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A B S T R A C T   

The prescription of surface emissivity (ε) strongly controls satellite-derived estimates of land surface temperature 
(LST). This is particularly important for studying surface urban heat islands (SUHI) since built-up and natural 
landscapes are known to have distinct ε values. Given the small signal associated with the SUHI compared to LST, 
accurately prescribing urban and rural ε would improve our satellite-derived SUHI estimates. Here we test the 
sensitivity of SUHI to the ε assumption made while deriving LST from Landsat measurements for almost 10,000 
global urban clusters for summer and winter days. We find that adjusting the ε values from the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) dataset based on pixel-level normalized 
difference vegetation index (NDVI) increases the summer to winter contrast in daytime SUHI, a constrast that has 
been noted in previous studies. Overall, the difference between the two methods of prescribing ε, one from 
ASTER and one after NDVI-adjustment, is moderate; around 10% during summer and around 20% during winter, 
though this difference varies by climate zone, showing higher deviations in polar and temperate climate. We also 
combine five different methods of prescribing emissivity to provide the first global estimates of SUHI derived 
from Landsat. The global ensemble mean SUHI varies between 2.42 ◦C during summer to 0.46 ◦C in winter. 
Regardless of the surface emissivity model used, compared to Moderate Resolution Imaging Spectroradiometer 
(MODIS) Terra observations, Landsat data show higher SUHI daytime intensities during summer (by more than 
1.5 ◦C), partly due to its ability to better resolve urban pixels. We also find that the ε values prescribed for urban 
land cover in global and regional weather models are lower than the satellite-derived broadband ε values. 
Computing sensitivities of urban and rural LST to ε, we demonstrate that this would lead to overestimation of 
SUHI by these models (by around 4 ◦C for both summer and winter), all else remaining constant. Our analysis 
provides a global perspective on the importance of better constraining urban ε for comparing satellite-derived 
and model-simulated SUHI intensities. Since both the structural and geometric heterogeneity of the surface 
controls the bulk ε, future studies should try to benchmark the suitability of existing LST-ε separation methods 
over urban areas.   

1. Introduction 

The physical process of urbanization involves replacement of natural 
landscapes with built-up structures, modifying the biophysical proper
ties of the land surface (Carlson and Arthur, 2000). One major and 
widely studied consequence of urbanization is the urban heat island 
(UHI) effect. The UHI is the usually positive temperature difference 
between an urban area and its non-urban reference, essentially isolating 
the impact of urbanization on local temperature (Oke, 1969, 1982; 
Arnfield, 2003). The UHI can contribute to urban heat stress, enhance 

energy demand for cooling, and may impact local-scale cloud cover and 
rainfall (Arnfield, 2003; Shastri et al., 2015; Li et al., 2019; Theeuwes 
et al., 2019). 

Traditionally, the UHI has been quantified as the difference in near- 
surface air temperature (AT) between the urban core and a rural refer
ence (Voogt, 2007). Since urban areas can have large heterogeneity, it 
can be difficult to capture a representative value of urban temperature 
using standard weather stations (Stewart, 2011). Moreover, dense 
meteorological networks, which are rarely available over cities (Muller 
et al., 2013), are necessary to capture the intra-urban temperature 
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variability, which has implications for disparities in heat exposure 
(Chakraborty et al., 2019, 2020; Hoffman et al., 2020; Hsu et al., 2021). 
The advent of satellite observations in the thermal infrared (TIR) 
channels has allowed researchers to remotely measure the land surface 
temperature (LST) over urban areas (Rao, 1972). Although LST and AT 
are not physically identical quantities, it is easier to estimate intra-urban 
variability in LST from satellites due to their spatially explicit coverage. 
The global availability of some of these LST products has also enabled 
multi-city comparisons that are difficult using ground-based observa
tions (Peng et al., 2011; Clinton and Gong, 2013; Chakraborty and Lee, 
2019). The UHI derived using satellite data is commonly referred to as 
surface UHI (SUHI), while traditional weather station-based UHI esti
mates are known as canopy UHI (CUHI) (Bonafoni et al., 2015; Chak
raborty et al., 2016; Venter et al., 2021). 

Although satellite-based LST has several advantages over ground- 
based observations of AT, its accuracy depends on several factors 
(Dash et al., 2002). Satellites measure the top of the atmosphere thermal 
radiance (Lλ,toa), which can be approximated as: 

Lλ,toa = τεBλ(LST) + Lλ,u,atm + Lλ,d,atm(1 − ε)τ (1) 

Here ε is the surface emissivity, τ is the atmospheric transmissivity, 
Bλ is the black body radiance corresponding to the LST, and Lλ,u,atm and 
Lλ,d,atm are the upward and downward components of the thermal 
radiance from the bulk atmosphere. All of these variables are wave
length dependent and the radiance components have the unit of 
W m− 2 μm− 1 sr− 1. The measured Lλ,toa is then combined with multiple 
ancillary data to estimate Bλ. Finally, the LST is computed from Bλ by 
inverting Planck's law. The values of τ, Lλ,u,atm, and Lλ,d,atm are depen
dent on atmospheric conditions and may be obtained from radiative 
transfer models. On the other hand, ε – a spectrally varying ratio of 
emitted radiation of a material compared to the radiation of a black body 
at a particular temperature – is primarily a property of the land surface 
(Li et al., 2013b). 

Since both ε and LST determine the total thermal radiation captured 
by satellites, estimates of ε are a pre-requisite for accurately calculating 
LST. Unfortunately, even if the atmospheric properties that influence τ, 
Lλ,u,atm, and Lλ,d,atm are perfectly known, ε and LST cannot be analyti
cally separated from satellite observations (Hook et al., 1992; Dash 
et al., 2002; Li et al., 2013a). Conceptually, for TIR measurements in n 
channels, we get n equations (one for each channel) for n+1 unknowns 
(ε for n channels and LST). As such, several empirical methods are used 
to determine ε. The first is a temperature emissivity separation (TES) 
method that solves the n equations with an additional empirical 
constraint to equalize the number of equations and unknowns (Gillespie 
et al., 1998). Another is an NDVI-based emissivity method (NBEM), 
where the emissivity is expressed as a function of the normalized dif
ference vegetation index (NDVI), a proxy for live green surface vegeta
tion (Van de Griend and OWE, 1993; Valor and Caselles, 1996). Finally, 
there are classification-based emissivity methods (CBEM), with each 
land cover prescribed a value based on look-up tables (Snyder et al., 
1998). Each method has its advantages and disadvantages (Dash et al., 
2002) and the choice of method is of particular concern when studying 
the SUHI (Mohamed et al., 2017). Although the vast majority of studies 
that use the derived LST products from Moderate Resolution Imaging 
Spectroradiometer (MODIS) observations implicitly use a CBEM 
method, there is less agreement on the method used to estimate LST 
from Landsat observations in the scientific literature (Sekertekin and 
Bonafoni, 2020a). Regardless of the method used, specifications of ε lead 
to some of the largest uncertainties in satellite-derived LST 
(Jiménez-Muñoz and Sobrino, 2003). 

The challenge of accurately prescribing ε is particularly difficult for 
urban areas (Artis and Carnahan, 1982; Mohamed et al., 2017). Real 
urban areas vary widely in material composition of the built-up struc
tures, varying presence of other land cover types like vegetation, barren 
soil, and undeveloped land, as well as large differences in surface ge
ometry that can also influence bulk ε (Voogt and Oke, 1998; Mitraka 

et al., 2012; Quan et al., 2016). A single value for urban ε, which is 
frequently used in many CBEM methods, is simplistic since the different 
materials used in urban construction have widely different ε (Marshall, 
1982; Chen et al., 2016). Also, NBEM methods are affected by this un
certainty since NDVI-based threshold cannot explicitly account for dif
ferences in the built-up structures and surface geometry across cities 
(Dash et al., 2002). Even within cities, different materials, and thus 
different ε values, are common, with potential impacts on estimating 
intra-urban LST variability from higher resolution satellite observations, 
such as from Landsat (Artis and Carnahan, 1982). TES methods, 
although conceptually the most accurate, are influenced by the rela
tively higher uncertainties in satellite observations over urban areas due 
to multiple factors, from urban heterogeneity to thermal anisotropy 
(Lagouarde et al., 2004; Hu et al., 2016). Moreover, this method requires 
observations in several TIR channels. 

