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A B S T R A C T

We develop a new algorithm, the simplified urban-extent (SUE) algorithm, to estimate the surface urban heat
island (UHI) intensity at a global scale. We implement the SUE algorithm on the Google Earth Engine platform
using Moderate Resolution Imaging Spectroradiometer (MODIS) images to calculate the UHI intensity for over
9500 urban clusters using over 15 years of data, making this one of the most comprehensive characterizations of
the surface UHI to date. The results from this algorithm are validated against previous multi-city studies to
demonstrate the suitability of the method. The dataset created is then filtered for elevation differentials and
percentage of urban area and used to estimate the diurnal, monthly, and long-term variability in the surface UHI
in different climate zones. The global mean surface UHI intensity is 0.85 °C during daytime and 0.55 °C at night.
Cities in arid climate show distinct diurnal and seasonal patterns, with higher surface UHI during nighttime
(compared to daytime) and two peaks throughout the year. The diurnal variability in surface UHI is highest for
equatorial climate zone (0.88 °C) and lowest for arid zone (0.53 °C). The seasonality is highest in the snow
climate zone and lowest for equatorial climate zone. While investigating the change in the surface UHI over a
decade and a half, we find a consistent increase in the daytime surface UHI in the urban clusters of the warm
temperate climate zone (0.04 °C/decade) and snow climate zone (0.05 °C/decade). Only arid climate zones show
a statistically significant increase in the nighttime surface UHI intensity (0.03 °C/decade). Globally, the change is
mainly seen during the daytime (0.03 °C/decade). Finally, the importance of vegetation differential between
urban and rural areas on the spatiotemporal variability is examined. Vegetation has a strong control on the
seasonal variability of the surface UHI and may also partly control the long-term variability. The complete UHI
data are available through this website (https://yceo.yale.edu/research/global-surface-uhi-explorer) and allows
the user to query the UHI of urban clusters using a simple interface.

1. Introduction

The urban heat island (UHI) effect refers to the positive temperature
difference between an urban area and its hinterland, and it is one of the
most well-known consequences of urbanization on local climate (Souch
and Grimmond, 2006). It has been an active area of research in urban
climatology since it was first observed a century back by Luke Howard
(Howard, 1833). Traditionally, it was defined as the air temperature
difference between the urban zone and its surroundings, known as the
canopy UHI, and was studied using in-situ weather stations or mobile
measurements (Voogt, 2007). The advent of satellite data has allowed
us to define a new kind of urban heat island, known as the surface UHI,
which is the difference in land surface temperature (LST) between the
urban area and its surrounding non-urban area (Rao, 1972). Canopy

and surface UHI intensities are similar at the annual scale but may have
different diurnal and seasonal variabilities (Cui and De Foy, 2012;
Chakraborty et al., 2016).

Urbanization changes the surface energy budget by modifying al-
bedo, reducing evaporative cooling via replacement of vegetated sur-
faces with built-up surfaces, increasing heat storage due to the higher
heat capacity of urban structures, and changing dissipation of heat via
modulation of thermal roughness and urban spatial configuration
(Goward, 1981; Taha, 1997; Arnfield, 2003; Connors et al., 2013; Zhao
et al., 2014; Debbage and Shepherd, 2015). For heavily polluted cities
in arid regions, dust particles can trap longwave radiation and increase
the nighttime UHI intensity (Cao et al., 2016). Other major determi-
nants of the UHI intensity mentioned in the literature are synoptic
conditions, city size, precipitation, humidity, cloud cover, and coastal
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feedback (Santamouris, 2015).
Studies quantifying the magnitude of the UHI effect have been

performed for hundreds of cities around the world (Oke, 1979; Arnfield,
2003; Santamouris, 2015). Traditionally, such studies are done on a
city-by-city basis, which can lead to inconsistencies due to differences
in data collection processes, sensor types, and other methodological
considerations. A systematic critique of the UHI literature (Stewart,
2011) found that roughly half of the UHI studies lacked robustness.
Some important issues were: not controlling for weather factors, lack of
information on site metadata and instrumentation, lack of accounting
for temporal variability during mobile surveys, inconsistency in de-
fining both urban and rural measurement locations, and disregarding
the effect of scale.

The use of satellite data has reduced the inconsistency in mea-
surement techniques by allowing a standardized data collection ap-
proach that can be implemented for multiple cities. Previously, Tran
et al. (2006) and Imhoff et al. (2010) used satellite data to investigate
the surface UHI of 18 Asian megacities and 38 highly populated US
cities, respectively. Systematic studies have also been performed on the
UHI intensity of cities in Europe (Schwarz et al., 2011; Zhou et al.,
2013). A recent study investigated the diurnality and seasonality of the
surface UHI in the 84 largest cities in India (Shastri et al., 2017). The
principal works done on multiple cities at the global scale are by Peng
et al. (2011), who analyzed the UHI of 419 largest cities using 5 years of
MODIS AQUA LST data and Clinton and Gong (2013), who investigated
the global pattern of the UHI intensity for 2010.

For both canopy and surface UHI studies, one persistent issue is the
definition of the rural station (for canopy UHI) or the boundary be-
tween the urban and rural area (for surface UHI) (Martin-Vide et al.,
2015). Nearby rural areas are affected by advection from the urban
core. However, if the rural station is too far away, local weather
changes might be more important than the impact of land use changes.
A recent study in China found that the footprint of the UHI can be twice
or thrice the area of the city (Zhou et al., 2015). This is much higher
than the area of the fixed buffer zones normally used in global UHI
studies (Clinton and Gong, 2013). The study also demonstrated that for
closely located cities, the effect of advection from other cities could also
have an impact on the UHI intensity.

