streamline the only com-

ponent of the advective term is �w@�c=@z Similarly,

directly above a vortex, the only component of the

advective ¯ux divergence available to balance turbu-

lent ¯ux divergence is �u@�c=@x In contrast to the

inviscid case discussed above, where the eddy ¯ux

divergence remained zero, now, depending on where a

tower is situated in the circulation cell, the vertical

advection term can be responsible for all or none of the

advective ¯ux divergence and without prior knowl-

edge of the 2D ¯ow®eld all we can say is that a

measurement of �w@�c=@z on a tower might represent

some bound on the magnitude of the total advective

¯ux divergence.
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If we now extend our model to the situation where

the original 1D ¯ow had a mean velocity component

�u0�z�, the mass balance becomes:

��u0 � �u� @�c

@x
� �w

@�c

@z
� ÿ @u0c0

@x
� @w0c0

@z

� �
(2.11)

Adding a height dependent streamwise velocity

�u0�z� to our simple model of alternating vortices

means that stagnation streamlines are con®ned

beneath some height that depends on the relative

strengths of the vortices and the mean ¯ow. Below

this level the stagnation streamlines are vertical only at

the surface (Fig. 2). Above the closed stagnation

streamlines, the ¯ow®eld is a wave pattern with period

2L so that �w passes through zero every L and �u is never

zero above z = 0. In this ¯ow, �w@�c=@z can never

account for all the advection term except at stagnation

points, when both terms are zero anyway.

These two examples leave open the question of

whether, in realistic 2D ¯ows, there are universal

relationships between the two components of advec-

tion that would allow us to use �w@�c=@z as a bound on

the total advection at any point in the ¯ow®eld. We can

investigate this with a reasonable degree of generality

by enlisting the model of Raupach et al. (1992) of

scalar ¯ux and concentration over a low hill. Although

in this case the perturbing 2D ¯ow ®eld is caused by

the presence of a hill we can view it as representative

of any small perturbation whether it be caused by a hill

or a weak manifestation of the diabatic effects we have

already mentioned.

A fundamental feature of the linear model is the

division of the ¯ow domain into two parts: an inner

region of depth l close to the surface, where both mean

momentum and scalar ®elds are strongly affected by

the changes in turbulent ¯uxes caused by the hill, and

an outer region, z > l, where the mean ¯ow responds

inviscidly to the hill and changes to the scalar ®eld are

caused entirely by advection along the distorted mean

¯ow streamlines. Because the model is linear we write

Eq. (2.11) as:

�u0
@�c1

@x
� �w1

@�c0

@z
� ÿ @w0c0

@z
(2.12)

where subscript 0 denotes the undisturbed upwind

variable and subscript 1 the perturbation caused by

the hill and the model takes assumption (2.5c) as valid

on the grounds of a rational scaling procedure. It is

clear from (2.12) that the signs and relative magni-

tudes of the two advection terms depend on the sign of

@�c0=@z, which is independent of the presence of the

Fig. 1. Streamlines generated by a regular array of spanwise vortices.

Fig. 2. Streamlines generated by the same vortex array with a mean streamwise velocity �u0�z�.
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hill, and on the way that @�c1=@z and �w1 change as the

flow goes over the hill.

Considering the horizontal advection term ®rst, the

linear theory computes �c1 the perturbation to the

concentration ®eld (and hence �u0@�c1=@x also) as

the sum of four components, each the result of one

of the four mechanisms we listed earlier as contribut-

ing to the change in eddy ¯ux. These were: streamline

convergence/divergence, changes in turbulent stres-

ses, changes in surface shear stress and changes in

surface scalar ¯ux. As we traverse the hill, contribu-

tions to �c1 from the ®rst three of these vary in phase

with each other. Below z = l the effect of surface shear

stress dominates, the in¯uences on �c1 of stress changes

and streamline convergence/divergence being smaller

in magnitude and opposing each other. Above z = l,

only the streamline convergence/divergence effect is

signi®cant. The fourth contribution to �c1, that from

changes in surface scalar ¯ux, depends entirely upon

how this changes as we pass over the hill and need not

be in phase with the other contributions to �c1. For

evaporation and sensible heat especially, it will

respond to the interaction of slope angle and sun

elevation and to the difference of water availability

between hilltop and valley.

