
Performance Evaluation of a Smart Mobile Air Temperature and Humidity Sensor for
Characterizing Intracity Thermal Environment

CHANG CAO,a,b YICHEN YANG,c YANG LU,a,b NATALIE SCHULTZE,c PINGYUE GU,d QI ZHOU,d JIAPING XU,e AND

XUHUI LEE
c

aYale–NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing, Jiangsu,

China; b Jiangsu Key Laboratory of Agriculture Meteorology, Nanjing University of Information Science and Technology, Nanjing,

Jiangsu, China; c School of the Environment, Yale University, NewHaven, Connecticut; d Jiangsu Radio Scientific Institute, Co., Ltd.,

Wuxi, China; e Jiangsu Climate Center Nanjing, China

(Manuscript received 4 February 2020, in final form 13 August 2020)

ABSTRACT: Heat stress caused by high air temperature and high humidity is a serious health concern for urban residents.

Mobilemeasurement of these two parameters can complement weather station observations because of its ability to capture

data at fine spatial scales and in places where people live and work. In this paper, we describe a smart temperature and

humidity sensor (Smart-T) for use on bicycles to characterize intracity variations in human thermal conditions. The sensor

has several key characteristics of internet of things (IoT) technology, including lightweight, low cost, low power con-

sumption, ability to communicate and geolocate the data (via the cyclist’s smartphone), and the potential to be deployed in

large quantities. The sensor has a reproducibility of 0.038–0.058C for temperature and of 0.18%–0.33% for relative humidity

(one standard deviation of variation amongmultiple units). The time constant with a complete radiation shelter andmoving

at a normal cycling speed is 9.7 and 18.5 s for temperature and humidity, respectively, corresponding to a spatial resolution

of 40 and 70m.Measurements weremadewith the sensor on street transects in Nanjing, China. Results show that increasing

vegetation fraction causes reduction in both air temperature and absolute humidity and that increasing impervious surface

fraction has the opposite effect.

KEYWORDS: Instrumentation/sensors; Urban meteorology

1. Introduction
Heat stress caused by high temperature and high humidity

is among the most serious climate threats to society (Revi

et al. 2014). The problem is further exacerbated for urban

residents due to the urban heat island (UHI), the phenome-

non of higher temperatures in cities than in the adjacent rural

lands (Oke et al. 2017). A large body of literature has been

devoted to characterizing of the UHI strength and to un-

derstanding drivers of its geographic, seasonal, and diurnal

variations (e.g., Arnfield 2003; Voogt and Oke 2003; Mirzaei

and Haghighat 2010; Zhou et al. 2019). Traditionally, a city is

considered as a single unit having one UHI value. In recent

years, an increasing number of studies have investigated in-

tracity temperature variations. Central to these studies is this

question: How do urban morphological attributes influence

the release, dispersion, diffusion and trapping of energy?

This question is important for assessing urban environmen-

tal vulnerability because urban morphology (green space,

impervious surface fraction, and building density) may be

linked to socioeconomic status of urban neighborhoods and to

spatial patterns of demographic and ethnic compositions

(Chakraborty et al. 2019). A good understanding of associ-

ation between urban morphology and spatial distribution

of temperature can inform neighborhood-scale heat miti-

gation strategies (Bowler et al. 2010; Gunawardena et al.

2017; Ziter et al. 2019).

Although it is well established that lower temperatures are

associated with green spaces and higher temperatures with

buildup areas of a city, we lack consistent and quantitative

information regarding the spatial extent of influence or source

footprint of these land features on urban air temperature. Such

information is essential for planning of green infrastructure for

heat mitigation (Gunawardena et al. 2017). In geospatial

modeling of the urban thermal environment, source footprint

size is needed for spatial aggregation to increase the predicting

power of the model (Schatz and Kucharik 2014; Heusinkveld

et al. 2014; Venter et al. 2020). Theoretical footprint models

suggest that the source footprint of an urban weather station is

about 500 m in radius (Oke 2006). However, these models are

established on the condition that air turbulence near the

ground should be horizontally homogeneous (Horst 2001;

Schmid 2002), a condition that strictly does not hold in cities

where the landscape is always heterogeneous. Alternatively,

the source footprint can be determined empirically by exam-

ining the spatial correlation between measured temperature

and green or impervious surface fraction in varying buffer sizes

(Heusinkveld et al. 2014). The few published estimates of ur-

ban temperature footprint vary by an order of magnitude, from

about 70 m for Madison, Wisconsin (Ziter et al. 2019), to

1600 m for Rotterdam, the Netherlands (Heusinkveld et al.