Smaller urban areas have generally been overlooked in the existing
UHI literature, which disproportionately focuses on large mega-cities.
Moreover, the temporal and seasonal variability of the UHI intensity
has not been investigated at a global scale. So in this study, we map the
daytime and nighttime surface UHI for all urban areas currently de-
tectable via MODIS-based spectral classification of land use using over
15 years of observed data. Buffer-based analyses of the UHI intensity
are common in the literature and it is hard to choose a fixed buffer
width that is reasonable for all the cities across the globe. So we develop
a new algorithm, the simplified urban-extent algorithm (SUE), that can
be used to automatically calculate the UHI intensity at a global scale.
The algorithm is implemented on Google Earth Engine, a cloud-based
platform for planetary-scale data archiving and geospatial analysis
(Gorelick et al., 2017). We estimate the surface UHI intensity for almost
9500 distinct urban clusters and estimate the diurnal, seasonal, and
annual pattern of the UHI intensity for each climate zone. Many of the
factors that influence the UHI intensity, like urban albedo, longwave
trapping by the urban canyon, surface roughness, etc. do not show
significant seasonal or temporal variations, given the relatively constant
nature of urban areas. The main varying characteristic is vegetation
cover, which changes throughout the year, as well as between years.
Given the focus on the seasonal and temporal variability of the UHI in
the present study, we examine how vegetation controls this dynamic
globally, and for different climate zones.

The major research questions investigated in the present study are:

• How well does the newly designed SUE algorithm replicate the
known characteristics of the surface UHI effect?

• How does the mean, diurnal, and seasonal patterns of the UHI
compare for urban clusters in different climate zones?

• How has the UHI intensity changed in the last decade and a half,
both globally and for each climate zone?

• How strongly does vegetation control the seasonal and temporal
variability of the surface UHI?

Section 2 describes the SUE algorithm developed for this study.
Section 3 shows the comparison of the results with those obtained from
previous multi-city studies. Section 4 shows the general results as well
as the diurnal, seasonal, and annual variability of the surface UHI for
urban clusters in different climate zones. Section 5 examines how ve-
getation controls the spatiotemporal variability of the UHI and dis-
cusses the advantages and disadvantages of the SUE algorithm.

2. Methodology

2.1. The Simplified Urban-Extent (SUE) algorithm

In this study, we define the surface UHI as the difference in LST of
the urban pixels and the non-urban pixels within each urban extent,
which we call the simplified urban-extent (SUE) algorithm. First, the
MODIS-derived LST data from TERRA (MOD11A2) and AQUA
(MYD11A2) satellites, available at 1 km × 1 km resolution, are pre-
processed, with only the clear-sky pixels with average LST error of less
than or equal to 3 K being selected for further analysis. The quality
controlled datasets are then used to estimate the LST at 0130, 1030,
1330, and 2230 local time (LT). Data from 2000 to 2017 (18 years) are
used from the TERRA platform, while data from 2002 to 2017 (16
years) are used from AQUA.

The urban extent data are from Natural Earth (2018). It is a com-
bination of the global urban land database by Schneider et al. (2009,
2010) and the Oak Ridge National Laboratory's LandScan population
database (Dobson et al., 2000). The urban data are based on MODIS
measurements for February 2001 to February 2002 and is defined using
the C4.5 decision tree algorithm (Quinlan, 1993). This dataset has al-
ready been validated, with an overall accuracy of 93%, using a Landsat-
based map of 140 urban areas in different ecoregions, and for different
levels of population and economic development (Schneider et al.,
2010). These global urban data are intersected with Thiessen polygons
derived from the LandScan population points to create the urban land
database; the results are in vector format on the Natural Earth website
(2018). The urban units are closed polygons around contiguous urban
agglomerations. Fig. 1 shows an example of one such urban unit con-
sisting of multiple urban areas. The advantage of using this dataset is
that it is based on a consistent algorithm implemented on the MODIS
land use satellite product and bounds the global hot spots of human
habitation.

Fig. 1 shows the steps used to estimate the surface UHI of each
urban cluster. Firstly, the global LST and MODIS LU/LC data (at 500 m
× 500 m resolution) for 2013 (MCD12Q1) are clipped to the urban
extent dataset. Then, two subsets are created, one for urban land use (in
red in Fig. 1) and another for all land use other than urban and water
based on the land use data. The water pixels are removed since the high
specific heat capacity of water would lead to an overestimation of the
UHI intensity during the daytime and an underestimation during
nighttime. After subsetting, the spatial mean of the LST for both subsets
are calculated for each urban cluster and their difference is the surface
UHI for that cluster. Before taking the spatial means, the subsetted LST
pixels are automatically resampled to 500 m × 500 m grids to match
the resolution of the LU/LC data. When calculating the surface UHI for
separate years, the same extent shape is applied to all years, though the
subsetting is done using the MODIS LU/LC data for that particular year.
Since the MODIS LU/LC data are only available till 2013, the 2013 data
are also used for the years 2014–2017. Unless otherwise stated, the
daytime UHI is derived from the mean of LST values at 1030 and 1330
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LT, while the nighttime UHI is based on the mean of the LST at 0130
and 2230 LT. The same method is used to find the difference in En-
hanced Vegetation Index (EVI) (ΔEVI), a proxy for green vegetation
density, between the urban and rural pixels using the AQUA 16-day EVI
dataset available at 250 m × 250 m resolution (MYD13Q1) for the
same time period.