Moving now to the vertical advection term,

�w1@�c0=@z, the theory shows that over the hill, �w1

varies in phase with the ®rst three contributions to

�u0@�c1=@x. Furthermore, within the assumptions of

linearity, contributions to �u0@�c1=@x from changes in

turbulent stresses and changes in surface shear stress

do not depend directly on the sign of @�c0=@z so that

changing the sign of the background scalar gradient, as

occurs for example during the twice-daily switch

between assimilation and respiration dominance of

the CO2 ¯ux, can reverse the sign of the vertical

advection term in the inner layer with only a small

effect on the horizontal one.

With these results we are in a position to compare

the relative signs and magnitudes of the two advection

terms. Above the inner layer, where only the effect of

streamline convergence/divergence affects the scalar

perturbation, the theory yields the simple result that

the two advection terms vary in phase but are of

opposite sign and approximately equal magnitude

This is the result we would have expected from our

earlier discussion of a general inviscid 2D perturba-

tion. In the inner layer, where most measurements are

made, the sign of the horizontal advection term

�u@�c1=@x is determined by the relative strengths of

the four competing in¯uences on �c1 although with

uniform surface roughness and constant surface scalar

¯ux, total �u0@�c1=@x will have the same sign as its

contribution from streamline convergence/divergence

but will be of considerably larger magnitude (Raupach

et al., 1992). In the inner layer, the sign and magnitude

of the vertical advection term is set by the background

scalar gradient in a way that is essentially independent

of the dominant contributions to the horizontal term.

In summary, according to this simple linear model,

which we might have expected to indicate any uni-

versal regularities between the two advection terms,

the two contributions to advection are almost equal

and opposite in regions of the ¯ow, where changes in

turbulent ¯ux divergence are negligible. Within the

inner layer, where most ¯ux measurements will be

made, the two terms may be of considerably different

magnitude and the same or opposite sign, depending

on the relative contributions of the various competing

in¯uences on �c1. Clearly we have no grounds for using

a measurement of �w@�c=@z as a bound on total advec-

tion at an arbitrary point in the ¯ow.

Finally let us relax the conditions of our thought

experiment still further and allow the ¯ow to be 2D

and unsteady. This allows us to consider the passage of

cells of the convective boundary layer which generate

2D (in reality, 3D) ¯ow ®elds as they pass over the

tower. Eq. (2.11) becomes:

@�c

@t
� ��u0 � �u� @�c

@x
� �w

@�c

@z
� ÿ @u0c0

@x
� @u0c0

@z

� �
(2.13)

and the question of the relative importance of the three

components of the total derivative, the LHS of (2.13),

becomes one of timing. We can represent the passage

of convection cells simply by translating the x axis in

the first example (Fig. 1.) at a velocity -Uc, relative to

the tower, where Uc is the passage velocity of the cells.

We obtain exactly the same result as in the last two

examples except that the alternating regions of

��u � 0; �w � 0� convect past the tower with a fre-

quency Uc/2Lv,where Lv is the streamwise spacing

of the vortices (Fig. 2).

To summarize, assumption (2.5b) is not a valid

statement of mass conservation except in the fortui-
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tous circumstance that the tower is located on the

stagnation streamline of a spatially ®xed ¯ow pattern

without a large scale background mean velocity.

2.3. Assumption (2.5c)

Unfortunately, we cannot use arguments of compar-

able simplicity to decide whether @u0c0=@x can always

be neglected relative to @w0c0=@z This is because the

turbulent ¯ux ®eld generated by even a simple 2D

mean ¯ow is the result of complex interactions not

easily represented by a thought experiment. We may

once again seek guidance in a speci®c example by

resorting to the model of Raupach et al. (1992) of

scalar ®elds and ¯uxes over a low hill. This linearised

approach represented the surface normal ¯ux via an

eddy viscosity and was able to ignore the horizontal

eddy ¯ux divergence by appealing to a consistent

scaling procedure. We might cautiously conclude

from this that assumption (2.5c) is justi®ed for mea-

surements close to the ground in 2D motions weak

compared to the 1D background ¯ow.

2.4. Assumption (2.5d)

We recall that this is that we can write @�w=@z�
�wr=zr and so simplify the integration by parts in Eq.

(2.8). Since �w�z� must vanish at the ground and equal

�wr at zr the assumption is correct in order of magnitude

but the height dependence of @�w=@z might still be

signi®cantly different from linear. We can only test

this by assuming a model for the 2D air¯ow pattern

that gives rise to �w�z�. Since we have already con-

cluded that Eq. (2.8) is only valid near a vertical

stagnation streamline, we will consider the downdraft

generated between an isolated pair of the ®xed, coun-

terÿrotating vortices of Fig. 1. The vortex centres are

located at (xs = �L, z = zv) (See Fig. 3). Assuming

inviscid ¯ow, classical hydrodynamic theory (e.g.