2014). More observational studies are needed to understand

how the source footprint vary diurnally, seasonally and be-

tween different background climates.
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Another less understood aspect of the urban thermal envi-

ronment is intracity variations in air humidity. Humidity is an

important variable for human health consideration because

high air humidity increases the severity of heat stress in

a heatwave event. According to observations in London,

United Kingdom (Lee 1991), Goteborg, Sweden (Holmer and

Eliasson 1999), Munich, Germany (Mayer et al. 2003), and

Krefeld, Germany (Kuttler et al. 2007), the urban–rural dif-

ferences in humidity and in air temperature are positively

correlated over time.Whether this temporal correlation can be

extended to describe intracity spatial variations in humidity is

not known. So far, simultaneous observations of these two

variables across space have been rather limited, and the results

remain inconclusive. Mobile measurements made in street

transects of Gaborone, Botswana (Jonsson 2004), suggest that

temperature and humidity may be negatively correlated over

space, meaning that cooler neighborhoods may be associated

with more humid air. Observations made with a network of

fixed stations in Matsuyama, Japan, seem to show a negative

spatial correlation at night and a positive correlation in the

day (Chhetri et al. 2017). Although a predictive understand-

ing exists for intracity spatial patterns of air temperature

(Brandsma and Wolters 2012; Heusinkveld et al. 2014; Schatz

and Kucharik 2014), little is known about how land surface

features themselves and their interactions with air temperature

influence intracity variabilities in humidity. Simultaneous ob-

servations of temperature and humidity should provide more

accurate assessment of heat mitigation strategies than mea-

surement of temperature alone. For example, if a patch of

green vegetation reduces temperature but increases humidity,

the net cooling benefit of the vegetation would be smaller than

that solely based on temperature reduction.

Although high-resolution (tens of meters) land-use data are

available for cities from satellite monitoring (Gong et al. 2020;

Li et al. 2020), high-resolution observations of air temperature

and humidity remain scanty. Using crowdsourced temperature

data inOslo, Norway, Venter et al. (2020) showed that a station

density better than 1 km22 is needed to accurately map urban

temperature. Mesoscale networks of surface weather station in

urban airsheds have a spatial resolution ranging from about 10

to 2 km (Grimmond 2006; Koskinen et al. 2011; Basara et al.

2011; Hung and Wo 2012; Muller et al. 2013; Chapman et al.

2015; Warren et al. 2016; Chen et al. 2018; Wang et al. 2018; Li

et al. 2018). Crowdsourcing from personal weather stations

(Muller et al. 2015; Meier et al. 2017; Hammerberg et al. 2018)

and smartphones (Overeem et al. 2013; Droste et al. 2017) can

improve the spatial resolution up to 0.1 km2 (Venter et al.

2020). So far, crowdsourcing studies have focused on temper-

ature, and we are not aware of a similar investigation of both

air temperature and humidity.

Mobile sensors are suited for neighborhood-scale measure-

ments of temperature and humidity in a city. This approach is

versatile and is especially useful for urban areas that do not

have weather stations or have sparsely placed weather stations

(Hedquist and Brazel 2006). Although they underperform in

detecting daily maximum temperature in comparison to sta-

tionary monitoring (Yang and Bou-Zeid 2019), they allow

continuous measurement along land-use transitions. Mobile

measurement is commonly done with sensors carried by au-

tomobiles (e.g., Unger et al. 2001; Qaid et al. 2016; Leconte

et al. 2017; Shi et al. 2018). Several studies have deployed

sensors carried by pedestrians (Tsin et al. 2016; Pigliautile and

Pisello 2018; Runkle et al. 2019). Automobiles can travel long

transects in a short time, while pedestrians cannot. Because the

car travels at a relatively high speed (more than 30 kmh21),

fast-responding sensors are needed to capture temperature and

humidity variations along the road traveled. Bicycles can also

serve as mobile measurement platforms. Bicycles can travel to

places that may not be accessible by cars. They do not generate

heat or moisture and therefore will not interfere with the

monitoring. Moving at reasonable speeds (3–5 m s21), they can

cover long street transects (e.g., 10 km) within a short time

window of 30–60 min. For sensors with a response time of 10 s,

these travel speeds correspond to spatial resolutions of 30–

50 m, which are fine enough for capturing neighborhood-scale

microclimatic variations. In the past, several research groups

have used bicycle-mounted sensors tomeasure air temperature

along street transects (Brandsma and Wolters 2012; Yan et al.

