
1. Introduction
Clouds and the carbon cycle represent two large sources of uncertainty in our understanding of the Earth system, 
particularly relevant for the inter-model spread in future climate projections (Arias et al., 2021; Friedlingstein 
et al., 2014; Lawrence et al., 2016; Webb et al., 2017). An important and currently understudied mechanism 
that links cloud cover and the terrestrial carbon budget is the diffuse radiation fertilization effect (Mercado 
et al., 2009; Rap et al., 2018). The presence of scattering agents like clouds and aerosols in the atmosphere can 
change the direction of a portion of the total solar radiation (K↓), thus exposing normally shaded leaves to sunlight. 
By absorbing this diffuse radiation (K↓,d), these leaves can then contribute to photosynthesis, increasing carbon 
uptake by vegetation, enhancing evapotranspiration, and lowering surface and air temperature (Chakraborty 
et al., 2021; Knohl & Baldocchi, 2008; Mercado et al., 2009; Rap et al., 2018).

Abstract The diffuse radiation fertilization effect—the increase in plant productivity in the presence of 
higher diffuse radiation (K↓,d)—is an important yet understudied aspect of atmosphere-biosphere interactions 
and can modify the terrestrial carbon, energy, and water budgets. The K↓,d fertilization effect links the carbon 
cycle with clouds and aerosols, all of which are large sources of uncertainties for our current understanding 
of the Earth system and for future climate projections. Here we establish to what extent observational 
and modeling uncertainty in sunlight's diffuse fraction (kd) affects simulated gross primary productivity 
(GPP) and terrestrial evapotranspiration (λE). We find only 48 eddy covariance sites with simultaneous 
sufficient measurements of K↓,d with none in the tropical climate zone, making it difficult to constrain this 
mechanism globally using observations. Using a land modeling framework based on the latest version of the 
Community Land Model, we find that global GPP ranges from 114 Pg C year −1 when using kd forcing from 
the Modern-Era Retrospective analysis for Research and Applications, version 2 reanalysis to a ∼7% higher 
value of 122 Pg C year −1 when using the Clouds and the Earth's Radiant Energy System satellite product, 
with especially strong differences apparent over the tropical region (mean increase ∼9%). The differences in 
λE, although smaller (−0.4%) due to competing changes in shaded and sunlit leaf transpiration, can be greater 
than regional impacts of individual forcing agents like aerosols. Our results demonstrate the importance of 
comprehensively and systematically validating the simulated kd by atmosphere modules as well as the response 
to differences in kd within land modules across Earth System Models.

Plain Language Summary Due to clouds and small particles present in the atmosphere, some part 
of sunlight changes its direction, known as diffuse radiation. Leaves that are normally in the shadow of upper 
leaves can absorb this diffuse sunlight and then take part in photosynthesis, which also increases water released 
from them. The global strength of this effect—the diffuse radiation fertilization effect—is difficult to calculate 
using observations because most measurements are not in places where this effect might be strongest (like 
tropical forests). So, we commonly use computer models to calculate this. Here we first consider all sites that 
have the required measurements to study this effect to show that they are not suitable for global calculations. 
Then, we run a computer land model using different global datasets that give us a realistic range of diffuse 
radiation. We find that the change in photosynthesis due to this range has larger than expected effects on the 
carbon absorbed by the Earth's plants during photosynthesis in this model. The effects are less important for 
water released from leaves. Since different computer models calculate this effect differently, we need to test 
how other models react to similar ranges of diffuse radiation in the future.
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The K↓,d fertilization effect is difficult to quantify and constrain with observations due to the dearth of simultane-
ous in situ measurements of K↓,d and carbon and energy fluxes (Chakraborty & Lee, 2021a; Emmel et al., 2020; 
Steiner et al., 2013; Zhou et al., 2021). Consequently, to estimate the impact of K↓,d fertilization effect on climate, 
we have to rely on global models, which of course have multiple sources of uncertainties. In atmospheric models, 
accurate estimates of K↓,d depend on adequate parameterizations for clouds, radiation transfer, and aerosols, all of 
which vary widely between models (Chakraborty & Lee, 2021b; Pincus et al., 2016). Unfortunately, most models 
taking part in the Coupled Model Intercomparison Project do not publicly archive the diffuse component of K↓. 
For the few current-generation global reanalysis and satellite-derived products that do provide K↓,d, large differ-
ences in K↓,d are seen, which is at least partly due to differences in cloud cover (Chakraborty & Lee, 2021a). On 
the land modeling side, capturing the response of surface climate to K↓,d depends strongly on how the leaf-to-can-
opy upscaling process is represented, another major source of inter-model variability (Chakraborty et al., 2021; 
Luo et al., 2018).

Recent modeling evidence suggests that even when the total K↓ stays the same, changes in the diffuse fraction 
(kd) affects gross primary productivity (GPP) and latent heat flux (λE) (Chakraborty et al., 2021). However, to 
reduce uncertainty associated with disparate representation of the K↓,d fertilization effect requires improvements 
in multiple model components. Current generation inter-model comparisons have not focused on this aspect of 
atmosphere-biosphere interactions. For instance, for the Radiative Forcing Model Intercomparison project, the 
focus, naturally, is on the total radiative effect of climate forcers, but the partitioning of K↓ into K↓,d and its direct 
beam component (K↓,b) (Pincus et al., 2016) is not considered. For the biosphere component, two relevant MIPs, 
the Land Surface, Snow and Soil moisture Model Intercomparison Project (LS3MIP) (van den Hurk et al., 2016) 
and Coupled Climate–Carbon Cycle Model Intercomparison Project (Jones et al., 2016), are not focused on the 
impact of K↓,d on the carbon or energy cycle. None of the land-only forcing datasets used in the LS3MIP or Trends 
in the land carbon cycle (Sitch et al., 2015) projects provide kd, meaning the partitioning of K↓ into K↓,d and K↓,b  is 
left at the discretion of the land component, which also varies between models (Clark et  al.,  2011; Wozniak 
et al., 2020; Zhang et al., 2020).