Evidently, the algorithm, in its current form, does not work for the
clusters that are entirely urban or rural. This is especially true for small
clusters (with area< 3 km2) with very few pixels. We remove the
clusters with no rural pixels. After removing these from the original
dataset of 12022 separate clusters, we are left with 9483 urban clusters.
Since the difference in elevation between the urban and rural pixels can
influence the UHI intensity, the dataset was further filtered to only
include those clusters with a mean elevation difference of less than 50
m. For this, we use the Global Multi-resolution Terrain Elevation Data
2010 (GMTED2010), which combines terrain elevation data from
multiple sources and is available at 7 arc seconds (roughly 30 m at the
equator) (Danielson and Gesch, 2011). Finally, to further constrain the
variability in the ratio of urban to rural pixels for each cluster, only the
clusters with at least 10% urban area are considered. The surface UHI is
then calculated using all the available data after quality control (from
2000 to 2017 for TERRA and from 2002 to 2017 for AQUA). For the
summer surface UHI, data for June, July, and August are considered for
the Northern Hemisphere and December, January and February for the
Southern Hemisphere. For winter, June, July, and August are con-
sidered for the Southern Hemisphere and December, January and
February for the Northern Hemisphere. The final dataset consists of
7374 urban clusters comprising 760,600 km2 with 38.78% of the total
area (294,960 km2) being urban with a mean elevation difference of
4.46 m between urban and rural pixels. This is similar to the area
analyzed by Clinton and Gong (2013), though we use a new algorithm
and 16 years of data versus the one year (2010) used in that study. The
multiple years of data allow us to characterize the long-term variability
of the surface UHI and get better uncertainty estimates of the seasonal
trend and annual values.

2.2. Latitudinal pattern of the surface UHI

The zonal characteristics of the UHI at a global scale are first in-
vestigated. To do this, the Earth is divided into 5-degree latitudinal
increments and the mean and standard error of the UHI intensity are
computed for each increment. Some urban clusters lie on the boundary
between two latitudinal increments and this would lead to double

counting. To avoid this, the centroid of each urban cluster is determined
before grouping into the latitudinal increments. Peng et al. (2011)
characterized the latitudinal variability of the surface UHI difference
between summer and winter using MODIS AQUA data for the 419
largest cities. For the purpose of algorithm validation, this is also done
with the 419 largest urban clusters in the present study (Section 3).

2.3. Climatic variability of the surface UHI

While zonal characteristics can give an overview of the global sur-
face UHI characteristics, it cannot account for any forcing other than
the latitudinally varying incoming solar radiation. There is some evi-
dence that the surface UHI intensity is influenced by the background
climate of the city (Zhao et al., 2014). Zonal characterization cannot
account for differences in background climate since there may be
multiple climate zones in one latitudinal increment. Thus, in the present
study, the surface UHI characteristics are separately investigated for
each climate zone.

The updated Koppen–Geiger classification data for 1901–2100 are
used, based on the Rubel and Kottek (2010). The Koppen–Geiger clas-
sification divides the world into 5 major climate zones: equatorial, arid,
warm temperate, snow, and polar (Fig. S1(a)). Similar to the latitudinal
classification, the centroids of the urban clusters are used for grouping
to minimize double counting using an XY tolerance of 500m on
ArcMap. There are 762 urban clusters in the equatorial climate zone,
1136 in the arid climate zone, 3968 in the warm temperate climate
zone, 1499 in the snow climate zone. The latitudinal variation of the
urban clusters for each climate zone is in Fig. S1(b), the distribution of
the area of urban clusters is in Fig. S2, and the distribution of the
percentage of urban pixels in each cluster is in Fig. S3. All the urban
clusters in the polar climate zone are filtered out since the elevation
difference between the rural and urban pixels is> 50m in all these
clusters. The total number of urban clusters in all climate zone, when
added, is 7374, which is 9 less than the total number of clusters in the
global dataset. This is because the climate zone vector used in the
grouping process do not enclose the position of some of the urban
centroids. In addition, several urban clusters are double counted as they
are in two or more climate zones at once; a result of the XY tolerance
used while grouping. Since the sample size is large, these small dis-
crepancies are trivial.

Fig. 1. Sequence of steps used to estimate the
surface UHI for each urban cluster. First, a
subset of the MODIS LU/LC data are created
based on the urban extent dataset. Two subsets
of these data are created; one for urban land
use, and another for non-urban, non-water land
use. The mean of the LST over these LU/LC
pixels gives the urban and rural temperatures,
respectively. Finally, the difference between
these two is the calculated surface UHI. The
figure also shows one example of urban units
used in the present study, along with the
MODIS LU/LC dataset used to create the sub-
sets.
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3. Validation of results

Peng et al. (2011) used the city-clustering algorithm by Rozenfeld
et al. (2008) to define the urban areas at a fine scale. Then, they esti-
mated the surface UHI as the difference in LST between the city core
and its rural hinterland using MODIS AQUA data. In contrast, the SUE
algorithm developed in the present study uses the difference in the
mean LST of the urban pixels and the mean LST of the non-urban pixels
within the same urban extent to define the surface UHI. To validate the
accuracy of SUE at estimating the surface UHI versus the method used
by Peng et al. (2011), the surface UHI intensities from AQUA for the
419 largest urban clusters in the dataset (same as the number of cities
studied by Peng et al. (2011) were calculated. The surface UHI in-
tensities for TERRA were also calculated for comparison. The daytime
and nighttime surface UHI intensities (mean± standard deviation) for
annual, summer and winter for both methods are shown in Table 1. The
results from the SUE algorithm are in line with the results from the city-
clustering algorithm, especially for daytime. During nighttime, the SUE
algorithm slightly underestimates the surface UHI (around 27% un-
derestimation for annual nighttime surface UHI), while wintertime UHI
intensity is biased low for both daytime and nighttime.