2014; Rajkovich and Larsen 2016; Yan et al. 2018; Yokoyama

et al. 2018; Ziter et al. 2019).

The apparatus used inmost of themobile studies cited above

are basically bulky weather stations consisting of a sensor, a

datalogger, a battery pack and a GPS unit. They are not

practical for large-scale deployment due to their size and cost.

Furthermore, to our best knowledge, except for Jonsson (2004)

andNoro et al. (2015), the publishedmobile studies either have

limited their observation to temperature or have observed

both temperature and humidity but have only reported the

temperature data.

In this study, we describe a smart sensor that satisfies the

four essential functions required for mobile measurement:

sensing of temperature and humidity, datalogging, time

stamping, and geolocating. The sensor has the characteristics

of the internet of things (IoT) technology: it is lightweight and

low cost, has wireless data communication ability, and can be

potentially deployed in large quantities. Our objectives are

1) to characterize the performance of this sensor in terms of

accuracy, reproducibility, and time response; 2) to investigate

spatial variabilities of air temperature and humidity and their

source footprints in an urban sector; and 3) to analyze the

interactions between temperature, humidity, and surface

morphology.

2. Materials and methods

a. Sensor description
The sensor unit, called Smart-T, is 85 mm tall (Fig. 1a).

The outer body, made of white acrylonitrile butadine sty-

rene, is a radiation shield with ventilation openings at the

top. Housed in the shield is a small (4.2 cm3 2.5 cm) circuit

board that integrates the sensor electronics and a Bluetooth

module. The sensing element is isolated at 1.1 cm away from

the main circuit to enhance its time response, and is positioned

in the middle of the ventilation openings to maximize the ex-

change with ambient air when the bicycle is in motion. The

whole unit is powered by a button battery (20 mm diameter,
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Panasonic CR2032) with negligible heat production. A typical

battery life is 6 months. In the field operation, the sensor is

fastened on the crossbar of a bicycle (Fig. 1b). The sensing

element canmeasure air temperature in the range from2408 to
608Cwith a 0.018C resolution and relative humidity (RH) in the

range from 10% to 90% with a 0.01% resolution.

A smartphone app, available for Android and IOS operating

systems, converts the cyclist’s mobile phone to a datalogging

and positioning device (Fig. 1c). Each Smart-T unit has a

unique Bluetooth tag. Once connected, the phone will display

air temperature and RH readings and the battery condition.

The user can select a sampling interval from 1 s to 10 min. The

data are saved as .txt file on the Android system. For the IOS

system, other data formats are also available. The data file has

six columns: Bluetooth tag, time, latitude, longitude, air tem-

perature, and RH.

b. Tests in calibration chambers
Two Smart-T units (tags 337D and F9A3) were tested in the

temperature and humidity calibration chambers belonging to

the Jiangsu Radio Scientific Institute Co., Ltd., Wuxi, China.

The type of temperature chamber is SU-662 (ESPEC Corp.,

Osaka, Japan) with temperature range from2708 to 1508C and

that of humidity chamber is C4-340 (Weiss-Voetsch, Taicang,

China) with RH range from 10% to 98%. These facilities are

certified by Shanghai Institute of Measurement and Testing

Technology and National Institute of Metrology in China for

calibrating operational temperature and humidity sensors for

WMO baseline weather stations in China. For comparison,

a commercial mobile temperature–humidity sensor for use

with unmanned aerial vehicles (model I-Met XQ2, InterMet

Systems Inc., Grand Rapids, Michigan) was also tested. In

the first test (of temperature measurement), the calibration

chamber was stepped through four air temperature targets

(508, 308, 08, 2208C), each lasting 20–30 min. The tempera-

ture measured by a WUSH-TW100A sensor (Jiangsu Radio

Scientific Institute Co., Ltd.) served as the true value in this

test. RH in the temperature chamber was not recorded during

the test, but it usually does not exceed 40% for low tempera-

tures and it will not drop below 20% for high temperatures. In

the second test (of humidity measurement), the chamber was

stepped through five RH levels (30%, 50%, 70%, 90%, and

95%), each lasting 20–30 min. Temperature during the second

test was about 208C. The humidity measured by a DHC2 probe

(Jiangsu Radio Scientific Institute Co., Ltd.) served as the

calibration standard for this test. These standard temperature

and humidity instruments are calibrated annually by the

Measurement and Testing Institute of China.