Here we quantify the K↓,d fertilization effect across a network of flux tower sites and then use a modeling frame-
work with different global estimates of kd to illustrate the important role of this inter-product kd forcing spread on 
estimates of the terrestrial carbon and energy budgets. Our results demonstrate the need to comprehensively and 
systematically examine the simulated kd by the atmosphere components and as well as the K↓,d fertilization effect 
across land components in Earth System Models (ESMs).

2. Materials and Methods
2.1. Processing Site-Level Observations

We obtained publicly-available data from all AmeriFlux (Novick et al., 2018) (Table S1 in Supporting Infor-
mation S1) and FLUXNET (Baldocchi et al., 2001) (Table S2 in Supporting Information S1) sites that include 
observations of K↓,d (Figure 2a). Since the data structures from these two observation networks are different, their 
data were processed separately. The hourly FLUXNET measurements were subset based on quality control flags 
for the relevant variables, namely K↓,d, K↓, reflected shortwave radiation (K↑), λE, and GPP. The GPP field used 
was the one calculated using the daytime partitioning method (Lasslop et al., 2010). All hourly observations that 
were measured, gap-filled with high quality, or could be downscaled from reanalysis data were used. Finally, 
nighttime values and measurements corresponding to when the diffuse fraction (kd = K↓,d/K↓) was greater than 1 
or lower than 0 (both theoretically impossible) were removed.

For the AmeriFlux measurements, nighttime and physically impossible kd values were first omitted. For multiple 
observations of K↓, K↓,d, or K↑ at a single site, the unweighted mean of the observations were used. AmeriFlux sites 
do not include the separated GPP field, so the net ecosystem exchange (NEE) columns were examined instead. 
All data points were binned based on absorbed radiation (Kabs = K↓ ‒ K↑) into 100 W m −2 bins between 100 and 
600 W m −2. Kabs is more relevant for estimating the available energy for photosynthesis at the canopy-scale than 
K↓, but similar results are seen when using K↓ bins (not shown). For each bin, low (kd < 0.35) and high (kd > 0.65) 
kd regimes are defined, following Davin and Seneviratne (2012), and the variables of interest (moisture and carbon 
fluxes) were compared. Note that not all sites have sufficient (or any observations) in all bins and kd regimes.

Writing – review & editing: T. 
Chakraborty, X. Lee, D. M. Lawrence
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2.2. Simulating Meteorological and Default Radiative Forcing Data

Our modeling framework consists of generating climatological forcing data by running the Community Atmos-
phere Model (CAM) (Neale et al., 2010) and then simulating the surface energy and carbon budget by running the 
Community Land Model (CLM) (Lawrence et al., 2019). The latest version of CAM (CAM version 6) was first 
run with a slab ocean model, prescribed sea ice, and present-day distribution of aerosols for the period 2001–2003 
at a spatial resolution of 0.9375 × 1.25°. Among other improvements, CAM6 uses a new cloud macrophysics 
parameterization for better performance while simulating boundary layer clouds and also captures cloud-aerosol 
interactions (indirect effect) in its default configuration (Gettelman et al., 2019). The atmospheric variables simu-
lated by CAM that were used to force CLM include the direct beam radiation (K↓,b), K↓,d, incoming longwave 
radiation (L↓), and precipitation at surface and air temperature, specific humidity, wind speed, and atmospheric 
pressure at screen height.

2.3. Generating Monthly-Climatology-Adjusted Diffuse Fraction Forcing Data

In order to examine the sensitivity of model-simulated carbon and energy fluxes to a realistic spread of kd, we 
extracted K↓,d and K↓ at the surface for the 2001–2003 period from five global data products that publicly archive 
K↓,d or K↓,b (in addition to the CAM-simulated values). These data products are: (a) NOAA-CIRES-DOE – Twenti-
eth Century Reanalysis version 3 (Slivinski et al., 2019) from National Oceanic and Atmospheric Administration, 
Cooperative Institute for Research in Environmental Science, and the Department of Energy, (b) National Centers 
for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) – 50-year Reanalysis 
(Kistler et al., 2001) from NCEP and NCAR, (c) MERRA-2 – Modern-Era Retrospective analysis for Research 
and Applications, version 2 (Randles et al., 2017) from National Aeronautics and Space Administration (NASA), 
(d) ERA5 – Fifth Generation Reanalysis (Hersbach et al., 2020) from the European Centre for Medium-Range 
Weather Forecasts, and (e) CERES – latest version of the Clouds and the Earth's Radiant Energy System product 
from NASA (CERES_EBAF_Ed4.1) (Rutan et al., 2015). Of these, K↓,d is derived as the sum of diffuse photosyn-
thetically active radiation (PARd) and diffuse near-infrared radiation (NIRd) for MERRA-2 and as the difference 
between K↓ and K↓,b for ERA5. Since these datasets have different spatial resolution (Chakraborty & Lee, 2021), 
all the datasets were interpolated to a regular 0.5 × 0.5° grid – the forcing resolution used for the subsequent land 
model runs – using nearest-neighbor interpolation.

The climatological state at the diurnal scale will not necessarily be consistent across all these products, partly 
because unlike assimilated surface meteorology, atmospheric constituents like clouds are modeled and aerosols 
are not explicitly represented in most of these products (except MERRA-2; Randles et al., 2017). Since the mete-
orological forcing and total K↓ are specific to the CAM-simulated (not assimilated) climatology and same for all 
the simulations, we adjusted the kd for the other forcing data based on their monthly kd. This monthly adjustment 
was done because unlike diurnal climatology, the monthly kd climatology do show similar intra-annual patterns 
(but with large differences in magnitude; Chakraborty & Lee, 2021b). Thus:

𝐾𝐾↓ ,d,a = 𝑘𝑘d,m𝐾𝐾↓ ,h (1)

where K↓,d,a is the monthly-climatology-adjusted three-hourly K↓,d for a particular product, kd,m is monthly 
mean kd for that month for that product, and K↓,h is the three-hourly K↓ from the CAM simulations. Then K↓,b,a 
(monthly-climatology-adjusted K↓,b) is the difference between K↓,h and K↓,d,a. Similarly, instead of using the 
three-hourly kd simulated by CAM when generating the final CAM forcing data, we adjusted K↓,d based on the 
average kd for each simulation month for consistency with the result of the simulations. Another important reason 
for this adjustment is because NCEP/NCAR and NOAA-CIRES-DOE K↓,d are only available at the monthly scale.