The study by Peng et al. (2011) did not show any major seasonality
for the nighttime surface UHI, with annual, wintertime and summer-
time mean values being very close. On the contrary, the present study
shows that the summertime UHI is the highest and the wintertime UHI
is the lowest, and the annual mean UHI is between those two values.
This is consistent with the observations for the 419 largest cities derived
from the TERRA dataset. The seasonality of the UHI is discussed in
more detail in Section 4.

The slight deviation from the previous values may not only be due
to the different methodologies. The present study uses 16 years (from
2002 to 2017) of data for AQUA compared to 6 years of data (from
2003 to 2008) used in Peng et al. (2011). Moreover, the largest 419
urban clusters are not same as the largest 419 cities. Many of the larger
urban clusters are created from contiguous cities. Thus, the 419 largest
urban clusters incorporate more area than the 419 largest cities used in
Peng et al. (2011). Moreover, in the present study, MODIS pixels with
an error greater than 3 K are removed before the final analyses.

The latitudinal variation of the AQUA-derived surface UHI differ-
ences between summer and winter for the 419 largest urban clusters is
compared with the pattern seen from the methodology used by Peng
et al. (2011) in Fig. S4. The study by Peng et al. (2011) used 15 lati-
tudinal increments to find the variation, whereas we use 20 latitudinal
increments of 5-degree width. Overall, both methods show very similar
patterns. For daytime, the values from the present study have a less
pronounced latitudinal variability. Otherwise, the peaks and troughs
are roughly replicated by our methodology. The only exception is the
opposite trend seen for 20 degrees South latitude. For nighttime, the
patterns from the two algorithms are even more similar in magnitude
and latitudinal variability.

Clinton and Gong (2013) also calculated the surface UHI for all

global urban areas for 2010 using 5 - and 10-km buffers. We compared
the 2010 data from the present study with the results of that study
(Table 2). The UHI values found here are very similar to the values
calculated using 5-km buffers and lower than those calculated using 10-
km buffers. The standard deviations of the UHI values are lower in the
present study.

The results of present study are in agreement with the results of the
buffer-based analysis for large cities and all cities. Thus, we are con-
fident that the SUE algorithm is a viable alternative to buffer-based
characterizations of surface UHI intensity.

4. Results

4.1. Global patterns

Fig. 2 shows the global map of the mean surface UHI for daytime
and nighttime derived from MODIS satellite measurements. The global
mean surface UHI intensity is 0.85 °C for daytime and 0.55 °C for
nighttime. The majority (87%) of the urban clusters show a positive
daytime surface UHI, with 44% showing values greater than 1.00 °C.
During nighttime, 93% of the urban clusters show positive UHI in-
tensities, but only 13% show value greater than 1.00 °C. The urban
clusters with negative surface UHI are concentrated in the dry and
desert areas, namely the Arabian Desert in the Middle East, the Chi-
huahuan Desert in southern US and Mexico, the Thar Desert along the
border of India and Pakistan, the Kalahari Desert in southern Africa,
and the Patagonian Desert in the southern part of South America. The
nighttime surface UHI intensities are generally lower than the daytime
values. Daytime UHI is influenced by more factors like the difference in
evaporative cooling and surface roughness between urban and rural
areas, anthropogenic heat flux, and thermal inertia of built-up struc-
tures (Zhao et al., 2014). In contrast, nighttime UHI is primarily in-
fluenced by heat storage from the daytime, and anthropogenic heat
flux. This explains why the temperature differential is higher during the
day than at night.

When the UHI derived from AQUA and TERRA are analyzed sepa-
rately, the data from AQUA shows higher values during daytime and
lower values during nighttime. Table 3 summarizes the surface UHI
intensity from the global dataset from both TERRA and AQUA plat-
forms. The annual daytime surface UHI intensity is greater than the
nighttime intensity for both TERRA and AQUA. The daytime and
nighttime summer surface UHI intensities are larger than their corre-
sponding winter time components. The daytime intensity for summer
are over twice the UHI intensity for winter for both TERRA and AQUA.
For nighttime, the seasonal difference is less pronounced. The daytime
surface UHI is larger than the nighttime surface UHI for all cases. Paired
t-tests were performed between all daytime and nighttime datasets and
they were found to be statistically significant with p < 0.01 for all
cases.

4.2. Latitudinal patterns

Fig. 3 shows the latitudinal variation in the surface UHI for daytime
and nighttime. The solid lines show the mean surface UHI intensities for
each 5-degree latitudinal increments, while the shaded portions

Table 1
Summary of surface UHI characteristics (mean± standard deviation) for the
largest 419 urban clusters compared to the largest 419 cities considered by
Peng et al. (2011).

Source TERRA (present
study)

AQUA (present
study)

Peng et al.