Milne-Thompson, 1968) gives the vertical velocity

gradient on the stagnation streamline through x = 0 as

and for Lv� z, zr, zv, (2.13) reduces to @�w=@z��wr=zr

as assumed by Lee. More complicated and realistic

flow field models produce essentially the same con-

clusion: as long as the horizontal scale of the 2D flow

pattern is much larger than the reference height, then

@�w=@z is approximately constant between zr and the

ground.

2.5. Coordinate systems and mean vertical velocities

Lee suggests a practical procedure for de®ning the

mean vertical velocity using a two stage process. The

procedure is a response to the experimental dif®culties

Fig. 3. Flow generted by a pair of spanwise vortices.

@�w

@z
� �wr

1= L2
v � zÿzv� �2

� �� �
ÿ2 zÿzv� �2= L2

v � zÿzv� �2
� �2

� 1= L2
v � z� zv� �2

� �� �
ÿ2 z� zv� �2= L2

v � z� zv� �2
� �2

� �
zÿzv� �= L2

v � zÿzv� �2
� �

� z� zv� �= L2
v � z� zv� �2

� �h i
(2.14)
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of measuring a vertical velocity which is typically not

much larger than error terms caused by sonic anem-

ometer misalignment or transducer shadowing. It

consists in regressing vertical velocity measured in

the reference frame of the sonic against the azimuth of

the mean velocity. The regression employs all the

measuring periods available. The least squares ®t of

the vertical velocity against azimuth is taken to be the

vertical velocity forced by the underlying terrain, viz:

wmeasured � �w� ŵ and ŵ � a��� � b���û
(2.15)

where ŵ is thecomponentofverticalvelocityassumedto

be forced by theunderlying terrain and ŵ is the departure

of theverticalvelocitymeasured inanyaveragingperiod

from this value; û is the measured total horizontal

velocity and � is the azimuth angle. (I have departed

from Lee's notation slightly in writing 2.15.) As pointed

out by Lee, the procedure requires �w to be distributed

randomly about ŵ to avoid bias. We note that, if ŵ is

really to represent a terrain-forced velocity, it would be

advisable to include in the regression sample only

measuring periods when the flow was near neutral

stratification, i.e., times of strong wind

If readers are to use this procedure the following

two points are salient

1. The triple û; ŵ; � can be used to de®ne the axes of

a Cartesian coordinate system X̂i aligned with the

local long-term mean streamline as de®ned by the

regression procedure. This coordinate frame is not

necessarily parallel to the underlying terrain, in

fact in complex terrain it will usually not be so.

2. If we wish to use the departure value of mean

velocity, �w in Eq. (2.2), then we are, by default,

choosing to use X̂i coordinates as the basis for

analysis and must rotate all the other terms

appearing in (2.2) and equations derived from it

into the X̂i frame. If it should occur that �w=�u is

signi®cant (eg. very light winds and anabatic

¯ows), then the changes to the other terms in (2.2)

may well be of the same order as any calculated

advection correction.

Rotating into the Cartesian frame X̂i, aligned with

the long-term mean streamlines is not equivalent to

working in streamline coordinates. In streamline coor-

dinates the mean velocity always de®nes the x axis;

there are no mean velocity components in the y and z

directions. In two dimensions the streamline coordi-

nate version of the conservation Eq. (2.2) is:

@�c

@t
� �u@x�c � ÿ@xu0c0ÿ u0c0

La

ÿ@zw0c0 � w0c0

R
� �s�x; z�

(2.16)

where

1

La

� 1

�u
@x�u and

1

R

is the local radius of curvature of the streamline.

The advantage of using streamline coordinates is

that the advective term is considerably simpli®ed but

at the expense of the extra compensating terms in the

turbulent ¯ux divergence. Not surprisingly, these extra

terms can be of the same order as the advective terms

that they replace. Note that in (2.16) partial derivatives

have been replaced by directional derivatives denoted

by (@x, @z).The only practical consequence of this in

most cases is that, when manipulating Eq. (2.16), the

order of multiple differentiations or integrations can-

not be arbitrarily changed. More information on

streamline coordinates and their use may be found

in Kaimal and Finnigan (1994) and references therein.