2.4. Land Model Simulations

The meteorological and L↓ forcing data from CAM and six sets of K↓,d and K↓,b fields (from NCEP/NCAR, 
NOAA-CIRES-DOE, MERRA-2, ERA5, CERES, and CAM after monthly-climatology adjustment) were used to 
run the latest version of the Community Land Model (CLM version 5; Lawrence et al., 2019) with biogeochem-
istry turned on. The biogeochemistry module allows for prognostic vegetation and helps us examine feedback on 
the canopy state due to the K↓,d fertilization effect (and its inter-product spread). Since the differences in forcing 
are small (only due to changes in kd), we allowed enough time for the model to adjust to the different forcing sets 
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by looping over the same forcing (2001–2003) for 100 years initiated for the year 2001. The results from years 
90–99 of the simulations are presented as by then, all components of the carbon budget, including soil carbon 
would equilibrate to the forcing differences. To examine possible feedback, we also analyzed data for years 30–39 
of the same simulations. The model outputs are for every month at a spatial resolution of 0.9375 × 1.25°. Note 
that CLM takes K↓,d and K↓,b separately as forcing fields and all model results presented are after calculating kd 
from the monthly output fields for consistency with the model simulations. Figure 1 gives an overview of the 
modeling framework of this study.

In addition to the GPP, sensible heat flux (H), and λE, we examined how their sub-components respond to the 
inter-product spread in kd. The ecosystem respiration (ER) was estimated as the difference between GPP and net 
primary productivity (NEP). The total λE can be further sub-divided into evaporation from ground (λEg), evapo-
ration from canopy (λEc), and transpiration (λEt), while the sensible heat flux H can be from the ground (Hg) or 
vegetation (Hv). All of these terms were simulated by CLM. We modified the CLM code to separately output the 
total λEt from sunlit (λEt,sun) and shaded leaves (λEt,sha). These modifications are based on the internal implemen-
tation of the two big-leaf model of evapotranspiration in CLM (Oleson et al., 2013) and given by:

𝜆𝜆𝜆𝜆t,sun =

LAIsun

𝑟𝑟b+𝑟𝑟
sun
s

LAIsun

𝑟𝑟b+𝑟𝑟
sun
s

+
LAIsha

𝑟𝑟b+𝑟𝑟
sha
s

𝜆𝜆𝜆𝜆t (2)

and

𝜆𝜆𝜆𝜆t,sha =

LAIsha

𝑟𝑟b+𝑟𝑟
sha
s

LAIsun

𝑟𝑟b+𝑟𝑟
sun
s

+
LAIsha

𝑟𝑟b+𝑟𝑟
sha
s

𝜆𝜆𝜆𝜆t (3)

Here, LAIsun and LAIsha are the leaf area index for sunlit and shaded leaves, respectively, rs sun and rs sha are the 
stomatal resistances for sunlit and shaded leaves, respectively, and rb is the leaf boundary layer resistance.

2.5. Regions of Interest

Land area weighted means of the variables of interest were calculated using the CLM surface data set. Addi-
tionally, the CLM grids were also separated into the Koppen-Geiger climate zones (Rubel & Kottek,  2010), 
namely tropical, arid, temperate, boreal, and polar (Figure 2a) and similar weighted means were calculated for 
these zones. These climate zones represent distinct classes of surface characteristics and atmospheric forcing 
(Chakraborty & Lee, 2019; Rubel & Kottek, 2010).

2.6. Impact of Monthly-Climatology Adjustment on Model Simulations

In its default configuration (CAM forcing to drive CLM), this modeling framework has been extensively evalu-
ated against both gridded and point measurements in a previous study (Chakraborty et al., 2021). Additionally, 

Figure 1. Schematic of the overall modeling framework.
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the K↓,d and K↓ fields of all the datasets have been compared with in situ measurements (Chakraborty et al., 2021; 
Chakraborty & Lee,  2021b). The monthly-climatology adjustment would have some impact on the simula-
tions though (Zhang, Ciais et  al.,  2021), since kd varies both during the month and even during the day and 
the bias-adjustment thus overestimates the kd slightly. To quantify the impact of this simplification on model 
simulations, we compared the relevant variables (GPP, λE, H) for two simulations – one using the original 
CAM-simulated K↓,d (K↓,d,h) and another using monthly-climatology-adjusted values (K↓,d,a). The results are 
summarized in Table 1 for global land surfaces and each climate zone. Overall, the spatial patterns are virtu-
ally identical (r 2 = 0.99) in all cases with small biases. The biases are greatest for GPP at −2.26% for global 
surfaces, which are smaller than the overall perturbations we see between the products. Although the differences 
in GPP between the simulations could partly be the result of this artifact, we would not expect the direction of 

Figure 2. Diffuse radiation fertilization effect at the site scale. Sub-figure (a) shows the locations of the measurement sites with simultaneous measurements of 
diffuse radiation, carbon fluxes, and energy fluxes considered in this study. The background colors represent the extent of the Koppen-Geiger climate zones used to 
examine regional trends. Sub-figure (b) illustrates the latent heat flux and gross primary productivity (GPP) for the Gebesee FLUXNET site in Germany (site with the 
most available data points; location denoted by concentric purple circle in sub-figure (a)) for high and low regimes of diffuse fraction in different absorbed shortwave 
radiation bins (similar results when using incoming shortwave radiation bins; not shown). The number of hourly observations in each bin is noted and all differences are 
statistically significant (p < 0.01). Results for the rest of the sites are summarized in Tables S3–S6 of Supporting Information S1.