Annual day (°C) 1.11 ± 1.05 1.50 ± 1.26 1.50 ± 1.20
Annual night (°C) 0.89 ± 0.44 0.80 ± 0.44 1.10 ± 0.50
Summer day (°C) 1.62 ± 1.47 2.03 ± 1.64 1.90 ± 1.50
Summer night

(°C)
1.05 ± 0.45 0.90 ± 0.41 1.00 ± 0.05

Winter day (°C) 0.64 ± 0.77 0.96 ± 1.00 1.10 ± 1.20
Winter night (°C) 0.86 ± 0.61 0.78 ± 0.61 1.00 ± 0.70

Table 2
Summary of surface UHI characteristics (mean± standard deviation) for the all
urban areas compared to the results from Clinton and Gong (2013)

Local time Present study
(SUE)

Clinton and Gong (5-
km buffer)

Clinton and Gong
(10 km buffer)

0130 LT 0.51 ± 0.47 0.60 ± 0.90 0.70 ± 1.00
1030 LT 0.73 ± 0.86 0.70 ± 1.40 1.00 ± 1.60
1330 LT 1.00 ± 1.08 0.90 ± 1.60 1.10 ± 1.80
2230 LT 0.60 ± 0.47 0.60 ± 0.90 0.80 ± 1.00
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represent the standard error from the mean. The daytime and nighttime
surface UHI intensities show distinct patterns. For daytime, there are
pronounced positive surface UHI intensities around the equator, at 20
degrees South, and between 40 and 60 degrees North. Compared to the

daytime UHI, the nighttime UHI shows lesser latitudinal variability.
There is a pronounced nighttime UHI at 30 degrees North and around
10 degrees South. At around 25 degrees North and 30 degrees South,
the daytime and nighttime UHI intensities flip, i.e. the nighttime

Fig. 2. Global map of mean surface UHI for 7374 urban clusters estimated using the SUE algorithm. The daytime value is the mean of the UHI intensity at 1030 LT
derived from TERRA (2001–2017) and the UHI intensity at 1330 LT derived from AQUA (2003–2017). The nighttime value is the mean of the UHI intensity at 2230
LT derived from TERRA and the UHI intensity at 0130 LT derived from AQUA.

Table 3
Summary of global surface UHI characteristics, where the sample size is 7374. Differences in daytime and nighttime UHI intensities are statistically significant
(p < 0.01) for all cases.

Period Local time Mean Standard deviation 1st quartile 2nd quartile 3rd quartile

Annual 0130 LT 0.51 0.44 0.25 0.50 0.75
1030 LT 0.71 0.82 0.30 0.74 1.17
1330 LT 1.00 1.04 0.44 1.02 1.59
2230 LT 0.59 0.44 0.32 0.56 0.84

Summer 0130 LT 0.57 0.44 0.30 0.55 0.82
1030 LT 1.12 1.19 0.45 1.18 1.87
1330 LT 1.44 1.42 0.61 1.51 2.36
2230 LT 0.69 0.46 0.40 0.67 0.96

Winter 0130 LT 0.50 0.54 0.19 0.44 0.75
1030 LT 0.35 0.59 0.09 0.35 0.63
1330 LT 0.53 0.79 0.13 0.52 0.92
2230 LT 0.57 0.54 0.24 0.50 0.84
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surface UHI is greater than the daytime intensity. These latitudes are
predominantly arid and cities in arid climate show higher nighttime
surface UHI intensity (refer Section 4.3). This reversal of the UHI
diurnality in desert cities has been observed in previous studies (Imhoff
et al., 2010; Zhang et al., 2010; Lazzarini et al., 2013).

4.3. Variations across climate zones

Fig. 4 shows the mean and standard error of the daytime and
nighttime surface UHI categorized into the Koppen–Geiger climate
zones. For daytime, the highest surface UHI is for the equatorial urban
clusters, followed by snow, warm temperate, and arid. Arid urban
clusters, in particular, have nearly zero daytime UHI. This pattern is
consistent at both 1030 LT and at 1330 LT. For nighttime, arid urban
clusters have the highest UHI intensity. The urban clusters in equa-
torial, warm temperate and snow climate zones all show very similar
surface UHI intensities. The daytime surface UHI is greater than the
nighttime surface UHI for all climate zones other than the arid. Paired t-
tests confirm that the difference between the daytime and nighttime
UHI intensity is statistically significant (p < 0.01) for all climate zones.

4.4. Diurnality

The daytime and nighttime measurements from TERRA and AQUA
were combined to calculate the diurnality of the surface UHI intensity
for the world and for each climate zone. In Fig. 5, the solid lines re-
present the mean of the diurnal variation, while the shaded regions
show the one standard error from the mean. As discussed previously,
globally, the surface UHI intensity is higher during the day than at
night, which has been seen in previous studies (Peng et al., 2011;
Clinton and Gong, 2013). The present study shows that this diurnality is
consistent across all the climate zones except the arid zone. Among
equatorial, warm temperate, and snow urban clusters, the UHI intensity
is highest at 1330 LT and lowest at 0130 LT. For the arid zone, the
highest surface UHI intensity is at 2230 LT and the lowest is at 1030 LT.

The diurnal range of the surface UHI – the difference between the
maximum and minimum surface UHI intensities – is highest for the
equatorial urban clusters (0.88 °C), followed by 0.79 °C for snow, 0.56
°C for warm temperate, and 0.53 °C for arid. Overall, the diurnal range
of the surface UHI is 0.52 °C. The standard error of UHI intensity is very
low because of the large sample size.

Fig. 3. Latitudinal variation in surface UHI intensity. The solid lines are for
mean values, while the shaded portions represent the standard error. The
daytime and nighttime intensities are consolidated values from TERRA and
AQUA platforms.