c. Characterization of reproducibility among multiple

sensors
Two indoor experiments were conducted to characterize the

reproducibility, using a total of 39 Smart-T sensors. One ex-

periment took place in the Yale Center for Earth Observation

(YCEO) Laboratory, in New Haven, Connecticut, and the

other in the Yale–Nanjing University of Information Science

and Technology (NUIST) Center onAtmospheric Environment

(YNCenter) Laboratory, in Nanjing, China. The experimental

FIG. 1. (a) Photographs of a Smart-T unit and (b) a Smart-T unit

mounted on a bicycle, as well as (c) the smartphone app interface

and data display for the IOS system.
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rooms were sealed. In the YCEO experiment, 30 Smart-T

sensorswere placed in close proximity on a table, alongwith three

HOBO temperature and humidity sensors (Model MX2302A,

OnsetComputerCorporation, Bourne,Massachusetts). Two fans

at the two ends of the table blew air toward each other, mixing

the air uniformly across the sensors. A smartphone scanned the

Smart-T sensors sequentially, retrieving data for 5 min at 1 s

intervals from each, while the HOBO sensors recorded the

data continuously. The experiment lasted 3 h, during which the

temperature varied between 25.88 and 26.18C and the humidity

between 43.5% and 44.5%. Air temperature and RH devia-

tions were computed by subtracting the mean values of the

three HOBO sensors during the same 5 min period from the

Smart-T value. Because the room temperature and humidity

were not controlled precisely, using HOBO sensors as the

reference removed the background variations. Reproducibility

among the tested sensors is high if the deviations are similar

among them.

The YNCenter experiment followed the same procedure as

the YCEO experiment, with twomodifications. The number of

Smart-T sensors was 9 and the reference readings were pro-

vided by two I-Met XQ2 sensors. The experiment lasted 2 h.

Temperature and humidity varied between 30.48 and 30.98C
and between 51% and 53% during this experiment.

d. Characterization of sensor time response
To characterize its time response, we subjected a Smart-T

sensor (tag E659, in radiation shelter housing) to step changes

in temperature and humidity. After the sensor had been

brought to equilibrium with the room temperature and hu-

midity, it was moved to the outside on a bicycle at a normal

travel speed of 4 m s21. The temperature and humidity time

series recorded during the transition from the indoor to the

outdoor condition were used to determine the time constants

of the temperature and the humidity measurements. This

process was repeated four times.

e. Outdoor transects
We compared a Smart-T sensor (tag 6FD2) with an I-Met

XQ2 (57540) sensor, both attached to the handle-bar of a bi-

cycle, along a 4.8-km-long street transect on the campus of

NUIST, in Nanjing, China. The whole route followed a zigzag

pattern in a west to the east direction (Fig. 2). The two ends of

the route were open streets with minimal tree cover and green

vegetation, and the middle section of the route consisted of

streets with large trees and tall buildings. At the time of the

measurement [1430–1451 local time (LT) 8 November 2019],

the sky was clear, with the incoming solar radiation flux of

317 Wm22.

Repeated measurements of air temperature and humidity

were made with a Smart-T sensor (tag 6FD2) from 21 to

24 July and from 30 July to 1 August 2019. The measurement

route, also on the NUIST campus, consisted of several streets

that formed a loop pattern and a linear transect, with a total

length of 4 km (Figs. 3 and 4 ). The eastern section of the loop

was a busy highway, and the rest of the route traversed the

campus sports fields and zones with median-density residual

and classroom buildings. The points on the loop were sampled

once and the points on the linear transect were sampled twice

(in forward and return trip) during each observation. Four

observations were made in each day, starting at 0500, 1400,

1900 and 2200 LT. A total of 28 observations was made

(7 days3 4 times a day). The sensor was brought to the outside

20 min before the start of each observation. Each observation

lasted about 17 min. The sky during the 7 observational days

was clear to partly cloudy. Air temperature varied between

25.68 and 38.88C, and RH between 44% and 92%. The wind

speed varied between 0.1 and 2.9 m s21.