Regions of interest

Variable Case Global land Tropical Arid Temperate Boreal Polar

Sensible heat flux (W m −2) CAM K↓,d,h 32 42.02 56.16 40.67 19.71 −9.84

CAM K↓,d,a 31.94 42.12 56.08 40.61 19.5 −9.91

r 2 0.99 0.99 0.99 0.99 0.99 0.99

MPE (%) −0.19 0.24 −0.14 −0.15 −1.07 0.71

Latent heat flux (W m −2) CAM K↓,d,h 37.4 80.06 24.24 51.8 27.83 7.3

CAM K↓,d,a 37.36 79.76 24.25 51.65 27.96 7.36

r 2 0.99 0.99 0.99 0.99 0.99 0.99

MPE (%) −0.11 −0.37 0.04 −0.29 0.47 0.82

Gross primary productivity ( Pg C year −1) CAM K↓,d,h 119.73 58.11 12.93 23.37 23.01 2.4

CAM K↓,d,a 117.02 56.7 12.83 22.62 22.57 2.41

r 2 0.99 0.99 0.99 0.99 0.99 0.99

MPE (%) −2.26 −2.43 −0.77 −3.21 −1.91 0.42

Note. The top two rows for each variable show the grid-area weighted mean for the two cases (grid-area weighted sum for gross primary productivity). The statistical 
parameters for model evaluation are the coefficient of determination (r 2) and mean percentage error (MPE).

Table 1 
Evaluation of the Sensible Heat Flux, Latent Heat Flux, and Gross Primary Productivity Simulated by CLM Using the Original CAM K↓,d (K↓,d,h) Forcing and the 
Monthly-Climatology-Adjusted Values (K↓,d,a) for the World's Land Surfaces and for Each Climate Zone
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the bias to be different across the simulations when using K↓,d,h instead of K↓,d,a. Additionally, we can compare 
these perturbations against the results of a previous study using a similar modeling framework for the aerosol 
impact on surface processes that used actual three-hourly kd differences based on radiation diagnostic simulations 
(Chakraborty et al., 2021). That study showed that an increase in the global kd over land from 0.27 (comparable 
to an aerosol-free atmosphere) to 0.34 would increase GPP by 2.2 Pg C y −1 (1.8%). Linearly extrapolating to the 
range of kd used here (0.35–0.60) would lead to a change in GPP of 7.8 Pg C y −1 versus the 7.6 Pg C y −1 found 
here (see Results). Although we do see some consistency here for CLM, the difference in simulated GPP between 
a monthly-climatology-adjusted kd and diurnally varying kd is also dependent on model structure. For example, 
a 13 Pg C y −1 difference in GPP was found when using climatologically averaged monthly kd instead of 6-hourly 
kd in the recently developed ORCHIDEE-DF land-surface model (LSM) though using a different study design 
(Zhang, Boucher, et al., 2021), suggesting the need for a standardized framework to compare the response to K↓,d 
across LSMs.

2.7. Statistical Analysis

For the in situ AmerFlux and FLUXNET observations, two-sampled t-tests were used to confirm whether the 
GPP (or NEE) and λE are statistically different (p < 0.01) between the low and high kd regimes in each bin. For 
the global study, we examined the inter-product spread at the grid level by calculating standard deviation (σ) from 
the six simulations with the six kd forcing data (Figure 4). Since standard deviation would be impacted by the 
baseline values, we also calculated the coefficient of variation (CV), which is unitless and scale independent, to 
get the relative dispersion around the mean. Coefficient of variation is given by:

CV =

𝜎𝜎

𝜇𝜇
 (4)

where μ is the six-product or six-simulation mean. Note that the CV values for both the energy budget compo-
nents and GPP can be very large in polar regions since the denominator is close to zero. As such, the CV is 
marked for only regions within a reasonable threshold (see Figure 4 and Section 3.2).

The global and regional mean variables of interest (and their subcomponents) were also linearly regressed against 
the kd across the respective simulations to examine sensitivities of the variables to the inter-product kd spread. 
Since the response of GPP to K↓,d has been shown to be non-linear in past studies at the site level (Mercado 
et al., 2009; Zhou et al., 2021), we also used a logarithmic fit of the form:

𝑦𝑦 = 𝑎𝑎 + 𝑏𝑏log(𝑥𝑥) (5)

for tropical and temperate climate, where the GPP (and λE) response to K↓,d is expected to be stronger. Here y is 
the variable of interest, x is forcing kd and a and b are the model coefficients.

3. Results
3.1. Observational Evidence of the Diffuse Radiation Fertilization Effect at the Site Scale

To illustrate the dearth of observational constraints on the K↓,d fertilization effect, we processed all the AmeriFlux 
(Novick et al., 2018) and FLUXNET (Baldocchi et al., 2001) site data with measurements of K↓,d. These data 
came from 12 FLUXNET sites and 36 AmeriFlux sites, with the majority located in evergreen needleleaf forests 
(16), deciduous broadleaf forests (9), and grasslands (9; Tables S1 and S2 in Supporting Information S1). Impor-
tantly, none of these sites are located in tropical rain forests, where the K↓,d fertilization effect is expected to be 
the strongest (Chakraborty et al., 2021, Figure 2a).

The K↓,d fertilization effect can be seen by identifying low (<0.35) and high (>0.65) kd regimes and comparing 
GPP (or NEE) and λE during these two regimes. Almost all the sites show a clear K↓,d fertilization effect, with 
λE and GPP being higher (NEE is lower) for the high kd regime across bins and especially at high absorbed 
shortwave levels (Figure 2b, Tables S3–S6 in Supporting Information S1). These results are generally consistent 
with the commonly held hypothesis that plant photosynthesis, and thus transpiration, increase under diffuse 
conditions (Davin & Seneviratne, 2012; Mercado et al., 2009). Of note, the impacts of the K↓,d fertilization effect 
is more clearly visible for the FLUXNET sites compared to the Ameriflux sites (Tables S3–S6 in Supporting 
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Information S1). The stronger K↓,d fertilization signal in the FLUXNET sites may be partly because Ameriflux 
measurements are more intermittent and generally have far fewer available data points.