Although the SUHI is a derived quantity, expressed as the difference 
between urban and rural LSTs, it is one of the most studied metrics in 
urban climatology and is intended to isolate the impact of urbanization 
on local temperatures (Peng et al., 2011; Zhao et al., 2014; Clinton and 
Gong, 2013; Chakraborty and Lee, 2019; Manoli et al., 2020). Previous 
studies on the importance of ε on urban LST have primarily focused on 
the overall ε of individual cities (Chen et al., 2016; Mohamed et al., 
2017), not the urban–rural differential in ε (Δε) and how that might 
impact the computed SUHI for global urban areas. The method of esti
mating Δε would affect the SUHI estimate even when the emitted 
thermal differential between urban and rural areas is held constant, 
since urban areas are known to have a distinct ε from most natural 
surfaces (Sobrino et al., 2012; Yang et al., 2015). The Δε would also vary 
across different cities since both the typology of building materials 
(Voogt and Oke, 2003) and the land cover of the rural reference vary 
(Van de Griend and OWE, 1993; Zhao et al., 2014). The combined 
impact of these two sources of variability in ε on SUHI estimates across 
cities has not been studied in the past. The influence of Δε on SUHI 
estimates is also important for regional and global land models. Land 
models have improved from using broadband ε of 1 for all land surfaces 
in old global models (Sellers et al., 1986) to using land cover specific 
prescribed ε in more recent implementations (Jin and Liang, 2006; 
Chakraborty et al., 2019b). The use of prescribed ε is of particular 
concern for urban modeling studies due to the lack of observational 
constraints on this parameter as well as the large differences seen be
tween prescribed and measured ε (Li et al., 2017). 

Here we attempt to comprehensively examine the impact of the ε 
assumption on estimates of Landsat-derived SUHI both globally and 
across broad climate classes for the year 2010. Our goal is to add to the 
recent studies that have investigated the influence of the methods used 
while calculating the SUHI – including choice of temporal composites 
and LST products (Hu and Brunsell, 2013; Chakraborty et al., 2020; Yao 
et al., 2020), as well as definitions of the non-urban reference (Chak
raborty and Lee, 2019; Zhang et al., 2019; Chakraborty et al., 2020) – 
with a focus on the fundamental derivation of LST from satellite mea
sures of thermal radiance. We also use this opportunity to provide the 
first global estimates of daytime SUHI using Landsat observations for 
several different methods of ε prescription and discuss their potential 
applications and limitations when compared to more commonly used 
MODIS-derived values. Finally, to provide an integrated perspective on 
future research directions in urban climatology, we discuss the impli
cations of the prescribed ε in modeled SUHI estimates when compared to 
satellite-derived ‘observations’. 

2. Material and methods 

2.1. Deriving land surface temperature 

Here we estimated global LST by combining top of the atmosphere 
brightness temperature (Tb) data and a vegetation index derived from 
the Landsat 5 satellite (Loveland and Dwyer, 2012) and ε estimates from 
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the Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) sensor (Abrams, 2000). The Landsat 5 satellite orbited the 
Earth in a sun-synchronous, near-polar orbit and had a 16-day repeat 
cycle with an equatorial overpass of around 9:45 am local time. The 
satellite observed the Earth in 7 channels, with all but the TIR channel 
(10.4–12.5 μm; 120 m native resolution) having a native resolution of 
30 m. Data from Landsat 5 are available from 1984 to 2012. ASTER is a 
multi-spectral imaging instrument on board the Terra satellite, which 
has a sun-synchronous orbit and crosses the equator at roughly 10:30 am 
local time. ASTER and its subsystems have been imaging the Earth's 
surface in 14 channels with a repeat cycle of 16 days since the year 2000. 
The resolution varies from 15 m for the VNIR (Visible and Near-Infrared) 
bands to 30 m for the SWIR (ShortWave Infrared) bands to 90 m for its 5 
TIR channels (8.125–8.475 μm, 8.475–8.825 μm, 8.925–9.275 μm, 
10.25–10.95 μm, and 10.95-11.65 μm). 

Since Tb and LST are non-linearly related and all terms of Eq. (1) are 
not known for every pixel, generalized models used to estimate LST from 
satellite observations usually linearize the radiative transfer equation, 
which includes both a linearization of the Planck's function and con
tributions from atmospheric interference. Here we use the Statistical 
Mono-Window (SMW) algorithm as implemented by Ermida et al. 
(2020) on the Google Earth Engine (GEE) platform (Gorelick et al., 
2017) to compute LST. The SMW algorithm represents LST as a linear 

function of prescribed ε and the Landsat-observed Tb (Duguay-Tetzlaff 
et al., 2015) and is given by: 

LST = Ai
Tb

ε + Bi
1
ε + Ci (2)  

Here the coefficients of the equation for Landsat band i (Ai, Bi, and Ci) 
were derived from radiative transfer simulations for 10 classes of Total 
Column Water Vapour (TCWV). For more information about the cali
bration procedure used to estimate these coefficients, please see Ermida 
et al. (2020). The SMW algorithm has been found to perform well when 
validated against pyrgeometer observations at SURFRAD stations (Au
gustine et al., 2005). For the five SURFRAD stations considered in 
Sekertekin and Bonafoni (2020a), the SMW-derived LST from Landsat 5 
has a root-mean-square error (RMSE) ranging from 1.7 to 2.6 K after 
removing outliers (Ermida et al., 2020). In comparison, the composite 
RMSE for the best performing algorithm using Landsat 5 data in 
Sekertekin and Bonafoni (2020a) was 2.35 K. 

2.2. Surface emissivity for land surface temperature estimation 

Eq. (2) is a function of prescribed ε, which is estimated using two 
methods in the GEE implementation of the SMW algorithm – the TES 
method used to generate the ASTER Global Emissivity Database version 

Fig. 1. Urban clusters considered in the present study. Sub-figure (a) shows the centroids of every cluster and the climate zones they belong to. Sub-figure (b) shows 
the percentage of available pixels from the Landsat observations after temporal compositing compared to the maximum number of pixels possible within each cluster 
during the northern hemisphere summer of 2010. Sub-figure (c) shows the percentage of total pixels in each cluster that are urban at the 60 m resolution during the 
same time period. 
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3 (ASTER GEDv3) and a NBEM approach. The ASTER GEDv3 dataset 
was developed by the the National Aeronautics and Space Administra
tion's (NASA) Jet Propulsion Laboratory (JPL) from clear-sky ASTER 
images between 2000 and 2008 (Hulley et al., 2015). The data are 
available at a resolution of 100 m for all 5 of ASTER's TIR channels. 
These data can be directly used in Eq. (2) after adjusting to the Landsat 
TIR band using the equation described in Malakar et al. (2018): 

ε10.40–12.5 = c13ε13 + c14ε14 + c (3) 

Here ε10.40–12.5 corresponds to the ε for the Landsat 5 TIR channel, 
ε13 and ε14 correspond to band 13 (10.25–10.95 μm) and 14 
(10.95–11.65 μm) of the ASTER GEDv3 dataset, and c, c13, c14 are 
empirical regression coefficients. For Landsat 5, these coefficients equal 
0.0195, − 0.0723, and 1.0521, respectively (Malakar et al., 2018). 