3. Discussion and conclusions

1. The kind of advective ¯ow ®elds that give rise to

the mean vertical velocities discussed by Lee

(1998) are intrinsically two- or three-dimensional

and should be analysed as such. This requires us to

integrate the point valued conservation equation

horizontally as well as vertically when we set out

to relate net ecosystem exchange to atmospheric

¯uxes measured by instruments on towers above

the vegetation.

2. Perturbing an initially 1D ¯ow to produce a 2D or

3D ¯ow ®eld results in a corresponding 2D or 3D

pattern in the turbulent ¯uxes of scalars. However,

adopting a lD analysis framework (Eq. (2.6)) in a

2D or 3D ¯ow carries the implied assumption that

the eddy ¯uxes measured on the tower are equal to

their horizontal average values over the control

volume or `footprint' While the magnitude of their

departures is impossible to test without measure-

ments or a model of the ¯ow and concentration

®eld, this assumption does not hold in general.
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3. The 2D or 3D pattern of eddy ¯ux divergence must

be balanced in the interior of the ¯ow by an advective

¯ux divergence: �u@�c=@x� �w@�c=@z. We can show

by examining the mean velocity ®elds of simple

recirculating 2D ¯ow ®elds that the vertical advec-

tion term is responsible for all the advective ¯ux

divergence only in the particular circumstance that

measurements are made on a vertical stagnation

streamline. Such a streamline cannot exist when the

2D or 3D perturbation is superimposed on a lD ¯ow

driven by a steady, height dependent mean velocity.

4. We have examined the question of whether, in the

case of a ¯ow with a large scale background wind,

there are any universal regularities in the relation-

ship of the two advection terms that would allow

us to view the NEE obtained by applying Lee's

correction as a bound on the possible value. Using

a linear model of scalar ¯ow and transport over a

low hill as a test case, we conclude that above the

region where perturbations to the turbulent ¯ux

divergence are signi®cant, the two advection terms

are essentially equal and opposite so including

only one of them in a budget calculation will

actually make things worse. Closer to the surface

in the region where most measurements are made,

the signs and relative magnitudes of the two terms

are determined by a set of competing in¯uences

that are speci®c to a particular ¯ow and including

only the vertical advection term in the budget

cannot be justi®ed.

5. It is impossible to test the assumption that the

horizontal divergence of turbulent ¯ux is small

relative to the vertical, i.e., @u0c0=@x�@w0c0=@z

except in relation to a particular ¯ow ®eld.

Comparison with a small perturbation model of

scalar ¯uxes over a low hill suggests, however,

that this is a reasonable assumption when the

measurement height is much smaller than the

horizontal scale of the 2D or 3D motion.

6. Simple inviscid ¯ow theory enables us to test the

third of Lee's explicit assumptions without adopt-

ing the full panoply of a model for the distorted

concentration ®eld. We conclude that it is valid to

assume that @�w=@z��wr��wr=zr as long as the

horizontal scale of the two- or three-dimensional

¯ow ®eld generating �wr is much larger than zr.

7. We also note that practitioners must take care,

when de®ning the mean vertical velocity relative

to a chosen coordinate frame, that they also rotate

all the other terms in the conservation equation

into the chosen coordinate frame. The chosen

frame might be the Cartesian frame de®ned by the

regression of the long term data set against

azimuth, that is, essentially, the Cartesian frame

aligned with the long term mean streamlines. We

point out also that this does not amount to working

in `streamline coordinates'.

It is reasonable to ask, therefore, why the advective

correction proposed by Lee (that is the retention of

�w@�c=@z only) appears to improve energy and carbon

budget closures at some sites (Lee, 1998, Dr D.

Baldocchi, pers. commun.). It may be that at these

sites, towers are situated on ridges or hills which may

be acting as foci for diabatic downdrafts or updrafts so

that the measuring position is indeed located at or near

a stagnation streamline at times of light wind when the

advective correction might be most important.

We should not expect to be able to use simple

universal corrections to close scalar budgets in 2D

or 3D ¯ow ®elds, when we only have measurements at

a single point. The alternatives are to work at a

topographically ideal site and accept the intrinsic

limits to accuracy imposed by the stochastic character

of atmospheric ¯ow or, if one's site is less than

ideal, undertake the modelling and more intensive

measurements needed to characterise the ¯ow patterns

peculiar to that site, see for example Sun et al. (1998).

Given the scale of the investment that a multi-year

eddy ¯ux experiment represents, this latter course may

be attractive for sites that are topographically com-

plex.
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