Although there are other flux tower networks throughout the world, including some in tropical forests 
(Restrepo-Coupe et al., 2021; Sarangi et al., 2022), few have continuous measurements of K↓,d (Zhou et al., 2021). 
For instance, there are several (39) FLUXNET towers with measurements of PARd (Figure 3a), which is more 
relevant than total K↓,d for GPP and λE (Mercado et al., 2009). However, only three of these sites are in the trop-
ics. Among them, two did not have enough measurements to replicate the analysis in Figure 2b. The Guyaflux 
FLUXNET, which has also been examined in previous studies (O’Sullivan et al., 2021; Rap et al., 2015), also 
show higher λE and GPP for the high diffuse PAR fraction (PARd/PAR) regime in most absorbed shortwave bins 
(Figure 3b). Note that CLM, which is used in the subsequent sections to examine the K↓,d fertilization effect at 
a global scale, is driven by total kd, with the partitioning between PARd and NIRd done internally by the model. 
The observational results presented here (Table S3–S6 in Supporting Information S1) are consistent with other 
existing site-based estimates (Davin & Seneviratne,  2012; Emmel et  al.,  2020; Ezhova et  al.,  2018; Sarangi 
et al., 2022; Wang et al., 2018; Yue & Unger, 2017) and demonstrate the K↓,d fertilization effect at the site-scale. 
However, the tower site results cannot be used to provide global estimates due to both the sampling biases (e.g., 
lack of representation of tropical and other ecosystems) and lack of complete annual temporal coverage after 
quality-control, especially because the magnitude of the K↓,d fertilization effect is relatively small compared 
to the uncertainties in the measured fluxes. Although in situ measurement networks have been used to create 
global estimates of the surface energy budget, these studies have access to many more observation stations with 
multi-year data and still find larger errors in tropical areas, including South America and Africa (Chakraborty & 
Lee, 2021a; Jung et al., 2019).

3.2. Global Spatial Distributions of Inter-Product Variability

Since models are frequently used to examine the K↓,d fertilization effect to avoid the spatiotemporal sampling 
issues of in situ observations (Chakraborty et al., 2021; Mercado et al., 2009; Oliveira et al., 2011; O’Sullivan 
et al., 2021; Rap et al., 2018; Zhang, Ciais et al., 2021), we examine how simulated GPP and λE would vary for 
a realistic range of atmospheric kd forcing. The meteorological forcing data are from the latest version of CAM, 
while the kd is derived from monthly-climatology-adjusted current-generation data products, namely the NCEP/
NCAR (Kistler et al., 2001), NOAA-CIRES-DOE (Slivinski et al., 2019), ERA5 (Hersbach et al., 2020), and 
MERRA-2 (Randles et al., 2017) reanalysis and the CERES (Rutan et al., 2015) product, as well as the default 
CAM outputs. Larger differences in kd across these datasets are found in the mid-latitudes and high-latitudes, 
probably due to the higher baseline kd in these regions (Figure 4a). We account for this difference in baseline 

Figure 3. Photosynthetically active diffuse radiation measurements and associations with carbon and moisture flux. Sub-figure (a) shows the locations of the 
FLUXNET sites with simultaneous measurements of photosynthetically active diffuse radiation (PARd), carbon fluxes, and energy fluxes. The background colors 
represent the extent of the Koppen-Geiger climate zones. Sub-figure (b) illustrates the latent heat flux and gross primary productivity (GPP) for the Guyaflux 
FLUXNET site in French Guiana (location denoted by concentric purple circle in sub-figure (a)) for high and low regimes of diffuse PAR fraction in different absorbed 
shortwave radiation bins. The number of hourly observations in each bin is noted.
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by also calculating the CV (regions where CV is less than 30% are marked with + signs in Figure 4). Most of 
the high latitudes fall within this zone, but the CV exceeds 30% for the rest of the Earth's surface, except for the 
Amazon and parts of eastern China. These forcing data, with all variables except for kd being identical, are then 
used to run the latest version of CLM (Lawrence et al., 2019).

The standard deviation and CV in the simulated surface energy budget components (λE and sensible heat flux 
H) and GPP are lower than that for kd (a CV threshold of only 3% is used for these). This is expected since the 
six simulations are forced with identical meteorological data, except for their kd values, which provides a strong 
constraint on simulated GPP, λE, and H. Gross primary productivity shows the greatest variability (Figure 4b), 
with higher CV values seen over the Congo Basin, Southeastern US, and large parts of South and South-East 
Asia. Interestingly, even though the K↓,d fertilization effect directly affects λE, there are regions with higher CV 
values for H (Figure 4d).

3.3. Impact of Diffuse Fraction Forcing on the Terrestrial Carbon and Energy Budget

The global mean kd over land varies between 0.35 for MERRA-2 to 0.6 for CERES, with the true climatological 
mean expected to be around 0.42 based on the recent Bias-adjusted RADiation data set (BaRAD; Chakraborty 
& Lee, 2021a ). A recent study found that the spread in both multi-year average K↓,d and K↓,b among global 
gridded datasets (other than NCEP/NCAR) were strongly correlated with the corresponding spread in cloud 
cover (Chakraborty & Lee, 2021a). Thus, the differences in kd forcing may largely stem from dissimilar cloud 
parameterizations, since cloud cover is essentially a simulated, and not assimilated, variable in these products 
(Wright et al., 2020). Here, we demonstrate that the spread in simulated GPP is strongly associated with this 
inter-product kd spread, not only globally but also for most climate zones (Figure 5). Among these, tropical and 
temperate areas show the greatest sensitivity of annual GPP to kd (15.2 and 4.5 Pg C per unit change in kd, respec-
tively) and the polar region shows a weak relationship (r 2 = 0.04). The global GPP simulated by CLM using the 
default CAM forcing is close to upscaled FLUXNET-based estimates (118 Pg C year −1; Jung et al., 2011), but 
varies from 114 Pg C year −1 when using MERRA-2 kd as forcing to a ∼7% higher value of 122 Pg C year −1 when 