We used the wet-bulb temperature (Tw) as an indicator of

the combined effect of air temperature and humidity on human

health. The wet-bulb temperature was solved numerically

(Moratiel et al. 2017) from the wet-bulb equation (e.g.,

Lee 2018)

T
w
1
e
y
*(T

w
)

g
5T

a
1
e
a

g
, (1)

where Ta is the observed air temperature, g is psychrometric

constant, ey* is saturated vapor pressure, and ea is the vapor pres-

sure determined from the measured air temperature and RH.

We chose Tw instead of the empirical humidity index (Ho

et al. 2014; Scott et al. 2017; Jiang et al. 2019) because the

former is a thermodynamic variable that controls directly the

heat exchange between the environment and the human body

(Sherwood and Huber 2010). Other heat stress indices require

simultaneous measurements of solar radiation or wind speed

(e.g., Cohen et al. 2012), which were not available from our

transect observations.

f. Land-cover classification
PlanetScope satellite imagery acquired on 27 July 2019

(3.8 m resolution with blue, green, red, and near-infrared

bands) was used to produce land-cover classification. The clas-

sifier was a convolutional neural network scheme containing a

feature called skip connection to enable pixel-wise prediction.

It segmented the image into 6 classes, including tree, grass,

bare soil, water, building, and impervious ground. The training

set consisted of 390 pixels 3 1160 pixels. The overall accuracy

was 90%. Vegetation fraction and impervious surface fraction

in each buffer area were based on the vegetation pixel (tree and

grass) count and the impervious pixel (building and impervious

ground) count, respectively.

3. Results

a. Characterization of sensor performance

1) ACCURACY AND TIME RESPONSE

Figure 5 summarizes the chamber test results. The error in

Smart-T air temperature measurements ranged from20.018 to
0.488C, with larger values when air temperature was below

freezing than in warmer conditions (Fig. 5a). For comparison,

the I-Met XQ2 sensor showed smaller temperature errors

(0.078 to 0.368C) than the Smart-T sensors. The error in Smart-T

RH did not exceed 1.9% in magnitude and was smaller than

the I-Met XQ2 error (up to 2.9% in magnitude; Fig. 5b).
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The largest temperature error recorded in this test (0.488C
at temperature of 20.208C) exceeded the manufacturer’s

specification for the Smart-T sensing element (60.38C).
The measurement error became smaller at higher tempera-

tures (0.198 and 0.238C at 29.508C and 20.018 and 0.158C
at 49.358C; Fig. 5a).

Figure 6 is an example of the sensor response to step changes

in air temperature and humidity. In this case, the time constant

was 9.6 s for air temperature and 19.3 s for RH. The mean time

constant (average of four step-change tests) was 9.7 (63.2) s

(mean6 one standard deviation) for air temperature and 18.5

(64.3) s for RH. At a typical bicycle traveling speed of 4 m s21,

the Smart-T measurement had a spatial resolution of about

40 m for air temperature and 70 m for humidity.

A comparison with the I-Met unit can be found in Fig. 2

from a street transect observation. The average air tempera-

ture from the Smart-T sensor was 18.138C and that from the

I-Met XQ2 sensor was 18.078C, giving a difference of 0.068C.
The average RH from the Smart-T was 49.1%, which was 2.6%

higher than that of the I-Met reading. Because of its fast time

response (time constants are 2 s for air temperature and 5 s

for humidity at a travel speed of 1 m s21), the I-Met mea-

surement showed larger fluctuations than the Smart-T readings

(Figs. 2a,d). The air temperature and RH differences between

FIG. 2. (a),(d) Time series and (b),(c),(e),(f) spatial map of air temperature and relative humidity measured with (b),(e) a Smart-T (tag

6FD2) and (c),(f) a I-Met XQ2 (57540) sensor. The map background is a true-color satellite image.
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the two sensors were poorly correlated with vegetation cover

fraction (Fig. S1 in the online supplemental material) and their

spatial patterns did not seem to correspond to street orientation

(Fig. S2). Eleven datapoints showed a negative RH difference

(Smart-T minus I-Mets) smaller than 22%; these occurred in

places having trees or near water bodies. Some of the fluctua-

tions recorded by I-Met were unwanted because they were as-

sociated with random turbulent motion and were not related to

the underlying land surface features. The overall spatial patterns

showed quite good agreement between the two sensors in terms

of air temperature (Figs. 2b,c) and RH (Figs. 2e,f).