For the NBEM approach, the actual ε for each pixel was computed by 
adjusting the mean ε in the ASTER GEDv3 by the fractional vegetation 
cover (FVC) estimated from the corresponding Landsat 5 data (Ermida 
et al., 2020). The FVC can be computed using the relationship from 
Carlson and Ripley (1997): 

FVC =

[
NDVI − NDVIbare

NDVIveg − NDVIbare

]2

(4) 

Here NDVI is derived from the surface reflectances in the Near 
Infrared (NIR; 0.78–0.86 μm for ASTER and 0.77–0.9 μm for Landsat 5) 
and RED (0.63–0.69 μm) bands. NDVIbare and NDVIveg are the reference 
NDVI for completely bare and completely vegetated pixels, respectively. 
NDVIbare is set as 0.2 and NDVIveg is equal to 0.86 based on previous 
estimates (Tang et al., 2010; Wang et al., 2015; Ren et al., 2017). The 
NDVI-adjusted ε (εNDVI) was then calculated using the equation: 

εNDVI = FVCεveg + (1 − FVC)εbare (5)  

Eq. (5) is wavelength dependent, but for the Landsat 5 TIR band, εveg was 
set to 0.99 due to the small variability for vegetated surfaces (Peres and 
DaCamara, 2005), while εbare is estimated from ASTER measurements 
(Ermida et al., 2020). 

In addition to the options for specifying ε included in the open-source 
GEE module (Ermida et al., 2020), we incorporate three additional 
methods, a CBEM approach using the average of the MODIS ε for bands 
31 and 32 (εMODIS), and the NBEM approaches by Griend and Owe 
(1993; εGriend) and Valor and Caselles (; εValor). The value of εGriend can 
expressed as: 

εGriend = 1.0094 + 0.047ln(NDVI) (6)  

and εValor can be expressed as: 

εValor = εvegFVC + εbare(1 − FVC) + 0.06FVC(1 − FVC) (7) 

The methods above attempt to capture the spatial variability in ε 
using standard TES, CBEM, and NBEM approaches. To test the sensitivity 
of the LST derived for both urban and rural surfaces from the SMW al
gorithm, we also calculated global LST for different prescribed values of 
ε from 0.88 to 1 with a step size of 0.02. 

Both to minimize computational costs and since the overall focus was 
the impact of different values of ε on urban and rural LST, we used a 
single year (2010) of Landsat 5 data for the analysis. In the present 
study, the data used for estimation of ε, NDVI, and LST were first 
screened using cloud masking algorithms. For the NIR and RED bands, 
used to compute NDVI, both clouds and cloud shadows were removed 
based on the pixel-level quality flags. For TIR, only pixels with no cloud 
contamination were considered. Since different regions of the world can 
have different amounts and even seasonality of cloud cover, we 
attempted to minimize the impact of this inter-regional variability by 
focusing on summer and winter separately rather than annual means. 
Summers are defined as the months of June, July, and August in 
northern hemisphere and December, January, and February in the 

southern hemisphere, and vice versa for winter. This is consistent with 
the practice of separately studying the SUHI for summer and winter in 
the literature (Peng et al., 2011; Clinton and Gong, 2013; Chakraborty 
and Lee, 2019). Overall, based on this temporal subsetting, each pixel 
can have a maximum of 5 to 6 Landsat observations during the study 
period. 

2.3. Estimating surface urban heat islands 

To estimate the SUHI, we calculated the LST for pairs of urban and 
rural references for each of almost 10,000 urban agglomerations or 
clusters (Fig. 1a) that form the base of the Yale Center for Earth 
Observation (YCEO) Global Surface UHI Dataset (Chakraborty and Lee, 
2019). The original urban boundaries are based on global urban extent 
data derived from MODIS (Schneider et al., 2010). Note that the vast 
majority (≈89%) of these clusters are in the northern hemisphere. We 
checked whether Landsat provides representative observations over the 
urban clusters after pixel-level cloud screening. Fig. 1b shows the per
centage of the maximum possible pixels in each cluster with at least one 
observation from Landsat during northern hemisphere summer. Overall, 
after temporal compositing, the majority (63.6%) of the clusters have 
complete spatial coverage from Landsat observations, with the per
centage of available pixels ranging from a 5th percentile value of 46.5% 
to a 95th percentile of 100%. 

The delineation of urban and rural areas for SUHI quantification is 
not trivial. Here we used the Simplified Urban Extent (SUE) algorithm 
described in Chakraborty and Lee (2019). The SUE algorithm defines the 
SUHI of an urban cluster as the difference in mean LST of all urban pixels 
(LSTurb) and mean LST of all rural (non-urban and non-water) pixels 
(LSTrur) within the cluster, or: 

SUHI = LSTurb − LSTrur (8)  

By calculating both LSTurb and LSTrur from pixels within the cluster, the 
SUE algorithm avoids issues arising from somewhat arbitrary definitions 
of buffer widths when using commonly used buffer-based rural refer
ences (Zhou et al., 2015; Yang et al., 2019; Chakraborty and Lee, 2019). 
Moreover, not using a buffer around the urban area minimizes the 
impact of potential differences in atmospheric forcing between the 
urban core and the rural periphery (Li et al., 2018). This essentially 
describes the SUHI as a consequence of only the difference in surface 
climate response of urban and rural areas. The SUE method compares 
well against both other observational as well as theoretical estimates of 
SUHI (Niu et al., 2020; Manoli et al., 2020). 

The SUE algorithm requires land cover datasets that can resolve 
urban and non-urban pixels within each cluster. The original imple
mentation of the algorithm developed by Chakraborty and Lee (2019) 
was based on 1 km resolution MODIS Terra and Aqua measurements 
(Wan et al., 2006), with the urban and rural land cover resolved using 
the 500 m MODIS land cover product (Strahler, 1999). Since both 
Landsat 5 and ASTER GEDv3 are at finer resolutions, we need suitable 
higher resolution datasets. To resolve urban pixels, we used one of the 
highest resolution global urban land cover products currently available, 
the Global Urban Footprint (GUF) dataset (Esch et al., 2017), which is 
available at 12 m resolution. The GUF dataset is generated by an auto
mated unsupervised classification scheme using over 180,000 high 
resolution (3 m) radar images from 2011 and 2012 and shows an overall 
accuracy of 85% compared to absolute ground truth data. We use 
Landsat 5 for calculating LST since the only other Landsat product 
available for the years of validity of the GUF dataset, Landsat 7, has data 
gaps due to failure of the Scan Line Corrector (SLC), which limits its use. 
For calculating both LSTurb and LSTrur, water pixels were first removed 
based on the Joint Research Center (JRC) 30 m global surface water 
dataset (Pekel et al., 2016). All remaining GUF pixels within the urban 
clusters were then used to calculate LSTurb. Similarly, for LSTrur, we 
considered all non-GUF and non-water pixels within each urban cluster. 
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Since terrain height has a significant impact on LST, for each urban 
cluster, we also masked out rural pixels when its altitude difference from 
the median altitude of all urban pixels exceeded 50 m using the Global 
Multi-resolution Terrain Elevation Data 2010 (GMTED2010) (Danielson 
and Gesch, 2011). Overall, the percentage of pixels in each urban cluster 
that is urban varies between a 5th percentile of 9.1% to a 95th percentile 
of 74.3% (Fig. 1c). 