Figure 4. Spatial patterns of inter-product variability. Global distribution of the standard deviation in (a) diffuse fraction from the six products (NCEP/NCAR, 
NOAA-CIRES-DOE, ERA5, MERRA-2, CERES, and CAM) considered here and simulated (b) gross primary productivity (GPP), (c) latent heat flux, and (d) sensible 
heat flux from Community Land Model simulations that differ only in their diffuse fraction as defined by the six products. Grids with a coefficient of variation of less 
than 3% (<30% for diffuse fraction) are marked with + signs to represent regions with stronger agreement.
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using CERES kd. By comparison, Chen et al. (2017) found a standard deviation of global GPP across eight biome 
models biome models using the same climate forcing of 13 Pg C y −1, with the inter-quartile range approaching 
25 Pg C year −1. The inter-product spread in GPP of ∼8 Pg C year −1 found here is also much higher than mean 
(from nine dynamic global vegetation models) global land carbon sink (−2.4 Pg C year −1), a dominant source of 
uncertainty in our understanding of the carbon cycle (Sitch et al., 2015). The tropical annual GPP varies from 54 
to 59 Pg C (9.3% higher) when switching from MERRA-2 to CERES kd forcing. When examining the sensitivity 
of NEP and ER to the inter-product spread in kd, similar positive correlations are seen for all cases other than 
for polar climate (Figures S1 and S2 in Supporting Information S1). Note that although site-level analyses have 
shown non-linear and somewhat asymptotic response of GPP to K↓,d (Mercado et al., 2009; Zhou et al., 2021), 
when examining climate-zone-scale perturbations of GPP due to the inter-product kd spread, the associations are 
practically linear, as illustrated by the comparisons with the logarithmic regressions for tropical and temperate 
climate (Figures 4b and 4d).

The sensitivities of the surface energy budget components to the inter-product kd spread are generally weaker than 
that for GPP (Figure 6; Figures S3–S5 in Supporting Information S1). This is because the turbulent heat fluxes are 
more strongly constrained by available energy than GPP, as also seen in a previous study on aerosol-induced global 
dimming versus K↓,d fertilization (Chakraborty et al., 2021). Globally, λE increases by only ∼0.4% (from 37.24 to 
37.38 W m −2) and H decreases by ∼3.0% (32.15–31.19 W m −2) for the range of kd considered. As such, the Bowen 
ratio (β = H/λE) decreases globally and for all climate zones (Figs 6c; Figure S5 in Supporting Information S1). 

Figure 5. Response of gross primary productivity to inter-product diffuse fraction spread. Associations between gross primary productivity (GPP) and diffuse fraction 
(kd) across different land model simulations forced using kd from the six products (NCEP/NCAR, NOAA-CIRES-DOE, ERA5, MERRA-2, Clouds and the Earth's 
Radiant Energy System CERES, and CAM; represented using different symbols) considered here for (a) all terrestrial surfaces, (b) tropical climate, (c) arid climate, (d) 
temperate climate, (e) boreal climate, and (f) polar climate. The lines of best fit and the linear regression equations, with coefficient of determination r 2 and p-values are 
noted. For tropical and temperate climate, logarithmic fits and associated equations are also noted (in red). The vertical error bars show the inter-annual standard error 
for the 10-year period.
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For tropical regions, the changes are slightly stronger, with λE increasing by ∼1.1% (79.31–80.19 W m −2) and H 
decreasing by ∼5.9% (43–40.46 W m −2). As the case with GPP, the improvements when using a logarithmic fit 
instead of a linear fit are marginal (r 2 increases from 0.91 to 0.96; Figure 6d; also see Figure S3b in Supporting 
Information S1 for temperate climate). The range of simulated λE and H due to different kd forcing is smaller than 
the standard deviation across CMIP6 (3.5 W m −2 for λE and 2.7 W m −2 for H) and CMIP5 (3.9 W m −2 for λE 
and 2.6 W m −2 for H) models (Wild, 2020). To examine further, we separate λE and H into its sub-components. 
Globally and across most climate zones, the λEt,sha and λEc increased, while λEt,sun and λEg decreased (Figures S6 
and S7 in Supporting Information S1; Figures 7 and 8). This increase in  λEt,sha, due to additional illumination of 
the vegetation canopy under more diffuse conditions, is compensated by a decrease in λEt,sun, leading to minor 
increases in total λE. Global and regional decreases in Hg for the increasing kd runs (around 5.5% globally; Figure 
S8a in Supporting Information S1) is only slightly compensated for by the increase in Hv (roughly 2% globally, 
but contrasting patterns across climate zones; Figure S9 in Supporting Information S1). This explains the larger 
spread in H (compared to λE) due to kd forcing across the six simulations also seen in Figure 4d.

