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ABSTRACT: Lakes are major emitters of methane (CH4); however, a
longstanding challenge with quantifying the magnitude of emissions remains as a
result of large spatial and temporal variability. This study was designed to address
the issue using satellite remote sensing with the advantages of spatial coverage and
temporal resolution. Using Aqua/MODIS imagery (2003−2020) and in situ
measured data (2011−2017) in eutrophic Lake Taihu, we compared the
performance of eight machine learning models to predict diffusive CH4 emissions
and found that the random forest (RF) model achieved the best fitting accuracy
(R2 = 0.65 and mean relative error = 21%). On the basis of input satellite variables
(chlorophyll a, water surface temperature, diffuse attenuation coefficient, and
photosynthetically active radiation), we assessed how and why they help predict
the CH4 emissions with the RF model. Overall, these variables mechanistically
controlled the emissions, leading to the model capturing well the variability of
diffusive CH4 emissions from the lake. Additionally, we found climate warming and associated algal blooms boosted the long-term
increase in the emissions via reconstructing historical (2003−2020) daily time series of CH4 emissions. This study demonstrates the
great potential of satellites to map lake CH4 emissions by providing spatiotemporal continuous data, with new and timely insights
into accurately understanding the magnitude of aquatic greenhouse gas emissions.
KEYWORDS: inland lakes, algal blooms, CH4 emissions, spatial−temporal variability, satellite estimation

1. INTRODUCTION
The current increase of the atmospheric methane (CH4)
concentration is motivating research to investigate the
magnitude of CH4 emissions from natural sources.1−3 Lakes
produce a large amount of CH4 via anaerobic degradation of
organic carbon and, thus, are key natural emitters of CH4.

1,4,5

Global lakes are suffering eutrophication with algal blooms as a
result of nutrient enrichment and climate warming,6−8 which
can enhance CH4 production and emissions as a result of large
algae-derived organic carbon.5,9,10 Thus, quantifying the
magnitude of CH4 emissions from lakes has become a top
priority in the natural CH4 budget estimate.11−13

While several studies were dedicated to quantifying global
lake CH4 emissions, the current estimates are still poorly
constrained.4,14 It is estimated that global lakes emit 8−200 Tg
of CH4 year−1 (diffusion plus ebullition) to the atmos-
phere.1,3,15 The diffusive CH4 emissions alone spans more than
1 order of magnitude.13,15 These estimates are mostly based on
traditional analysis via scaling limited local/regional measure-
ments across the sample population to the globe without being
spatially and temporally explicit. However, evidence showed
that CH4 emissions from lakes varied considerably across time
and regions as a result of large differences in lake proper-
ties.4,16,17 Even CH4 emissions can vary greatly within a single

lake as a result of highly heterogeneous environmental
variables.10,18,19 Unfortunately, the majority of CH4 emission
measurements were conducted with limited time coverage or
low time resolution, likely leading to large uncertainty in lake
CH4 emission estimation.
Lake environmental variables have a significant impact on

CH4 emissions mechanistically, therefore, which are often
estimated by various models via relating emissions to lake
variables.11,13,15 For example, lake CH4 emissions at regional to
global scales can be estimated by the water temperature,20,21

primary production or eutrophic status,11,22 and surface
area.13,16 However, a longstanding problem remains with the
proposal as a result of the current limited availability of
spatially and temporally explicit data sets on lake properties.4,15

Satellite remote sensing can map dynamic lake properties with
acceptable accuracy at large spatial coverage and high temporal
resolution,23−25 providing a powerful tool in obtaining
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unbiased CH4 emission estimation.11,26 Meantime, machine
learning algorithms have been used successfully in carbon gas
emission prediction of inland waters;27−29 specifically, better
performance and adaptation in estimating inland water CH4
emissions with a machine learning algorithm have been
exhibited in comparison to traditional statistical methods
(e.g., linear regression).30 This provides a more powerful tool
and greater potential for lake CH4 emission mapping using
satellite imagery.
Lake Taihu, the third largest freshwater lake in China, is a

typical eutrophic lake with algal blooms. Frequent algal blooms
and associated eco-environmental issues have made Lake
Taihu a popular research site for remote sensing31,32 and CH4
emission studies10,33 at a long time. In the attempt to better
understand diffusive CH4 emissions from eutrophic lakes, we
first developed a machine learning model to obtain more
temporal and spatial coverage of diffusive CH4 emissions from
satellite data in the lake. There are numerous satellite systems
providing key eutrophic lake properties (e.g., algal blooms,
chlorophyll a, water clarity, and dissolved organic mat-
ter);23,25,34 moderate-resolution imaging spectroradiometer
(MODIS) data have the advantage with a long data set and
daily revisit periods.35