Our final units of calculation are the urban clusters, each of which 
have summertime and wintertime values of SUHI from ASTER emissivity 

(SUHIASTER) and the NDVI-adjusted emisivity (SUHINDVI), as well as the 
intermediate variables, including LSTurb,ASTER, LSTurb,NDVI, LSTrur,ASTER, 
LSTrur,NDVI, εurb,ASTER, εurb,NDVI, εrur,ASTER, and εrur,NDVI. We also include 
the corresponding variables for the prescribed ε values of 0.88 to 1 and 
the other approaches for prescribing ε (Snyder et al., 1998; Van de 
Griend and OWE, 1993; Valor and Caselles, 1996). Since the native 
resolution of Landsat 5 TIR is 120 m, ASTER is 90 m, GUF is 12 m, and 
JRC surface water is 30 m, all calculations for spatial averaging are done 
after re-gridding all products to 60 m using nearest neighbor 

Fig. 2. Mean and standard deviation of surface emissivity ((a) and (b)) and daytime land surface temperature ((c) and (d)) for all urban and rural clusters and for 
each climate zone. Values are shown separately for summer and winter for both the ASTER-based and NDVI-adjusted methods. 
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resampling. Although this resampling would introduce biases when 
calculating thermal radiance at finer scales (Zhan et al., 2013; Bonafoni 
et al., 2016), this issue is minimized by averaging the SUHI for the whole 
cluster instead of calculating intra-urban variability. Moreover, this 
error would be common to all the approaches used. 

2.4. Comparison with MODIS data 

Almost all past multi-city studies on the SUHI have used MODIS 1 km 
LST observations (Zhang et al., 2010; Peng et al., 2011; Clinton and 
Gong, 2013; Chakraborty and Lee, 2019; Yao et al., 2019; Chakraborty 
et al., 2020). This is both due to the more frequent return period of 
MODIS compared to Landsat, which helps with cloud screening (Hu and 
Brunsell, 2013), and the consistent availability of nighttime values, thus 
allowing inferences about diurnal patterns. Since here we provide global 
estimates of SUHI based on different ε assumptions, it is important to 
compare these estimates with MODIS-based values. We calculate the 
SUHI using the SUE algorithm using the same urban and rural separation 
and the MODIS Terra 1 km daytime LST for 2010. MODIS Terra is chosen 
over Aqua since its equatorial crossing time (≈10:30 am) is comparable 
to that for Landsat 5 (≈9:45 am). The MODIS LST is based on ε values 
generated from a CBEM aproach (Snyder et al., 1998). 

For this comparison, all analysis is done at a scale of 60 m, identical 
to the Landsat-based analysis using the same land cover data. This is 
done to ensure that the differences stem only from the MODIS versus 
Landsat data. Since the LST estimates from both MODIS and Landsat 
have uncertainties, we use reduced major axis or geometric mean 
regression instead of ordinary least square (OLS) regression, with 
Landsat data as the dependent variable and MODIS data as the inde
pendent variable. Metrics of comparison include the coefficient of 
determination (r2), the RMSE, and the mean bias error (MBE). Note that 
the MODIS-derived values are considered to be the baseline (or inde
pendent variable), not because they represent the ‘truth’, but because 
they have been traditionally used to estimate the SUHI at global scales 
(Peng et al., 2011; Clinton and Gong, 2013; Chakraborty and Lee, 2019). 
This allows insightful comparisons with the existing SUHI literature. 

2.5. Regions of interest 

In addition to examining the SUHI globally, we separately examine 
the influence of ε on the calculated SUHI for each of the five Koppen 
Geiger climate zones, namely tropical, arid, temperate, boreal, and polar 
(Rubel and Kottek, 2010). These broad classes divide the Earth's land 
surface into regions with large variabilities in vegetation patterns and 
incoming radiation. Both modeling and observational studies have 
noted the influence of the background climate on the SUHI intensity 
(Zhao et al., 2014; Chakraborty and Lee, 2019). Fig. 1a shows the cen
troids of all the urban clusters and the climate zone they belong to. Note 
that due to cloud cover or the lack of valid urban or rural pixels within a 
cluster, we do not get a SUHI value for all the urban clusters in each case. 
For instance, during summer, there are 9063 clusters based on ASTER 
observations and 9010 from the NBEM approach. Similarly, during 
winter, there are 8206 clusters from ASTER and 7943 after adjusting by 
NDVI. 

3. Results 

3.1. Impact of adjusting emissivity by vegetation on urban and rural land 
surface temperature 

Fig. 2a and b show bar plots of εurb and εrur derived using ASTER data 
and the NDVI-adjusted approaches. Results are shown for both summer 
and winter and also divided into each of the Koppen Geiger climate 
zones. The ASTER εurb varies from 0.966 for tropical climate to 0.969 in 
temperate climate. For εrur, there is a slightly higher range of values, 
with the minimum value still at 0.966 for tropical climate, but a 
maximum of 0.970 for temperate and boreal climate. Note that the 
ASTER data are multi-year averages and thus do not have different 
values for summer and winter. Both at the global scale and for all climate 
zones other than arid, εurb,ASTER is less than εrur,ASTER. When ε is adjusted 
using NDVI, we see the variability between the seasons. The global mean 
values are higher for summer than for winter (εurb,NDVI = 0.971 and εrur, 

NDVI = 0.975 for summer; εurb,NDVI = 0.969 and εrur,NDVI = 0.970 for 
winter). In summer, εrur,NDVI varies from 0.969 in arid climate to 0.977 
in boreal climate. Expectedly, εurb,NDVI has less variability, ranging from 

Fig. 3. Mean and standard error of daytime surface urban heat island intensity based on both the ASTER-based and NDVI-adjusted surface emissivity (ε) assumptions 
for (a) summer and (b) winter. Percentage changes in estimated value when switching from ASTER to NDVI-adjusted ε is shown on the right y axis. 
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0.968 in tropical climate to 0.972 in boreal climate. For winter, there is 
less variability, evidently because vegetation differences between the 
climate zones, which control this variability, are suppressed. During this 
season, εrur,NDVI varies from 0.969 in polar climate to 0.971 in temperate 
climate and εurb,NDVI varies from 0.967 in tropical to 0.970 in boreal 
climate. Overall, εurb after adjusting for NDVI is still lower than εrur. 
Moreover, particularly for the rural references, the NDVI-adjusted ε is 
usually higher than the ASTER observations since vegetation tends to 
have a higher ε than bare soil. 

Fig. 2c and d show the corresponding daytime LSTurb and LSTrur 
using the two approaches and for the two seasons. The daytime LST 
values are evidently driven almost entirely by the energy availability 
across seasons and climate zones, with the summer mean daytime LST 
being highest in arid regions (LSTrur,NDVI = 40.56 ◦C) and the winter 
mean daytime LST being lowest in polar (LSTrur,NDVI = − 10.55 ◦C) and 
boreal climate (LSTrur,NDVI = − 9.81 ◦C). Urban areas are not evenly 
distributed globally, with the majority being in the global north but very 
few in the high latitudes. This explains why the wintertime mean day
time LST is closer for polar and boreal climate than would be expected 
for regional means. Tropical areas show the least difference between 
summer daytime LST (LSTrur,NDVI = 32.04 ◦C) and winter daytime LST 
(LSTrur,NDVI = 30.54 ◦C) since they do not have strong seasonal cycles. 
The urban daytime LST values are usually higher than the rural daytime 
LST values, representing the daytime SUHI intensity. Note that there are 
some differences between the number of available ε observations from 
the ASTER multi-year composites and the NDVI-adjusted value for 2010 
due to cloud contamination of the Landsat observations. 