2) REPRODUCIBILITY

In the YCEO indoor comparison experiment, the Smart-T

sensors showed slightly lower air temperature reading than the

HOBO sensors. Their difference (Smart T minus HOBO)

ranged from 20.018 to 20.178C with a median value 20.108C
(Fig. 7a). The RH recorded by Smart-T was generally higher

than that of HOBO, and the offset was in the range from 2.75%

to 3.68% with a median value of 3.40% (Fig. 7b). The Smart-T

sensor has the potential to be deployed in large quantities in

the future. Toward that end, high sensor reproducibility is

desired so that spatial transect data obtained by multiple sen-

sors can be merged with minimal relative biases. Here we used

the standard deviation of the offset between the Smart-T

reading and the HOBO reference reading as a measure of re-

producibility among the sensors. The standard deviation was

0.058C for air temperature and 0.23% for RH.

TheYNCenter experiment using I-Met sensors as references

yielded similar standard deviations (0.038C for air temperature

and 0.18% forRHwith I-Met 57232 as the reference; 0.048C for

air temperature and 0.33% for RH with I-Met 57540 as the

reference). The offsets in RH were larger (median 9.14% in

reference to I-Met 57232 and 5.80% in reference to I-Met

57540) than recorded in the YCEO experiment (median 3.40%

in reference to HOBO).

b. Spatial variations in temperature and humidity
Figures 3 and 4 show the spatial variations of air temperature

and RH measured with a Smart-T sensor (tag 6FD2) at 1400

and 2200 LT 24 and 31 July 2019 (visuals of some of the data

in 3D are given in Figs. S3 and S4). The sensor clearly re-

solved the ranges of temperature (1.048C at 2200 LT 24 July

and 2.818C at 1400 LT 31 July) and RH variations (up to

13% at 1400 LT 31 July) along the measurement route. The

linear transect through an area with dense buildings in the

west portion of the route generally showed higher tempera-

tures than the more open route in the east. A persistent hot spot

FIG. 3. Spatial variations in air temperature at (a) 1400 and (b) 2200 LT 24 Jul and (c) 1400 and (d) 2200 LT 31 Jul 2019. The map

background is a true-color satellite image.
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occurred at the intersection between the linear transect and the

loop. At 2200 LT 31 July (Fig. 3d), the highway was the warmest

transect, having a temperature of 0.98C above the whole-route

mean of 30.048C, possibly related to traffic heat emission at that

time. No appreciable difference was observed between the two

daytime and the two nighttime observations. The RH spatial

variations appeared as mirror images of the temperature varia-

tions, showing lower values along the buildup transect and higher

values in the more open transect. The results in Figs. 3 and 4,

together with the data shown in Fig. 2, indicate that the Smart-T

sensor can measure street-level air temperature and humidity

with sufficient spatial resolutions and reasonable accuracy.

In Fig. 8, we show the relationship between temperature and

vapor pressure anomaly, using all the data collected along the

route shown inFigs. 3 and 4 and grouped according to timeof the

day. The anomaly is the difference between the actual value and

the whole-routemean value during each observation. A positive

and statistically significant relationship between air temperature

and vapor pressure anomaly was found for the four times of the

day (linear correlation r of 0.03–0.46, p value of 0–0.019, number

of samples.6800). The highest correlation was observed in the

early morning at 0500 LT (r 5 0.46) and the lowest correla-

tion at night (2200 LT, r 5 0.03).

Examples of wet-bulb temperature Tw variations are given

in Fig. 9. The spatial patterns were similar to those of air

temperature (Fig. 3), indicating that air temperature exerted a

dominant control over humidity on the Tw spatial variations.

The range of wet-bulb temperature variations was 0.408C (2200

LT 24 July; Fig. 3b) to 2.398C (1400 LT 31 July; Fig. 3c), and

was generally smaller than the range of dry bulb temperature

variations, which was 1.048C at 2200 LT 24 July (Fig. 3b) and

2.818C at 1400 LT 31 July (Fig. 3c).

c. Spatial correlations with land surface features
Figures 10 and 11 show the spatial correlation of air tem-

perature Ta, water vapor pressure or absolute humidity ea and

dewpoint temperature Tw with vegetation and impervious

surface fractions in buffers of varying radius for two mea-

surement times (1400 and 2200 LT). Here the buffer was a

circular area drawn around each mobile measurement point.