Fig. 4. Global daytime and nighttime surface UHI intensities (mean± standard error) for each climate zone.

Fig. 5. Diurnality of the surface UHI for the world and each climate zone. The
solid lines represent the mean value, while the shaded areas represent the
standard errors.
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4.5. Seasonal variability

The monthly means and standard errors of the surface UHI intensity
for each of the 12 months of the year are presented in Fig. 6. Globally,
the daytime surface UHI shows higher values during the boreal
summer, with the highest intensities in July (1.29 ± 0.01 °C) and the
lowest values in December 0.43 ± 0.01°C.

When the data are divided into climate zones, all of them do not
show the same pattern. The warm temperate and snow urban clusters
show comparable patterns with low values during the boreal winter and
high values during boreal summer. For daytime, the maximum surface
UHI intensities for the warm temperate and snow urban clusters are
during the boreal summer (1.43 ± 0.02 °C in June for warm tempe-
rate; 1.78 ± 0.03 °C in July for snow) and the lowest values are in
boreal autumn (0.46 ± 0.01 °C in December for warm temperate;
0.35 ± 0.01 in November °C for snow). The daytime surface UHI in-
tensity in the equatorial and arid zones show distinct patterns. For the
arid urban clusters, there is hardly any seasonality compared to the
other climate zones. Moreover, the daytime surface UHI intensities are
close to zero for most of the year. The daytime surface UHI in the
equatorial climate zone shows the opposite pattern to the warm tem-
perate and snow climate zones, with the highest values during boreal
autumn and the lowest values during boreal spring.

The seasonality of the global nighttime surface UHI is similar to the
daytime pattern with June highs and November lows (Fig. 6 (b)). The
nighttime surface UHI of the warm temperate climate zone shows high
values during boreal summer (July) and low values in boreal autumn
(December). Like the daytime case, the seasonality of the monthly
surface UHI is atypical for equatorial and arid zone. The arid zone again
shows two peaks during the year, one in March and another in October.
The minimum surface UHI in the arid urban clusters is in July. The
equatorial zone shows the highest surface UHI intensity in boreal
winter (January) and the minimum in boreal summer (July). For
nighttime, urban clusters in the snow climate zone also show two peaks
during the year, one in February and another in July. The lowest
nighttime intensity for this climate zone is in November.

The maximum daytime surface UHI intensity in all climate zones
other than equatorial are in and around boreal summer. Eighty-nine
percent of the urban clusters considered in the present study are in the
Northern Hemisphere. Moreover, most of the urban clusters in the
Southern Hemisphere are in the Tropics, which show very little sea-
sonality. Since the energy imbalance due to urban land use (due to
changes in albedo, thermal mass, evapotranspiration, etc.) is a function
of the magnitude of incoming solar radiation, it makes sense that the
surface UHI is highest when the Northern Hemisphere receives the
highest net radiation. When the dataset is separated into hemispheres,

the seasonal variation is identical in the Northern Hemisphere and re-
verses for the Southern Hemisphere (Fig. S5). For the Southern
Hemisphere, the peak daytime surface UHI intensity is shifted towards
the austral summer for all the climate zones. Nighttime surface UHI
shows very little seasonal variation in the Southern Hemisphere.

The global inter-seasonal range of the daytime UHI – the difference
between the maximum and minimum mean monthly daytime surface
UHI intensities during the 12-month cycle – is 0.85 °C. The highest
seasonality in the daytime surface UHI is 1.44 °C for urban clusters in
the snow climate zone, followed by warm temperate zone (0.95 °C).
Inter-seasonal range of daytime surface UHI 0.38 °C for both equatorial
and arid climate zone. The inter-seasonal range of the global nighttime
UHI is very low (0.14 °C). A recent multi-city study showed that many
urban centers in India show a negative surface UHI during daytime
during the hot period (Shastri et al., 2017). This dampens the season-
ality of the daytime UHI in the equatorial climate zone. The snow urban
clusters show the highest inter-seasonal range of nighttime UHI in-
tensity (0.37 °C), followed by warm temperate (0.23 °C), arid (0.19 °C),
and equatorial (0.18 °C).

Very few studies have investigated the seasonality of the UHI on a
month-by-month basis for multiple cities (Debbage and Shepherd,
2015). Clinton and Gong (2013) looked at the time of maximum and
minimum surface UHI intensity for cities around the globe, though they
did it only for 2010. This is the first study to characterize the season-
ality of the surface UHI at a global scale using all available MODIS
observations.

4.6. Long-term trend

Fig. 7 shows the temporal variability in the annual UHI from 2003
to 2017 based on aggregated data from TERRA and AQUA. The change
per decade for each case, along with its 95% confidence interval, is
mentioned in the figure. Globally, the daytime surface UHI shows a
positive temporal trend, with an increase of around 0.03 ± 0.02°C per
decade. In comparison, the nighttime surface UHI intensities have re-
mained practically unchanged (−0.00 ± 0.01°C per decade). The in-
crease in the daytime UHI intensity is highest for the snow urban
clusters (0.05 ± 0.03°C per decade) and lowest in the arid zone
(−0.03 ± 0.01°C per decade).