The main objectives of our study were (1) to develop
machine-learning-approach-based models of diffusive CH4
emissions in Lake Taihu from available MODIS/Aqua images
and ground data, (2) to establish a long-term time series of
CH4 emissions from satellite data (2003−2020) with high
spatial and temporal coverage, and (3) to evaluate the response
of CH4 emissions to lacustrine environmental changes. This
study, to the best of our knowledge, is the first to reconstruct a
long-term record of diffusive CH4 emissions from a eutrophic
lake via satellite remote sensing, providing new insight into
obtaining large-scale lake diffusive CH4 emissions with daily
time scales.

2. MATERIALS AND METHODS
2.1. Study Site and In Situ Data Set. Lake Taihu, with a

mean depth of 1.9 m and surface area of 2338 km2, is located
in the developed Yangtze River Delta of China. There are 172
rivers entering into the lake,36 and the local climate is a
subtropical climate with high water temperatures in the

summer and low temperatures in the winter.33 Large external
nutrient loading stimulates frequent algal blooms in Lake
Taihu.37 The lake is divided into Meiliang Bay, Northwest
Zone, Gonghu Bay, Central Zone, Southwest Zone, and
vegetation-dominated zone (Figure 1) according to nutrient
concentrations and aquatic vegetation distribution.10,33,38 The
spatial differences in the chlorophyll a and nutrient
concentrations also support the division,37,39 and more
information is shown in Text S1 of the Supporting
Information.
From September 2011 to November 2017, field measure-

ments were carried out to determine diffusive CH4 emissions
of eutrophic Lake Taihu. Water samples in each site of
Meiliang Bay, Northwest Zone, Gonghu Bay, and Central
Zone were collected monthly to obtain the CH4 emissions
before August 2013, and then, water samples were collected
seasonally after August 2013. Field surveys in the Southwest
Zone were conducted seasonally from 2011 to 2017. Sampling
and calculation for the CH4 emissions used in this study were
detailed in the study of Xiao et al.,10 which are also presented
in Text S2 of the Supporting Information.

2.2. MODIS-Derived Data Acquisition and Processing.
Satellite data collected by MODIS/Aqua with a maximum
spatial resolution of 250 m (bands 1 and 2) and a very short
revisit interval (1 image/day) were used to obtain sufficient
spatial−temporal coverage of Lake Taihu (Text S3 of the
Supporting Information). We used 1257 high-quality cloud-
free MODIS/Aqua images in this study (Table S1 of the
Supporting Information). MODIS-derived environmental
variables, including the chlorophyll a concentration (Chl a),
lake surface temperature (LST), diffuse attenuation coefficient
(Kd), and photosynthetically active radiation (PAR), were used
as inputs to estimate the diffusive CH4 emissions. These
variables controlled the CH4 emissions from lakes, and they are
often used as either a proxy for CH4 emission estimation11,15

or as solution to biased field measurements of emissions.20,40

Chl a and LST are important predictors for CH4 emission in
lakes, especially for eutrophic lakes, mostly as a result of their
effects on organic matter decomposition.4,10,11 Kd and PAR
characterize the process of light penetration and heat transfer
in a lake,41 which was associated with CH4 variability. Wind
speed influences the CH4 exchange velocity across the lake−air

Figure 1.Map showing the geographic location of study sites in the cyanobacteria-dominated region of Lake Taihu. Note that the study region was
divided into five subzones (Northwest Zone, Meiliang Bay, Gonghu Bay, Central Zone, and Southwest Zone). These abbreviations of MLW, DPK,
PTS, XLS, and DS, which disturbed in the subzones of the lake, indicated the meteorological station.
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interface and could also act as a proxy of CH4 exchange
velocity, which had been demonstrated in our previous study.10

Thus, wind speed was also used as an input variable. It was
worth noting that the diffusive CH4 emissions was governed by
the dissolved CH4 concentration of the lake (Figure S1 of the
Supporting Information). The details of these input variable
calculations/acquisitions are described by Qi et al.35 Briefly,
Shi et al.32 and Huang et al.41 have developed the algorithm for
Chl a and Kd at 490 nm calculations in Lake Taihu,
respectively, which were used in this study.