Even though both total K↓ and total L↓ are kept constant in all model simulations, there is a slight reduction in 
the sum of H and λE with the increase in kd (from 69.39 to 68.57 W m −2 globally). This suggests that there were 
adjustments to the other components of the surface energy budget due to the change in kd, which we examine 
using the six model simulations (Figure 9). Overall, we do see a reduction in net incoming radiation (Figure 9c) 
with increasing kd (from 70.17 W m −2 when using MERRA-2 forcing to 69.32 W m −2 when using CERES forc-
ing), which explains the overall reduction in the sum of turbulent heat fluxes. In parallel, the emitted longwave 

Figure 6. Response of surface energy budget components to inter-product diffuse fraction spread. Associations between (a) latent heat flux, (b) sensible heat flux, and 
(c) Bowen ratio and diffuse fraction (kd) across different land model simulations forced using kd from the six products (NCEP/NCAR, NOAA-CIRES-DOE, ERA5, 
MERRA-2, CERES, and CAM; represented using different symbols) considered here for all terrestrial surfaces. Sub-figures (d, e, and f) are similar, but for tropical 
climate. The lines of best fit and the linear regression equations, with coefficient of determination r 2 and p-values are noted. For tropical climate, a logarithmic fit and 
the associated equation is also noted for latent heat flux (in red). The vertical error bars show the inter-annual standard error for the 10-year period.
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decreases (Figure 9b), partly related to surface cooling via evaporation due to the K↓,d fertilization effect seen in 
Chakraborty et al. (2021), and the reflected shortwave increases (Figure 9a). The reflected shortwave increase 
is larger than the other changes in Figure 8 (from 49.08 to 50.19 W m −2) and is dependent on surface albedo. 
Community Land Model uses separate albedos for K↓,d and K↓,b, with an evident increase in all-sky albedo under 
higher kd. Finally, there is an almost negligible decrease in ground heat flux with increasing kd (Figure 9d).

4. Discussion
Since both K↓ and K↓,d vary in these gridded products, we would expect the effect of variations in K↓ to overwhelm 
that of changes in K↓,d (Chakraborty & Lee, 2019; Wild et al., 1998; Winter & Eltahir, 2010). The differences 
between datasets are also larger than perturbation signals seen for many individual atmospheric components 
(Chakraborty et al., 2021; Matsui et al., 2008; Oliveira et al., 2011; O’Sullivan et al., 2021). A couple of cases are 
discussed here. For eastern United States during the summer, Matsui et al. (2008) showed an average decrease in 
K↓ of 15.4 W m −2 and an increase in kd by 3.48% for the 2000–2001 period on removing all aerosols. For the LSM 
used in that study, these aerosol-induced perturbations led to decreases in λE and H by over 2% and 11%, respec-
tively. In comparison, the difference in annual average K↓ over the entire United States between CERES and 
NCEP/NCAR is 41.3 W m −2, while the kd varies from 0.24 in CERES to 0.45 in MERRA-2. Therefore, the effect 
of switching between gridded products of kd to force an LSM will be potentially larger than the effect of remov-
ing all aerosols from the atmosphere. Oliveira et al. (2011) showed that for Europe and eastern United States, 
a roughly 7 W m −2 solar dimming between 1960 and 1990 decreased λE by 1.5 W m −2 and increased surface 

Figure 7. Response of transpiration from sunlit leaves to inter-product diffuse fraction spread. Associations between transpiration from sunlit leaves and diffuse 
fraction (kd) across different land model simulations forced using kd from the six products (NCEP/NCAR, NOAA-CIRES-DOE, ERA5, MERRA-2, CERES, and CAM; 
represented using different symbols) considered here for (a) all terrestrial surfaces, (b) tropical climate, (c) arid climate, (d) temperate climate, (e) boreal climate, and 
(f) polar climate. The lines of best fit and the linear regression equations, with coefficient of determination r 2 and p-values are noted. The vertical error bars show the 
inter-annual standard error for the 10-year period.
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runoff by ∼5%. Similarly, the subsequent solar brightening between 1990 and 2004 of 6 W m −2 increased λE by 
3 W m −2 and decreased surface runoff by 7% and 10% for the two regions. For the gridded products considered 
here, K↓ changes by 46.6 W m −2 between ERA5 and NCEP/NCAR for Europe and by 41.3 W m −2 over the United 
States, both perturbations being substantially larger than the temporal change in that study. Oliveira et al. (2011) 
also found that higher kd (from 0.3 to 0.35) between 1960 and 1990 increased evapotranspiration in the tropics by 
2.5 W m −2. In comparison, the mean kd over the tropical grids varies from ∼0.30 when using MERRA-2-based 
forcing versus 0.6 for CERES-based forcing; 6 times that range.

Since the focus here is on the K↓,d fertilization effect, we keep the total K↓ constant across model simulations to 
isolate the impact of changing kd on carbon and energy fluxes. Gross primary productivity shows a stronger sensi-
tivity to kd than λE, which is in line with recent results for only the aerosol-induced changes in kd (Chakraborty 
et al., 2021). Since we use a dynamic vegetation scheme with canopy state responding to the atmospheric forcing, 
we find that this sensitivity remains essentially the same for years 90–99 of the simulations compared to years 
30–39 globally and across most climate zones (Figures 5 and 6, Figures S3, S10, and S11 in Supporting Infor-
mation S1). For global land for instance, GPP increases by 6.1% (λE decreases by 0.35%) in years 30–39, versus 
+7% (GPP) and −0.37% (λE) for years 90–99 of the simulations. These small changes (less than a percent for 
GPP) over the roughly 80-year span suggest we should be cautious when linearly extrapolating the results from 
perturbation studies. For instance, taking the sensitivities from the feedback loop between increases in kd due to 
emissions of Biogenic Volatile Organic Compounds and GPP enhancement proposed by Rap et al. (2018) and 