For nighttime, the surface UHI intensity does not show any sig-
nificant change (with 95% confidence), except for urban clusters in the
arid zone, which show an increasing trend (0.03 ± 0.01°C per decade).
Daytime surface UHI intensity has decreased significantly in arid urban
clusters over the last decade and a half. This makes sense because urban
clusters in arid climate are cooler than their surroundings (Zhao et al.,
2014) and expansion of these areas over time would intensify these

Fig. 6. Seasonal variability in global daytime and nighttime surface UHI intensities for each climate zone. The solid lines represent the mean value, while the shaded
areas represent the standard errors.
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urban cool islands. The daytime UHI intensity change over the warm
temperate zone, which includes the majority of urban clusters in Europe
and North America, is also positive. The present study is the first in-
vestigation of how the surface UHI has changed over the last decade
and a half on a global scale and for each climate zone using observed
data.

In comparison to the changes found here, the global land tem-
perature anomalies have increased at the rate of 0.30°C per decade from
2003 to 2017 (NOAA, 2018). It should be noted that since the surface
UHI is calculated in reference to non-urban land use, the changes in UHI
intensity found in the present study is in addition to the increase in
surface temperature due to global climate change. In comparison,

Fig. 7. Temporal variability in annual daytime and nighttime surface UHI intensities from 2003 to 2017. The solid lines represent the mean values, while the shaded
areas represent the standard errors. The dashed line represents the trend for best linear fit and the change in the surface UHI intensity per decade (mean±95%
confidence interval) is mentioned on each plot.
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deforestation shows a much stronger effect, though the strength and
sign of change depend on the latitude (Lee et al., 2011). A recent study
using MODIS LST products from 2003 to 2013 found an increase in
average surface temperature at the rate of 0.28°C per decade in equa-
torial regions, a maximum cooling of 0.55 °C per decade in boreal re-
gions, and a warming of up to 0.32 °C per decade in temperate regions
(Li et al., 2016).

Previously, two such studies (Fischer et al., 2012; Oleson, 2012)
have analyzed the difference in urban and rural response to climate
change using global climate models, i.e. the change in the UHI in-
tensity. Depending on the climate change scenario used (best to worst),
the UHI either stayed the same or slightly reduced compared to the
present day scenario. However, these studies did not take urban ex-
pansion into consideration, which could be influencing the changes
observed in the present study.

5. Discussion

5.1. Vegetation control on the surface UHI intensity

Several previous studies have shown that difference in vegetation
between the urban and rural areas strongly modulates the surface UHI
intensity via differential evaporative cooling of urban versus rural
surfaces. This has been seen when comparing surface UHI of multiple
cities (Peng et al., 2011; Clinton and Gong, 2013), as well as when
comparing the seasonal surface UHI trend of individual cities (Qiao
et al., 2013; Chakraborty et al., 2016). Similarly, in the present study,
when the dataset is divided into increasing ΔEVI quartiles, the daytime
surface UHI intensity decreases (Fig. 8). This is particularly true for
global, equatorial, arid, and warm temperate cases. For the snow urban
clusters, daytime surface UHI increases slightly for the highest ΔEVI
bin. This is because these cities are primarily in the northern latitudes,
where vegetation control is less dominant. Similarly, there is no con-
sistent association between nighttime UHI and ΔEVI since, mechan-
istically, impact of vegetation on surface temperature is dominant
during daytime.

We examine how the seasonality of the ΔEVI modulates the seasonal
variability of the surface UHI. The monthly ΔEVI accounts for 95% of
the variance in the monthly daytime UHI at a global scale (Fig. 9). Si-
milar strong correlations are found for urban clusters in warm tempe-
rate (r2= 0.94) and snow (r2= 0.84) climate zones. The correlations
are not statistically significant (p > 0.01) for urban clusters in equa-
torial and arid zones. This is partly because the seasonal variability is
lowest in these climate zones as they are nearer to the equator. More-
over, vegetation is not a strong determinant of the daytime UHI in the
arid zone and the equatorial region is strongly influenced by other
factors, like cloudiness, monsoonal rainfall, etc, which can impact the
UHI intensity.

The rural EVI shows a stronger seasonal cycle than the urban EVI for
all climate zones other than equatorial, which modulates the differ-
ential evaporative cooling between urban and rural areas, and thus, the
daytime UHI intensity (Fig. S6). The nighttime surface UHI shows a
much weaker association with the ΔEVI, suggesting that it is not
strongly controlled by the vegetation differential between urban and
rural surfaces, as also found in a previous study (Peng et al., 2011). For
nighttime, the association is only statistically significant for the world
and warm temperate climate zones (Fig. S7).

Similar correlations were attempted between the yearly daytime
and nighttime surface UHI intensities and the yearly ΔEVI values (Figs.
S8 and S9). The relationships are much weaker, except for the arid
zone. Temporal analyses of the urban and rural EVI over 16 years show
that the rate of change of urban EVI per decade is lower than the cor-
responding change in the rural EVI (Fig. S10). Globally, the urban EVI
has remained the same while the rural EVI has increased slightly.
However, these results are near the detection limit of MODIS.

5.2. Advantages of the SUE algorithm

One major advantage of the SUE algorithm is that it can be auto-
mated to estimate the surface UHI intensity at a global scale. We do not
need to explicitly define a buffer around an urban area to implement
this algorithm. Instead, we use the urban boundaries as the units of
calculation, with the spectral classification of remotely sensed data
being used to separate the urban and rural pixels. The choice of a buffer
around an urban area can be arbitrary. Moreover, studies on individual
cities sometimes use administrative boundaries to define the urban
area, which are usually not related to the physical characteristics of
urban land use. In comparison, the rural area in the Natural Earth da-
taset used in this iteration of the SUE algorithm is the non-built-up
pixels of human-inhabited regions of Earth. Thus, the surface UHI, as
defined in this study, is the temperature change experienced by people
as they move into built-up areas.