2.3. Model Development. Machine learning algorithms
are used in this study as a result of their prominent advantage
in data mining. A flowchart was presented to show the satellite
data process and associated CH4 emission estimation model
development (Figure S2 of the Supporting Information). To
obtain the best performing model to predict the diffusive CH4
emissions, we compared eight popular machine learning
algorithms with different complexity. Extra trees regression
(ETR), gradient boosting decision tree (GBDT), K-nearest
neighbor (KNN), partial least squares regression (PLSR),
kernel ridge regression (KRR), support vector regression
(SVR), XGBoost (XG), and random forest (RF) were explored
to construct the predicting model. Before model training, the
response variable CH4 emission was log10-transformed to
ensure the normality of the distribution. Each input variable
was standardized by subtracting the mean and dividing the
standard deviation. The eight machine learning models were
tested using the same input variables. The important
parameters to define the structure and tuning of these models
were shown in Table S2 of the Supporting Information. All of
the scripts for developing these models were written in Python

and are available at https://github.com/qitaolake/Diffusive-
CH4.
For model training and validation, field-measured CH4

emissions and satellite-derived variables were paired first. In
total, there are 662 satellite-to-ground synchronization
matchup data, which were separated into two groups (the
training data sets and independent validation data sets); more
details are shown in Text S4 of the Supporting Information.
Standard statistical metrics, including the coefficient of
determination (R2), mean relative error (MRE), root-mean-
square error in log form (RMSElog), and relative root-mean-
square error (RRMSE) were used to quantify the accuracy of
the estimated diffusive CH4 emissions (Text S4 of the
Supporting Information). To better understand how the
modeled CH4 emissions respond to the uncertainty of
satellite-derived input independent variables, a model
sensitivity analysis was carried out. The analysis incorporated
the uncertainty of estimated diffusive CH4 emissions with the
satellite date by selecting from a normal distribution with the
same mean absolute relative error as the corresponding input
variables. The uncertainty for each input variable was obtained
from previous studies.32,35,41 Individual partial dependence
plots are useful to determine whether the model is appropriate;
each partial dependence plot is carried out by varying the
selected input variables across the range and keeping others
predictors constant.

3. RESULTS
3.1. Model Comparison and Selection. To predict

diffusive CH4 emissions from Lake Taihu, the performance of
eight machine learning models was compared (Figure 2 and

Figure 2. Performance evaluation of the diffusive CH4 flux (Fm) estimation using the machine learning algorithms (e.g., ETR, GBDT, KNN, PLSR,
KRR, SVR, XG, and RF) and performance of the final RF algorithm development and validation are shown separately. Training and validation
results (e.g., R2, MRE, RMSElog, and RRMSE) obtained for the CH4 flux using different machine learning algorithms are shown in Table S3 of the
Supporting Information.
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Table S3 of the Supporting Information). Overall, these
models showed good fitting accuracy, especially in the pelagic
area. It should be noted that most of the input variables were
correlated with each other (Table S4 of the Supporting
Information), but the model (e.g., RF) performance
significantly decreases (Table S5 of the Supporting Informa-
tion) if the water temperature and chlorophyll a were removed.
Using the same training and validation data sets from the

pelagic area, the eight machine learning models for diffusive
CH4 emission were tested. Results showed that KNN, PLSR,
RF, and XG had better performance in the training results (R2

= 0.75−0.87, MRE = 7−21%, RMSElog = 0.20−0.27, and
RRMSE = 21−26%). Meanwhile, the RF model had the best
fitting accuracy (R2 = 0.65, MRE = 21%, RMSElog = 0.33, and
RRMSE = 28%; panels h and i of Figure 2) in the validation
data, suggesting that the RF model had the highest stability
among them. Most of the data pairs of in situ measured CH4
emissions and modeled CH4 emissions clustered along the 1:1

line, with few outliers in the RF model trained and tuned on
the training data set. Thus, RF led to better predictions.
The trained RF model can well predict the variability of the

lake diffusive CH4 emissions under different seasons, which
was evidenced from some examples with available satellite
images (Figure 3). Comparisons of the model to in situ field
measurements at the specific locations showed agreement with
the CH4 emission variability. The MODIS-derived CH4
emissions are consistent with the in situ field measurements
across time and space,10 showing that the approach captured
well the spatial and temporal variability of CH4 emissions.