3.2. Impact on the surface urban heat island intensity 

Fig. 3 shows the impact of adjusting ε by NDVI on the daytime SUHI 
intensity. The global estimates and the climate zone means are shown 
along with the percentage difference between the two estimates. Note 
that the percentage difference in LST depends on the unit used since LST 
units have different scales. However, this issue disappears when calcu
lating the percentage changes in SUHI since the values are always sub
tracted from a rural reference in the same temperature scale. Regardless, 
it is important to be careful when examining percentage changes in 
variables like SUHI, which have a low signal. To avoid uncertainties 
arising from sampling differences, we only use the urban clusters for 
which we get daytime SUHI estimates from both methods. This leaves 

9010 clusters during summer and 7943 during winter. During summer, 
the daytime SUHI is highest for boreal climate (SUHIASTER = 2.71 ◦C; 
SUHINDVI = 3.03 ◦C) and lowest for arid climate 
(SUHIASTER = − 0.09 ◦C; SUHINDVI = − 0.10 ◦C), with a global mean of 
2.15 ◦C (SUHIASTER) to 2.37 ◦C (SUHINDVI). For winter, the global mean 
daytime SUHI ranges from 0.18 ◦C (SUHIASTER) to 0.24 ◦C (SUHINDVI), 
with the lowest SUHI seen for arid urban clusters 
(SUHIASTER = − 0.74 ◦C; SUHINDVI = − 0.61 ◦C). Tropical urban clusters 
show the highest winter daytime SUHI (SUHIASTER = 0.75 ◦C; 
SUHINDVI = 0.84 ◦C). Both seasonal and climatic trends are consistent 
with previous estimates (Clinton and Gong, 2013; Zhao et al., 2014; 
Chakraborty and Lee, 2019). 

The SUHI derived from NDVI-adjusted estimates of ε are generally 
higher since the Δε increases when vegetation is considered (Fig. 2). 
This is particularly true for summer, with SUHI increasing in magnitude 
by 9.2% in tropical urban clusters to 15.5% in arid clusters. Globally, the 
summertime increase in daytime SUHI is around 10.6% when moving 
from ASTER ε to NDVI-adjusted ε. For winter, there is more variability in 
both magnitude and direction of percentage change, though this is 
partly driven by the baseline SUHI already being low. The global per
centage increase in magnitude is 31.2%, with an increase of 40.2% in 
temperate urban clusters. Boreal, polar, and arid urban clusters show a 
decrease in SUHI when the NDVI-adjusted ε is used by 13.3%, 90.5%, 
and 17.6%, respectively. 

3.3. Other approaches for prescribing emissivity 

All the other approaches for prescribing ε considered here (Fig. 4a 
and b) show patterns similar to those seen for εASTER and εNDVI earlier. 
The value of εurb is lower than εrur for all methods and these differences 
are minimized during winter. Most of the approaches did not show any 
physically impossible ε value. However, roughly 0.55% of the cluster- 
averaged εValor values were greater than 1. These were removed. Over
all, the NBEM approach by Van de Griend and OWE (1993) is the clear 
outlier, with higher contrasts between urban and rural ε and lower 
values of ε overall. Consequently, the SUHI values are similar for most 
methods other than when using ΔεGriend (Fig. 4c and d). For winter in 
particular, the SUHI from that method are several times higher than the 
other ones. The patterns across climate zones are also captured well by 
all the approaches with the exception of εGriend based SUHI showing 
atypical positive values over arid areas. Using εGriend to compute rural 

Fig. 4. Sub-figures (a) and (b) show the mean and standard deviation of urban and rural surface emissivity (ε) for summer and winter, respectively, from all the 
approaches considered in the present study. Sub-figures (c) and (d) show the mean and standard error of surface urban heat island intensity for summer and winter, 
respectively, for the world and all climate zones using the different methods of prescribing ε. 
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Fig. 5. Location of urban clusters and their daytime ensemble mean surface urban heat island intensity (SUHI) estimated from Landsat for summer (a) and winter 
(b). Sub-figures (c) and (d) show the the urban cluster level difference in estimated SUHI after adjusting the surface emissivity using NDVI for summer and winter, 
respectively. Sub-figures (e) and (f) show the distribution of these differences during summer and winter for each climate zone. 
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LST has been found to show the highest RMSE compared to observations 
in a recent multi-model comparison (Sekertekin and Bonafoni, 2020a). 

3.4. Global spatial patterns of surface urban heat island 

Figs. 2–4 show bulk patterns. Since the urban cluster-level infor
mation, including their location, are important, we also show the spatial 
plots of the urban locations and the SUHI intensity (Fig. 5). Here we only 
use the common urban clusters with data from all five approaches for 
prescribing ε, representing an ensemble estimate of SUHI. The sum
mertime patterns for the climate zones are generally replicated in the 
global maps, with the lowest, mainly negative values, in arid and semi- 
arid regions in the Middle East, Saharan Africa, southern US and 
northern Mexico, central Australia, and South America (Fig. 5a). The 
rest of the world generally shows a positive SUHI intensity. India shows 
a mixed pattern, with western and central parts showing negative values 
and northern and southern edges showing positive SUHI, which is 
consistent with the summer daytime patterns found in Kumar et al. 
(2017). Overall, the urban cluster ensemble mean SUHI intensity varies 
between a 5th percentile value of − 1.97 ◦C to a 95th percentile of 
5.65 ◦C. As also seen in the earlier subsection, the range of daytime 
ensemble SUHI during winter is smaller (5th percentile of − 1.83 ◦C to 
95th percentile of 2.32 ◦C). The contrast between urban clusters in dry 
versus other climate zones is still apparent, though the positive SUHI 
values are less extreme. 

We also examine how using εNDVI instead of εASTER influences the 
SUHI by calculating the difference in SUHI (ΔSUHI) between the two 
methods (Fig. 5c and d). Although the overall ΔSUHI is positive, there is 

a range of values. During summer, ΔSUHI ranges from a 5th percentile of 
− 0.59 ◦C to a 95th percentile of 1.06 ◦C and during winter, it ranges 
from − 0.74 to 0.94 ◦C. Interestingly, many of the urban clusters that 
show a positive ΔSUHI during summer show a negative anomaly during 
winter. This includes urban clusters over Europe, northeast US, and parts 
of northern China. Similarly, urban clusters over India, a few over the 
Amazon, and parts of southeast Asia show positive ΔSUHI anomalies 
during winter and negative values during summer. This is consistent 
with the patterns seen in Fig. 3b, with tropical and temperate urban 
clusters showing a percentage increase in winter daytime SUHI when 
using NDVI-adjusted ε and boreal, polar, and arid urban clusters 
showing a percentage decrease in magnitude. We also show the density 
plots of ΔSUHI during summer and winter (Fig. 5e and f). Overall, the 
differences between two methods is minimal for urban clusters in arid 
climate during summer and for polar urban clusters in winter. In 
contrast, the positive differences between εNDVI and εASTER are most 
pronounced in tropical areas during winter. 

3.5. Comparison with MODIS 

We compare our Landsat-derived ensemble estimates of daytime 
SUHI with the MODIS Terra-derived estimates, both globally, and for 
each climate zone. The scatter plots, where each point represents the 
daytime SUHI for one urban cluster, are shown for summer and winter 
(Fig. 6). The plots show the lines of best fit and the metrics of evaluation 
and the sample sizes for each case are in the figure captions. Overall, the 
Landsat-derived daytime SUHI estimates show a moderately strong 
positive relationship with the MODIS-derived estimates during summer 

Fig. 6. Scatterplots of Landsat versus MODIS-derived daytime summer surface urban heat island intensities for (a) all clusters and for each climate zone, namely (b) 
tropical, (c) arid, (d) temperate, (e) boreal, and (f) polar. Each point represents one cluster and the equations for the lines of best fit, the coefficients of determination, 
and the mean bias and root mean square errors between the two estimates are annotated. The global sample size is 7314, with 424, 1093, 4089, 1549, and 200 
clusters lying in the tropical, arid, temperate, boreal, and polar climate zones, respectively. 
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(global r2 = 0.48), and a somewhat weaker relationship during winter 
(global r2 = 0.35). For the summer, the r2 values are highest for arid 
urban clusters (r2 = 0.60) and lowest for tropical urban clusters 
(r2 = 0.25; Fig. 6). This is unsurprising since, even after choosing only 
clear-sky pixels, the data availability due to the difference in cloud cover 
between the two satellites, driven by the distinct return periods, would 
be higher over tropical areas and lowest over arid regions (Chakraborty 
et al., 2020) (see Discussion). During winter, r2 values are still highest 
for arid urban clusters (0.54), but lowest in boreal climate (0.18; Fig. 6). 
Unlike most other climate zones, tropical areas show an improved r2 

between MODIS and Landsat SUHI from summer to winter. This could be 
because a large fraction of the tropical urban clusters (Fig. 1) are located 
in regions with summer monsoon systems, which enhance precipitation 
and cloud cover (Zhisheng et al., 2015; Turner et al., 2020) and thus 
interfere with satellite observations of LST. 