Since the footprint of the UHI varies significantly and can be up to
3.9 times the city area for nighttime, the choice of the rural pixel can
significantly affect the calculated UHI intensity (Zhou et al., 2015). In
many cities, especially developing cities, the city is surrounded by sa-
tellite towns with their own urban influence. This lack of standardiza-
tion of the urban and rural area in the context of the UHI effect was also
pointed out by Stewart and Oke (Stewart and Oke, 2009). The SUE
algorithm, as implemented in this study, merges many of these satellite
towns by using urban clusters, which is one step towards standardiza-
tion.

5.3. Limitations of the study

While the SUE algorithm, as used in this study, solves a few meth-
odological issues in the existing UHI literature, it has limitations mainly
due to the datasets used in the present study. The urban extent database
used in the present study is based on satellite observations from 2001 to
2002. Urban areas have grown since then, especially Asian and African
cities, which have experienced tremendous urban sprawl in the last
decade. The urban pixels of the MODIS MCD12Q1 raster data have also
remained same since 2002 (Li et al., 2017). In addition, due to the
nature of the urban extent data used in the study, some MODIS urban
pixels transcend the urban extents, leading to a reduction of urban data
points for some clusters. Given the large number of data points, this
does not cause widespread biases at the global or regional scale. Since
we do not use explicit buffers around the urban areas, the rural re-
ference sprawls in an anisotropic manner, which could create biases in
the estimated surface UHI for individual cities. Buffer-based estimates
of surface UHI of coastal cities have the same problem, with the data
from the buffer over the water pixels not being used as a part of the
rural reference. In addition to the anisotropy in the rural reference, the
percentage of urban clusters within each pixel varies significantly (Fig.
S3), from 10% to roughly 98%. Caution should be exercised when
comparing the surface UHI of individual clusters because of this dis-
parity in the percentage of the urban area between different clusters.

These are mostly issues with the datasets used, not the SUE algo-
rithm itself. New, more recent urban datasets, if available, can be used
in conjunction with the SUE algorithm to create updated maps of the
surface UHI.

While MODIS data products are relatively accurate over homo-
geneous terrain, their accuracy decreases substantially over hetero-
geneous surfaces, for instance, urban areas. To control for this, we have
only considered the pixels with less than 3 K uncertainty. We initially
tried using only pixels with an uncertainty of less than 1 K. However,
doing so removes the majority of urban pixels. It should be noted that
this uncertainty is an issue with all satellite-based observations of UHI
intensity.

In addition to the uncertainty of the urban pixels, the MODIS
thermal band used for LST retrieval is constrained to clear sky condi-
tions. The impact of cloud contaminated pixels could significantly alter
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the estimated UHI intensity. While we have considered only clear sky
pixels in our calculations, the frequency of cloudy pixels is a function of
season and may impact our estimates of the UHI intensity due to biases
in sampling. It is important to keep these uncertainties in mind while
interpreting the results of this study.

6. Conclusions

A new algorithm (SUE) is designed to study the surface UHI at a
global scale. The study validates a few well-known surface UHI char-
acteristics, like latitudinal variability and the annual, summertime, and
wintertime intensity. The algorithm extends the analysis by using a

complete urban extent dataset and all available MODIS satellite ob-
servations. Most important is the analysis of multiple years of data to
reduce uncertainties in surface UHI estimates and investigating the
long-term variability of the surface UHI.

Globally, the daytime surface UHI is higher than the nighttime UHI,
with the summer season showing the highest values compared to
winter. The urban extent dataset is divided into climate zones using the
Koppen–Geiger climate classification system to investigate the differ-
ences in the diurnal, seasonal, and long-term variability in the surface
UHI for the first time using a consistent methodology. All climate zones
other than arid show higher daytime surface UHI intensities, with snow
urban clusters showing the highest diurnal range and maximum

Fig. 8. Daytime and nighttime surface UHI intensity (mean± standard deviation) for increasing urban–rural EVI difference bins.
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daytime values. There are significant differences in the seasonality of
the surface UHI for different climate zones, in particular for arid and
equatorial urban clusters. The long-term variability in the surface UHI
is investigated using yearly land use classes from MODIS. A consistent
increase is seen in the surface UHI intensity for urban clusters, parti-
cularly for daytime, indicating a temporal redistribution of heat due to
urbanization.

Finally, we investigate the importance of vegetation in controlling
the surface UHI intensity. Vegetation is a strong modulator of the sea-
sonal variability of the surface UHI, and may also affect the long-term
changes observed in this study. Since the difference in vegetation be-
tween the urban and rural area is a strong predictor of the surface UHI
intensity, increased urban vegetation can be used to dampen UHI in-
tensity in cities prone to heat stress. In particular, seasonal urban irri-
gation has the potential to mitigate high UHI during the hot season.

This study demonstrates that the urban clusters in different back-
ground climates show distinct diurnal, seasonal, and long-term varia-
bility using a globally consistent dataset for the first time. Our results
indicate that background climate should be taken into consideration for
city-specific UHI mitigation policies, as well as when planning new
cities and expanding existing urban areas.

7. Data availability

The dataset developed in the present study can be found at
(Chakraborty and Lee, 2018). To make the data more accessible, we
have also designed an interactive, public facing web application to
query urban heat island intensities of almost all urban clusters on the
Google Earth Engine platform. It can be accessed here: Global Surface
UHI Explorer (https://yceo.yale.edu/research/global-surface-uhi-
explorer).
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