3.2. Temporal and Interannual Variations of Satellite-
Estimated CH4 Emissions. The long-term (2003−2020)
time series of daily diffusive CH4 emissions was modeled on
the basis of available satellite images. The modeled CH4
emissions are highly consistent with in situ measured CH4
emission flux, which was seasonally variable, with peaks
occurring in the summer and minima in the winter (Figure

Figure 3. MODIS-derived diffusive CH4 emissions (Fm) compared to in situ measured emissions on (a−c) December 19, 2012, (d−f) March 15,
2013, and (g−i) May 14, 2013. Note that sometimes field measurements were completed in 2 consecutive day; the spatial distribution of modeled
Fm was obtained on the basis of pixel-by-pixel estimations [log (μmol m−2 day−1)] with the same spatial resolution of MODIS. The first column
was the true color composite image; the second column was satellite-estimated Fm with in situ measured Fm overlaid as circle points; and the third
column was the comparison between in situ measured and satellite-estimated Fm.
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4). The satellite-to-ground synchronization matchup data (in
situ measured versus satellite estimated) were also highly
correlated in Meiliang Bay (R2 = 0.86 and p < 0.01), Gonghu
Bay (R2 = 0.60 and p < 0.01), Central Zone (R2 = 0.71 and p <
0.01), and Southwest Zone (R2 = 0.66 and p < 0.01). However,
poor correlation was found in the Northwest Zone (R2 = 0.06
and p > 0.01) with large external loadings input via river
discharge. This finding indicates that the model can well
capture the temporal variability in diffusive CH4 emissions,
except that in the subregion (Northwest Zone) with large
external loadings. However, it should be noted the hot spots of
the subregion (Northwest Zone) in the emissions were
successfully predicted by the model (Figures 3 and 4).
Monthly and annual mean diffusive CH4 emissions in the

lake are also presented (Figure 5). Overall, Meiliang Bay and
Northwest Zone were “hot spots” for CH4 emission, and CH4
emissions were generally higher than that in the Central Zone.
The satellite-derived diffusive CH4 emissions also showed
interannual variations from 2003 to 2020 (Figure 5). The
annual CH4 emissions flux in Meiliang Bay and Central Zone
both showed a significantly increasing trend (Meiliang Bay, R2

= 0.47 and p < 0.01; Central Zone, R2 = 0.42 and p < 0.01).
The lake flux was calculated as the area-weighted mean of the
five subzonal fluxes, which also exhibited an obvious increasing
trend between 2003 and 2020 (R2 = 0.33 and p < 0.05). The
annual CH4 emission during the algal bloom period (May−
July) exhibited a stronger increasing trend (R2 = 0.56 and p <
0.05; Figure 5).

4. DISCUSSION
4.1. CH4 Emission Estimation and Environmental

Controls. This study aimed to predict the CH4 emissions by
combining satellite data and a machine-learning-based model.
Satellite remote sensing can retrieve lake variables at high
spatial−temporal resolutions.23,24,32 Machine learning is well-
known for its greater advantage in coping with complex
regression, which might represent optimal options for CH4
emission prediction. Sure enough, the RF model achieved
acceptable accuracy (RMSElog = 0.33 and R2 = 0.65; Table S3
of the Supporting Information). Results showed that the model
captured well the spatial−temporal variability of CH4
emissions (Figures 4 and 5), because the variability of modeled
emissions was consistent with the in situ field measurements, as
shown in a previous study.10 As shown in other studies,27,42 the
RF model was a suitable model for carbon gas emission
prediction in an aquatic ecosystem.
A sensitivity analysis showed that the model was sensitive to