During summer, the SUHI calculated from Landsat is higher (in ab
solute magnitude) than that from MODIS (Fig. 6). Assuming MODIS to 
be the baseline, both MBE and RMSE are highest for boreal climate zone 
(2.19 ◦C and 2.74 ◦C, respectively) and lowest for arid urban clusters 
(0.12 ◦C and 1.67 ◦C, respectively). During winter, the differences are 
generally lower, with the global MBE of 0.29 ◦C (RMSE = 1.08 ◦C). 
Among the climate zones, the boreal climate shows the greatest 

difference between Landsat and MODIS-derived SUHI (MBE = 0.57 ◦C). 
Overall, the wintertime SUHI magnitudes are similar from both satellites 
although there are large differences in their distributions. 

Given the general overestimation in Landsat-derived summer day
time SUHI, it is necessary to check whether this is due to the higher 
resolution of the Landsat data which enables better separation of the 
urban–rural temperature differential or a systematic overestimation in 
Landsat LST. We examine this by separately evaluating LSTurb and LSTrur 
corresponding to all the urban clusters, shown in Fig. 7a and b. For 
summer, although LSTrur is slightly higher in the Landsat data 
(MBE = 1.09 ◦C for), the difference for LSTurb is much higher 
(MBE = 2.73 ◦C). During winter, the Landsat based LST is is closer to the 
MODIS-based value in both urban clusters (MBE = 0.55 ◦C) and their 
rural references (MBE = 0.26 ◦C). This analysis generally shows that the 
deviations between MODIS and Landsat LST are not systematic over 
both urban and rural areas, and that urban areas show additional dif
ferences between the two satellites, particularly during summer. This is 
probably because Landsat data can resolve the thermal signature of 
urban areas better than MODIS. We also examine the impact of resam
pling the MODIS data to 60 m from its native ≈1000 m resolution on the 
cluster-mean LST values. The differences in the MODIS LST at the two 
resolutions is negligible, with r2 values close to 1. Although the MODIS 

Fig. 7. Scatterplots of Landsat versus MODIS-derived daytime urban ((a)) and rural ((b)) land surface temperature for all clusters for summer and winter. Each point 
represents one cluster and the equations for the lines of best fit, the coefficients of determination, the mean bias and root mean square errors between the two 
estimates are annotated. The sample size is 7315 for these cases. Sub-figures (c) and (d) show the MODIS-derived urban and rural LST for summer and winter before 
and after resampling to 60 m. The sample size is 6020 for these cases. 
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LSTurb and LSTrur values at the native resolution are slightly lower than 
that after resampling, since the direction of the bias is consistent in di
rection for both cases, this will have minimal impact on the comparison 
of SUHI values derived from the two products. 

3.6. Sensitivity analysis 

We estimate the sensitivity of LSTurb and LSTrur to ε and examine how 
that would impact SUHI estimates using OLS regressions. Since LST is a 
linear function of ε in the SMW algorithm (Eq. (2)), we get perfect linear 
relationships in all cases (Fig. 8), with LST decreasing as ε increases. The 
slope of the lines of best fit give the sensitivity of LST to ε. The sensi
tivities are pretty similar for LSTurb and LSTrur for both summer and 
winter with a value of around − 59 ◦C for a unit change in ε. This linear 
sensitivity is a consequence of the linear approximation used in the SMW 
algorithm and is generally valid for the wavelength channel and within 
the range of temperature we observe on the Earth's land surface. 
Different algorithms used to estimate LST from satellite observations use 
different approximations and would yield slightly different sensitivities. 
If we re-arrange the Stefan-Boltzmann law, given by: 

L↑ = εσLST4 (9)  

where σ is the Stefan-Boltzmann constant (5.67 × 10− 8 W m− 2 K− 4) and 
L↑ is the emitted thermal radiation from the surface, for a given L↑, LST is 
a power function of ε with it theoretically approaching infinity as ε 
approaches 0. In contrast, the SMW algorithm shows theoretical 

temperature values of 87.95 and 64.38 ◦C for rural surfaces with an ε 
value of 0 for summer and winter, respectively. When the surface is 
considered to be a perfect black body, which is somewhat accurate when 
examining purely vegetated surfaces, the rural and urban reference 
temperatures are 30.26 ◦C and 32.29 ◦C during summer (4.78 ◦C and 
4.93 ◦C during winter), respectively. Note that the Stefan-Boltzmann 
law is also an approximation, with slight uncertainties associated with 
the Stefan-Boltzmann constant, deviations from the law seen for high 
and low temperature regimes, and the assumption of a black body (and 
by definition, lambertian surfaces) in the derivation of the equation 
(Baltes, 1973). 

The SUHI also decreases with increasing ε, with a summer bound of 
2.04 ◦C and a wintertime value of 0.13 ◦C under the black body 
assumption for both urban and rural surfaces. We also show the impact 
of the prescribed urban and rural ε using different methods on the global 
SUHI values. As discussed earlier, the lower ε of urban areas compared 
to their rural references contributes to the SUHI. Among the ε models 
tested, this difference is strongest for εGriend (Eq. (7)), with a summer 
mean SUHI of 3.18 ◦C using this method (1.56 ◦C during winter). The 
other methods, even with some differences in εurb, cluster close together 
when comes to the SUHI intensity. We also plot the global mean SUHI 
estimates from MODIS Terra observations, also discussed earlier. Of 
note, the difference in εurb between Landsat and MODIS (global mean 
average of εurb in band 31 and 32 ≈0.978 for both summer and winter) 
are minimal and would not explain the higher SUHI values from Land
sat. We also show the impact of the prescribed urban and rural ε values 
on simulated SUHI from two commonly used model, the Weather 

Fig. 8. Sensitivity of urban and rural land surface 
temperature (LST), as well as surface urban heat is
land intensity (SUHI), to surface emissivity (ε) as
sumptions for (a) summer and (b) winter days. The 
temperature sensitivity and SUHI sensitivities corre
spond to the left and right y-axes, respectively. The 
global mean values for different assumptions of ε 
considered in this study and the prescribed ε in the 
Weather Research and Forecasting (WRF) model and 
Community Land Model (CLM) are provided. The 
estimates are placed along the top x axis at the cor
responding values for urban ε, since rural ε varies 
little among these estimates.   
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Research and Forecasting (WRF) Model (Powers et al., 2017) and the 
Community Land Model (CLM) (Lawrence et al., 2019). Although there 
are many models available for simulating urban climate with different 
assumptions and parameterizations, a complete survey of the ε 
assumption in these models is beyond the scope of the current study. 
Instead, we provide an illustrative example from two important cases – 
with WRF being the mesoscale model used in the majority of urban 
climate research in the last decade (Kwok and Ng, 2021) and CLM being 
one of the few operational global climate models with explicit urban 
representation (Oleson and Feddema, 2020). 