Figure 8. Response of transpiration from shaded leaves to inter-product diffuse fraction spread. Associations between transpiration from shaded leaves and diffuse 
fraction (kd) across different land model simulations forced using kd from the six products (NCEP/NCAR, National Oceanic and Atmospheric Administration, 
Cooperative Institute for Research in Environmental Science, and the Department of EnergyNOAA-CIRES-DOE, Fifth Generation Reanalysis (ERA5), Modern-Era 
Retrospective analysis for Research and Applications, version 2 (MERRA-2), Clouds and the Earth's Radiant Energy System (CERES), and CAM; represented using 
different symbols) considered here for (a) all terrestrial surfaces, (b) tropical climate, (c) arid climate, (d) temperate climate, (e) boreal climate, and (f) polar climate. 
The lines of best fit and the linear regression equations, with coefficient of determination r 2 and p-values are noted. The vertical error bars show the inter-annual 
standard error for the 10-year period.
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implementing it between the total kd values in MERRA-2 and CERES would yields a 5.7% increase in global 
terrestrial GPP due to the feedback alone. In reality, the actual changes would be mediated by other negative feed-
back loops (Rap, 2019; B. Wang et al., 2019). One such feedback is surface cooling (and thus GPP decrease) (Zhu 
et al., 2016), including cloud-induced cooling, with Ban-Weiss et al. (2011) showing a global surface tempera-
ture reduction of 0.54 K due to an increase in evaporative fraction (EF = λE/(λE + H); by 0.014) via increased 
cloudiness. The change in EF when switching from MERRA-2 to CERES kd forcing is 0.008; roughly half of 
that. Note however that these estimates of potential feedback (both in Rap et al., 2018 and here) are modeled and 
thus dependent on the accuracy with which the models can capture the response to K↓,d. For the summertime GPP 
simulated by the uncoupled multi-layer implementation of CLM, for instance, there is evidence that the response 
to K↓,d is overestimated for a temperate deciduous forest site (Wozniak et al., 2020).

Although inter-model spread in K↓ has been examined across CMIP6 and CMIP5 models (Wild, 2020), similar 
analysis for K↓,d (and thus kd) are missing, partly because this variable is not always publicly archived. Although 
we do not expect the variability in kd in current ESMs to be much larger than the range considered here, it is 
important to examine the spread across the radiative transfer modules used in CMIP6 models to identify potential 

Figure 9. Response of other components of the surface energy budget to inter-product diffuse fraction spread. Associations 
between (a) reflected shortwave, (b) emitted longwave, (c) Bowen ratio and diffuse fraction (kd) across different land model 
simulations forced using kd from the six products (NCEP/NCAR, NOAA-CIRES-DOE, ERA5, Modern-Era Retrospective 
analysis for Research and Applications, version 2 (MERRA-2), Clouds and the Earth's Radiant Energy System (CERES), and 
CAM; represented using different symbols) considered here for all terrestrial surfaces. Sub-figure (d–f) are similar, but for 
tropical climate. The lines of best fit and the linear regression equations, with coefficient of determination r 2 and p-values are 
noted. For tropical climate, a logarithmic fit and the associated equation is also noted for latent heat flux (in red). The vertical 
error bars show the inter-annual standard error for the 10-year period.
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reasons for the discrepancies. A bigger limitation is that we use a single LSM. Even with the same forcing data, 
different LSMs can show wide ranges in simulated carbon and moisture fluxes due to different implementations 
of model physics, land use representations, canopy architecture, presence or absence of dynamic vegetation, 
topography, etc (Bonan et  al.,  2021; Hao et  al.,  2021; Lawrence et  al.,  2016; Wild,  2020; Yao et  al.,  2014). 
However, CLM is a good starting point since different versions of it have been incorporated in multiple ESMs 
that are participating in CMIP6 (Chakraborty et al., 2021). Given the large response of the terrestrial GPP and 
evapotranspiration to the inter-product spread in kd forcing seen here, it is critical to systematically examine these 
sensitivities across land modules in current ESMs. In parallel, we need to gather more simultaneous observations 
of K↓,d and carbon and energy fluxes to benchmark model performance and improve our understanding of this 
aspect of atmosphere-biosphere interactions. Of particular interest are the tropics, where current measurements 
are insufficient and the largest responses to kd forcing are seen. Given the distinct treatment of the K↓,d fertilization 
effect across LSMs from various model lineages (Chakraborty et al., 2021), the participation of different mode-
ling groups using a standardized approach to compare the response to K↓,d across models would be an effective 
contribution to CMIP7.

5. Conclusions
Clouds, aerosols, and the carbon budget are large sources of uncertainty in our understanding of the Earth system 
and how it will change in the future. The diffuse radiation fertilization effect links these three components and 
remains a relatively understudied aspect of atmosphere-biosphere interactions with global estimates relying on 
model simulations. Here we first demonstrate the sampling bias in existing flux tower networks to observationally 
constrain this effect and then examine the impact of a realistic spread in diffuse fraction forcing, derived from 
global gridded products, on components and subcomponents of the terrestrial carbon and energy budgets simu-
lated by the latest version of the CLM. Large differences are seen in gross primary productivity (GPP; around 
∼7% globally) for this inter-product spread with larger differences (∼9%) in tropical regions. Overall, simulated 
GPP due to inter-product diffuse fraction spread in CLM is roughly a third of the inter-quartile GPP spread seen 
previously across biome models. Changes in terrestrial evapotranspiration are smaller due to contrasting changes 
in shaded and sunlit leaf transpiration but greater than regional impacts of individual forcing agents. No current 
Model Intercomparison Project, whether focusing on the atmosphere or the biosphere, explicitly accounts for the 
diffuse radiation or its impacts. Our results demonstrate the importance of systematically examining the simu-
lated diffuse radiation by atmosphere modules and response to the same in land modules across ESMs. Doing 
so can identify potential deficiencies in current-generation models, inform future model development, and better 
constrain land carbon uptake and its potential feedback in future climate change assessments.

Data Availability Statement
The Community Earth System Model is a public domain software and its releases are accessible through this 
GitHub repository: https://github.com/ESCOMP/CESM. The CERES data were obtained from the NASA Lang-
ley Research Center CERES ordering tool (https://ceres.larc.nasa.gov/). The NOAA–CIRES–DOE and NCEP–
NCAR reanalysis datasets were downloaded from the PSL website (https://psl.noaa.gov/). The MERRA-2 
reanalysis data set can be found on NASA's website (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/). The 
ERA5 reanalysis data were downloaded from the Copernicus Climate Data Store (https://cds.climate.copernicus.
eu/). Other data sets used and generated for this study are available from the authors upon request.
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