Chl a and water temperature estimations (Table S6 of the
Supporting Information). The conservative larger uncertainties
of 30% for Chl a and 15% for water temperature led to the
MRE of CH4 emission estimation being 8.19 and 10.12%,
respectively. Sensitivity analysis also showed that Chl a and
water temperature containing variable combinations always
had a large MRE. The results of sensitivity analysis are
expected, because Chl a and water temperature are two
important variables in determining the CH4 emissions from
lakes, as shown in previous studies.11,20,43

Figure 4. Time series of the MODIS-estimated (black circles, 2002−2020) and in situ measured (red crosses, 2011−2017) diffusive CH4 emission
flux (Fm) at (a) Northwest Zone, (b) Meiliang Bay, (c) Gonghu Bay, (d) Central Zone, and (e) Southwest Zone of Lake Taihu. The error bars
indicated standard deviations. The zonal mean value was calculated using measurements made at the sites within that subzone.
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Partial dependence plots showed that the CH4 emissions
varied as expected (Figure S4 of the Supporting Information).
Specifically, the CH4 emissions increase as Chl a and water
temperature increase, as expected for increased CH4
production rates. The majority of CH4 in lakes are produced
by organic carbon decomposition.44 High Chl a indicated algal
blooms with abundant phytoplankton biomass, which would
fuel labile carbon for CH4 production.9,45,46 The organic
carbon decomposition and associated CH4 production are
temperature-dependent,21,47 which led to the CH4 emissions to

increase considerably with evaluating the temperature.
Importantly, the input variables (Chl a and water temperature)
have generally been used as a proxy for lake CH4 emission
estimations in previous studies.11,20 PAR and Kd can influence
the emissions via indirect ways of controlling the water
temperature and algal blooms.41 For example, the water
temperature increases with high PAR and leads to the expected
increase in emissions, and high Kd can hinder light and heat
into the lake water and then suppress CH4 production and
emissions.

Figure 5. MODIS-estimated monthly mean diffusive CH4 flux (Fm) from January to December and annual mean diffusive Fm from 2003 to 2020.
The dark gray zone (island) and light gray zone (macrophyte-dominated zone) were excluded. Pixel-by-pixel CH4 emission predictions were
conducted, and the long-term trends of whole-lake Fm from 2003 to 2020 during all seasons and the algal bloom period (May−July) were shown in
the bottom. The error bars indicated standard deviations.
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The CH4 emissions can be estimated by a satellite, and
estimated emissions varied spatially with hot spots in the
Northwest Zone (Figure 5). However, the temporal variation
of emissions was not well-captured in the Northwest Zone
(Figures 3 and 4). The Northwest zone received large external
loading input via river discharge (Figure 1).37 Previous studies
have found that CH4 emissions, especially in the river
inflowing zone of a lake, were driven by external loading
input,18,48,49 showing less dependency upon the input variables
of our estimation model.10,22 Indeed, the seasonal CH4
emissions in the river inflowing zone of the Northwest Zone
were unrelated to Chl a but were controlled by dissolved CH4
concentrations of inflowing rivers (Figure S3 of the Supporting
Information). Meanwhile, a satellite could not predict the CH4
emission variability at the river mouth with a small area as a
result of the coarse resolution of MODIS (∼250 m). Although
hot spots of the subregion (Northwest Zone) in the emissions
were successfully predicted by the model, further studies
should consider the external loading input from the catchment
(e.g., river CH4 input) to better predict the temporal variability
of lake CH4 emissions.46,48,49

Caution should be taken when considering the model
section. First, all of these machine learning approaches are
commonly characterized to be able to address complex
questions, and the data processing reported here was not
necessary for each machine learning tool.50 Here, the data
processing aimed at reducing the effects of outliers, which may
be more suitable to some machine learning, showing sensitivity
to data that span multiple orders of magnitude,51 such as our
case of CH4 emission prediction. Second, each machine
learning approach has its advantages and disadvantages, and
there are different kernel functions for parametrization of the
models. One obvious advantage of the RF-based machine
learning is that it can reflect the nonlinearity between the
responsive variable and predictive variables without clearly
knowing their functional dependence.51 However, the RF-
based machine learning can be replaced with other algorithms,
such as SVR, which is sensitive to variables that span multiple
orders of magnitude.51