For WRF, we use the prescribed ε for urban land (0.88) and forests 
(0.95 for coniferous, tropical, and sub-tropical forests) based on the 
model's land use lookup table (https://github.com/NCAR/WRFV3/ 
blob/master/run/LANDUSE.TBL) to estimate the SUHI from the sensi
tivities shown in Fig. 8. For CLM, although ε varies spatially, for 
simplicity, we use the values found for North America in Zhao et al. 
(2014), which is 0.88 for urban and 0.96 for rural. The theoretical SUHI 
calculated for the same urban clusters from models if the radiance dif
ferences between urban and rural areas were identical to that derived 
from the SMW algorithm is much higher than observed values (global 
mean of 6.48 and 7.13 ◦C for WRF and CLM, respectively, for summer; 
4.45 and 5.12 ◦C for winter). Although this comparison is simplistic (see 
Discussion), the lack of agreement between satellite-based ε and 
model-specified ones, particularly for urban areas, needs to be investi
gated further for more accurate SUHI estimation and, more broadly, for 
better constraining urban climate simulations. 

4. Discussion 

Unlike MODIS, which has been more frequently used for multi-city 
comparisons of SUHI, Landsat has a few advantages. The Landsat se
ries has now been operational for over 40 years, with the homogenized 
Landsat archive being used extensively for high resolution long-term 
mapping efforts (Liu et al., 2018; Pickens et al., 2020). The Landsat 
TIR data are available since 1982, which provides an opportunity to 
study long-term trends in urban temperatures, which is not generally 

resolved using ground-based observational networks. Moreover, Land
sat data being available at a higher resolution than MODIS allows us to 
more accurately detect thermal hotspots within urban areas. Unfortu
nately, the major limitation pertains to Landsat's 16-day return period. 
The probability of cloud contamination is much higher due to this lower 
frequency of measurements compared to daily MODIS scenes, particu
larly relevant for tropical and coastal areas. This is evident when we 
calculate the percentage of available pixels for the urban and rural ref
erences separately from Landsat and MODIS Terra measurements 
(Fig. 9). As expected, the percentage of available pixels for the urban 
references is higher for MODIS measurements (global composite mean of 
99.0% for MODIS and 93.9% for Landsat). In tropical areas, the differ
ence between the two products is further magnified with the composite 
mean of the available pixel percentage being 94.4% for MODIS and 
81.9% for Landsat. The percentage of available pixels is similar for the 
rural references (Fig. 9b). Note that the available pixels are calculated 
here after temporal compositing i.e. at least one pixel is available during 
the northern hemisphere summer. In reality, Landsat would have a 
lower number of observations to estimate the pixel-level means, making 
it hard to compare these observations with more representative 
clear-sky estimates from MODIS. This lower frequency of measurements 
matters less for land cover classification since the timescale of land cover 
changes is usually larger than this return period. However, for dynamic 
variables like temperature, higher temporal resolution enables us to 
better constrain clear-sky climatological means, where Landsat would 
have issues, especially with potential inter-annual variability in cloud 
cover. To reduce the impact of this noise, we can consider multi-year 
compositing to define different regimes of SUHI corresponding to each 
past decade. Although this does reduce the number of data points 
available to calculate stable long-term trends, this issue will become less 
important with increasing years of LST data archival. With that being 
said, satellite observations from Landsat and MODIS do agree on overall 
regional patterns in SUHI and can continue to help monitor and provide 
insights on thermal anomalies associated with urbanization. However, 
the LST differences between datasets can be of the same order of 
magnitude as the SUHI signal (see Figs. 4 and 7). Previous research has 

Fig. 9. Mean and standard deviation of percentage of available pixels after temporal compositing during northern hemisphere summer from Landsat and MODIS data 
for all urban clusters (sub-figure (a) is for the rural references and (b) is for the urban references) and for each climate zone. 
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shown that choosing different MODIS-derived products (for instance, 
MYD11, which uses a split-window algorithm versus MYD21, which uses 
the ASTER TES algorithm) can lead to differences in SUHI estimates (Yao 
et al., 2020). The issue is more prevalent for Landsat, which currently 
lacks a globally available derived product (Yu et al., 2014; Wang et al., 
2019). A way forward may be to incorporate ensemble methods, as 
attempted here, to derive uncertainty ranges from multiple datasets and 
algorithms, thus accounting for differences in sensors, methods, surface 
emissivity, etc. This is important to consider in future work with more 
approaches to prescribing ε and various retrieval algorithms. Doing so 
can improve our confidence in satellite-based SUHI estimates as we 
prepare for a warmer and more urbanized future. 

Our comparison of the satellite-derived ε with those prescribed in 
models comes with one major caveat. Since models use broadband ε for 
longwave radiation, it might be misleading to compare the SUHI 
calculated using such broadband ε values with the sensitivities found for 
channel-specific data. To examine further, we calculate broadband 
emissivities for each urban cluster from the ASTER data using the linear 
formulation described in Malakar et al. (2018): 

εBB = c10ε10 + c11ε11 + c12ε12 + c13ε13 + c14ε14 + c0 (10)  

where εBB is the broadband emissivity, ε10, ε11, ε12, ε13, and ε14 are the ε 

values corresponding to channels 10 to 14 of the ASTER GEDv3 dataset, 
and c10 (=0.014), c11 (=0.145), c12 (=0.241), c13 (=0.467), c14 (=0.004) 
and c0 (=0.128) are empirical coefficients. The distributions of εBB for 
urban and rural references, both globally and across climate classes, are 
shown in Fig. 10a and b. Overall, urban εBB is slightly lower than rural 
εBB. For rural references, arid regions tend to have the lowest εBB and 
boreal regions have the highest. It is evident that the ASTER-derived εBB 
for urban surfaces is higher than the 0.88 considered in CLM or WRF. 
Since this 0.88 in CLM is a bulk estimate of prescribed ε for different 
urban components, we extracted the grid-level ε in the surface dataset 
used in the latest version of CLM (CLM 5) and show their distributions 
using box and whisker plots (Fig. 10c). The mean urban εBB calculated 
from ASTER GEDv3 (0.969) is also shown using the horizontal line. In 
almost all grids, the ε values of the urban sub-components (across all 
urban classes) are lower than the ASTER estimates. Pervious surfaces in 
urban areas are prescribed to have an ε of 0.95. For other sub- 
components, CLM divides the world into 33 regions with their specific 
urban parameters, including ε (Oleson and Feddema, 2020). The values 
of the ε of roofs in CLM is particularly low. Unlike CLM, WRF generally 
uses a single land cover-based specification of ε for urban areas. Fig. 8 
shows the potential SUHI value for WRF when run with the slab urban 
model, which assumes an urban ε of 0.88. In WRF with urban canyon 
representation, urban ε is slightly higher and separated into ε values for 

Fig. 10. Sub-figures (a) and (b) show the frequency 
distribution histograms of rural and urban broad
band emissivity (ε) derived from ASTER data corre
sponding to all urban clusters and separately for each 
climate zone. Sub-figure (c) shows box and whisker 
plots of the prescribed broadband ε of all urban sub- 
components throughout the globe in the latest 
version of the Community Land Model. The global 
mean urban broadband ε from ASTER is also noted 
using the horizontal dashed line.   
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roofs (0.91), walls (0.91), and roads (0.95; https://github.com/NCAR/ 
WRFV3/blob/master/run/URBPARM.TBL). Even if we assume that 
half of all urban areas are roads, the SUHI calculated using these pre
scribed emissivities would be higher than Landsat-derived values (global 
summer daytime mean of 3.35 ◦C versus ensemble mean 
Landsat-derived SUHI of 2.42 ◦C). Since these ε are not spatially explicit, 
some studies using WRF use the ε specification from CLM (Huang et al., 
2021). These sensitivity analyses (Fig. 8) also assume that the simulated 
outgoing longwave from the land components of the models would be 
identical to the values estimated from satellite observations. In reality, 
simulated LST is a function of not just ε, but is strongly modulated by 
other components of the surface energy balance. For CLM, decreases in 
prescribed ε have been shown to increase the net radiation and sensible 
heat flux over urban surfaces (Oleson et al., 2008). Given the importance 
of ε on constraining the surface energy budget and the somewhat larger 
variability in ε expected in urban areas, future research should compare 
the prescribed urban ε and its impacts on simulated urban climate across 
currently operational microscale, mesoscale, and global models. 