4.2. Long-Term Trend of Diffusive CH4 Flux and Its
Potential Drivers. Quantifying the long-term variations in
diffusive CH4 emissions is essential for predicting the response
of emissions to future environmental changes. Many studies
have proposed that aquatic CH4 emissions can vary
considerably at interannual time scales as a result of the
changes in lacustrine environmental variables,48,52,53 but only a
few long-term data series (more than 10 years) have been
reported to date,22 posing a challenge to better understate the
contribution of lakes to the global CH4 budget. To address this
challenge, we reconstructed the long-term (2003−2020)
diffusive CH4 emissions of Lake Taihu with fine spatial and
temporal resolutions, using satellite data for the first time.
Overall, our results revealed that the annual CH4 flux
increased, which was more significant during the algal bloom
period in the eutrophic lake (Figure 5).
Previous studies implied that warming would stimulate CH4

emissions from lakes.17,47,53 Significant warming with 0.35 °C
per decade was recorded over the lake,45 which likely accounts
for the increase in annual CH4 emissions on longer time scales.
Notably, measured Chl a was significantly correlated with
emissions (Figure S5 of the Supporting Information), which
may explain the increasing trend why it was more significant
during the algal bloom period. It should be noted that an

increasing temperature contributed to the algal blooms of the
lake based on the long-term measurements,31,45 which, in turn,
increased the CH4 emissions.11 A long-term warming experi-
ment in mesocosms showed that a rising temperature can
significantly increase aquatic CH4 emissions.53 Thus, warming
together with increasing eutrophication probably contributes
to the increase in the diffusive CH4 emissions during the past 2
decades.

4.3. Implication of the Lake CH4 Budget. Field
measurements suffer from large uncertainties associated with
spatial and temporal variation in CH4 emissions, which is
highly relevant for estimating the CH4 budget of lakes.
Although lake CH4 emission varied markedly on a seasonal
basis,21 a review showed that 80% of the study in northern
lakes measures diffusive CH4 emission with a short time and
mostly in the summer, leading to large uncertainties.17,40 To
reduce sampling bias and resolve seasonal variability, previous
studies suggest that diffusive CH4 emission should be
measured over 11−22 days scattered throughout the ice-free
period.20,40 Our approach obtained emissions on at least 51
days scattered in a year cycle based on the distribution of the
available satellite images (Table S1 of the Supporting
Information). Thus, this approach has the potential to fill
gaps in sampling bias associated with temporal variation in
CH4 emissions.
Lake CH4 emission estimates generally rely on extrapola-

tions from a limited number of sites.16,18,19 The distribution of
CH4 and environmental constituents is unevenly distrib-
uted,19,54,55 likely leading to the whole lake estimation with
large uncertainty and/or inaccurate effluxes. Our approach
with satellite images may act as a solution to biased sampling
associated with spatial resolution, because previous studies
suggest sampling with high spatial resolution is needed to
obtain reliable lake CH4 emissions. For example, a study in
small lakes recommended measurements should be made at at
least three locations,40 and increasing sampling sites can reduce
the uncertainty of diffusive emission estimation.18 Fortunately,
each pixel of the MODIS image with a spatial resolution of 250
× 250 m2 is equivalent to setting a sample site in our study,
which has far exceeded the requirements for the number of
sampling sites.
On the basis of the satellite-estimated daily CH4 emission

flux, the effects of sampling scenarios on CH4 emission
estimations were evaluated via bootstrap analysis (Text S5 of
the Supporting Information). The standard deviation of
estimated diffusive CH4 emissions decreased significantly
with increasing numbers of sampling days (Figure S6 of the
Supporting Information). On the basis of the study by Wik et
al.,40 we simulated hypothetical sampling scenarios (Text S6 of
the Supporting Information) and found that measurements
should be made at least 30 days scattered throughout the year
to achieve unbiased CH4 emission estimation. Seasonal or
monthly measurements were carried out generally to
determine the annual mean diffusive CH4 emissions;10,18,19

our hypothetical sampling scenarios showed that the measure-
ments yielded high risks (up to 78%) of over- and
underestimating of the flux potential of the lake (Figure S7
of the Supporting Information). Cautions should be taken
because the over- or underestimation may depend upon the
lake size and heterogeneity.
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