5. Limitations 

Our study focuses on a single year (2010) of Landsat 5 scenes. This is 
both to reduce computational time and also due to temporal constraints 
of the ancillary datasets (Esch et al., 2017; Hulley et al., 2015) used to 
compute the SUHI and its sensitivity to ε. Similar analysis for more 
recent years can be done using high resolution land cover datasets, such 
as GlobeLand30 (Chen et al., 2015) and GAIA (global artificial imper
vious area) (Gong et al., 2020), to delineate urban and rural pixels more 
accurately for the corresponding years. Landsat 5, although an older and 
currently nonoperational satellite, has the longest duration 
(1984–2013) of any Earth-observing satellite in history. As such, it has 
been critical for multiple long-term land cover and land use monitoring 
efforts (Liu et al., 2018; Pickens et al., 2020) and for temporal analysis of 
SUHI intensity (Shen et al., 2016). Moreover, the algorithms and ε 
models considered here are also regularly used for Landsat 7 and 8 
scenes with slight adjustments to empirical coefficients (Ermida et al., 
2020; Sekertekin and Bonafoni, 2020a,b). Thus, any insights about the 
importance of prescribed ε on satellite-derived SUHI would be largely 
valid for all Landsat missions. 

We confirm the generalizability of these results by calculating the 

corresponding variables (Fig. 11) for the 1000 largest urban clusters 
(after removing clusters with missing data for the relevant periods) for 
2015 using Landsat 8 scenes. For this year, we use the World Settlement 
Footprint (Marconcini et al., 2020), a global map of human settlements 
available at ≈10 m resolution to delineate urban and rural pixels within 
each cluster. The results, including the order of ε values using the 
different approaches and the SUHI intensities across climate zones and 
seasons, are largely comparable to those found for Landsat 5 data for 
2010 (Fig. 4). For instance, the summer (winter) daytime SUHI is 
2.26 ◦C (0.39 ◦C) for 2010 using Landsat 5 versus 1.98 ◦C (0.26 ◦C) in 
2015 using Landsat 8 for this subset of clusters. 

In the present study, we only use one single-channel algorithm, the 
SMW algorithm, to compute LST. This is largely by design since the 
objective was to employ this perturbation analysis to examine the 
impact of prescribed ε on global and regional estimates of SUHI. We 
expect other algorithms to also be sensitive to ε models but to different 
degrees (Sekertekin and Bonafoni, 2020a,b). 

It should be stressed that the empirical relationships used to estimate 
LST from TIR data, as well as the methods used to estimate ε, were 
originally designed for natural surfaces, not urban areas (Van de Griend 
and OWE, 1993; Sekertekin and Bonafoni, 2020a). More importantly, 
ground-based validation of ε is still rare (Langsdale et al., 2020), and 
particularly difficult for urban areas due to their heterogeneity. For 
instance, none of the SURFRAD stations (Augustine et al., 2005), 
commonly used to evaluate satellite-derived LST (Ermida et al., 2020; 
Sekertekin and Bonafoni, 2020a,b) are in cities. Without such valida
tions, we can expect uncertainties in urban LST and thus, larger 
noise-to-signal ratios for satellite-derived SUHI. Since Landsat observa
tions allow us to estimate intra-urban variability in SUHI at a higher 
resolution, an important question is how this ε is affected by the change 
in surface roughness within urban areas and how that impacts our es
timates of spatial LST variability. This surface heterogeneity will affect 
both bulk ε estimates and lead to thermal anisotropy, which can further 
amplify the deviations between MODIS and Landsat LST given their 
different view angles (Hu et al., 2016; Krayenhoff and Voogt, 2016; 
Wang et al., 2021). 

Finally, when comparing modeled SUHI with satellite observations, 
it is important to consider the fundamental differences between them. 
Prescribed ε in models are from material-level ε for broadband thermal 
radiation, which can be quite low (Artis and Carnahan, 1982). However, 

Fig. 11. Sub-figures (a) and (b) show the mean and standard deviation of urban and rural surface emissivity (ε) for summer and winter, respectively, from all the 
approaches considered in the present study for the 1000 largest urban clusters (991 for summer and 849 for winter after quality screening) for the year 2015 using 
Landsat 8 measurements. Sub-figures (c) and (d) show the mean and standard error of surface urban heat island intensity for summer and winter, respectively, for the 
corresponding clusters as well as for each climate zone using the different methods of prescribing ε. 
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most real urban surfaces are not just slabs of constant built-up materials. 
This introduces difficulties in performing apples-to-apples comparisons 
between large-scale estimates from satellites and models, since they do 
not necessarily agree on a common definition for urban areas. 

6. Conclusion 

Approaches used to prescribe land emissivity in surface temperature 
retrieval algorithms can have a strong impact on surface urban heat is
land (SUHI) estimates, particularly for more vegetated regions. In the 
present study, we test five such approaches across almost 10,000 urban 
clusters using Landsat 5 data and the statistical mono-window algorithm 
for the year 2010. Adjusting the surface emissivity using satellite- 
derived proxies of vegetation increases the contrast between summer 
and wintertime SUHI. We provide the first estimates of SUHI at a global 
scale using Landsat data by combining all these approaches. Landsat- 
derived SUHI is generally higher than MODIS-derived values, though 
they show similar seasonal and climatic trends. More interestingly, we 
find that the prescribed urban emissivity in common weather and 
climate models may be biased low, which would impact the model- 
simulated SUHI values. Our results show a need to comprehensively 
benchmark urban emissivity values used in both satellite remote sensing 
and numerical weather and climate modeling. Further research is also 
needed to examine how sensitive these emissivity assumptions are for 
other surface temperature retrieval algorithms. With continued and 
unprecedented urbanization and given that the approaches to derive 
surface emissivity were initially intended for natural land cover, we 
need to take a step back to evaluate these methods specifically over 
urban areas or develop new algorithms to reduce uncertainties when 
studying urban climate. 
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by world maps of the köppen-geiger climate classification. Meteorol. Z. 19, 135. 

Schneider, A., Friedl, M.A., Potere, D., 2010. Mapping global urban areas using modis 
500-m data: new methods and datasets based on ‘urban ecoregions’. Remote Sens. 
Environ. 114, 1733–1746. 

Sekertekin, A., Bonafoni, S., 2020a. Land surface temperature retrieval from landsat 5, 7, 
and 8 over rural areas: assessment of different retrieval algorithms and emissivity 
models and toolbox implementation. Remote Sens. 12, 294. 

Sekertekin, A., Bonafoni, S., 2020b. Sensitivity analysis and validation of daytime and 
nighttime land surface temperature retrievals from landsat 8 using different 
algorithms and emissivity models. Remote Sens. 12, 2776. 

Sellers, P., Mintz, Y., Sud, Y.e.a., Dalcher, A., 1986. A simple biosphere model (sib) for 
use within general circulation models. J. Atmos. Sci. 43, 505–531. 

Shastri, H., Paul, S., Ghosh, S., Karmakar, S., 2015. Impacts of urbanization on Indian 
summer monsoon rainfall extremes. J. Geophys. Res. Atmos. 120, 496–516. 
Publisher: Wiley Online Library.  

Shen, H., Huang, L., Zhang, L., Wu, P., Zeng, C., 2016. Long-term and fine-scale satellite 
monitoring of the urban heat island effect by the fusion of multi-temporal and multi- 
sensor remote sensed data: a 26-year case study of the city of Wuhan in China. 
Remote Sens. Environ. 172, 109–125. 

Snyder, W.C., Wan, Z., Zhang, Y., Feng, Y.Z., 1998. Classification-based emissivity for 
land surface temperature measurement from space. Int. J. Remote Sens. 19, 
2753–2774. 
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