The correlation was first calculated for each of the seven ob-

servations along the transect shown in Fig. 3 and results in

Figs. 10 and 11 represent the mean correlation value and the

standard deviation of these observations. The Ta correlation

was negative with vegetation fraction and positive with im-

pervious surface fraction for both the daytime and the night-

time, over the range of buffer radius of 10 to 300 m. Over these

buffer radii, the ea correlation was also negative with vegeta-

tion fraction and positive with impervious surface fraction,

although it was weaker than the Ta correlation.

FIG. 4. As in Fig. 3, but for relative humidity.
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The source footprint size appeared different between the

daytime and the nighttime and for Ta and ea. In the daytime,

the maximum correlation of Ta with vegetation fraction

(20.63) and impervious surface fraction (10.64) occurred at a

buffer radius of 10–30 m, and the correlation became gradually

weaker with increasing radius. At the nighttime, the peak

correlation, about 20.67 with vegetation fraction and 10.67

with impervious surface fraction, was found at a larger buffer

radius of 50–80 m for vegetation fraction and 70–100 m for

impervious surface fraction. These results indicate the air

temperature source footprint was highly localized in the

daytime and was slightly broader at night. The temperature

footprint reported here was similar to that reported for

Madison, Wisconsin (60–90 m, based on correlation with

vegetation fraction; Ziter et al. 2019), and much smaller than

that reported for Rotterdam, the Netherlands (about 700 m

based on correlation with vegetation fraction and about

1600 m based on correlation with impervious surface fraction;

Heusinkveld et al. 2014). No peak was identifiable for the ea
correlation with vegetation fraction or with the impervious

surface fraction at either of the observation times. The ea
correlation with these two surface features showed a slight

weakening trend with increasing buffer radius in the daytime.

In the nighttime, the ea correlation appeared invariant

with radius.

The Tw correlations with vegetation fraction and impervious

surface fractions were nearly identical to the Ta correlations,

suggesting that air temperature dominated the Tw spatial var-

iations and that the role of humidity was minor.

4. Discussion

a. Comparison of accuracy with other mobile and
distributed sensors

Table S1 compares the accuracy of the Smart-T sensor

with those found in the published urban studies involving

mobile and spatially distributed sensors. The accuracy of the

instruments in this literature survey lies in the range of60.18 to
618C for temperature and61.5% to65% for RH. The Smart-

T compares favorably with these instruments. Its RH accuracy

(21.4% to 1.9%) is about the same as that of the sensors rec-

ommended byWMO for operational weather monitoring (3%;

WMO2008), and its temperature accuracy in high temperature

conditions (20.018 to 0.238C; temperature .298C) approaches
the specifications for researcher-grade instruments (0.18C;
temperature in the range of 2408 to 408C).

An important consideration in mobile observations is sensor

time response. The Smart-T sensors have a time constant of 9.7

and 18.5 s for air temperature and RH, respectively. For

comparison, the WMO guidelines recommend a response time

of 20 s for temperature and 40 s for humidity (WMO2008). The

HOBO sensors used in the YNCenter indoor test and by Liu

et al. (2017) for bicycle measurements have a temperature time

constant of about 200 s (with radiation shield and moving at

1 m s21). The bicycle sensor used by Ziter et al. (2019) (model

Campbell Scientific 109SS; Table S1) has a temperature time

constant of 7.5 s (without radiation shield and moving at

3 m s21). The wireless temperature sensor described by Young

et al. (2014) has a time constant of 110 s. Ideally, the sensor

time response should match its speed of motion. If vehicles are

the measurement platform, fast-responding sensors, such as

fine-wire thermocouples (Makido et al. 2016; Voelkel and

Shandas 2017; Shandas et al. 2019), are preferred over standard

(slow) sensors to produce adequate spatial variations. A stan-

dard sensor with time response of 20–40 s on a vehicle moving

at a speed of 30 kmh21 cannot resolve variations at spatial

scales smaller than 167–330 m. On the other hand, too short a

time constant is not desirable on a slow platform because

random turbulent fluctuations recorded by the sensor will

confound data interpretation. In this context, the Smart-T time

responses appear appropriate for deployment on bicycles

(e.g., Fig. 2).

FIG. 5. (a) Characterization of errors in air temperature and (b) relative humidity measurements in the calibration

chamber.
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b. IoT and sensor reproducibility

The Smart-T sensors have several key features of the IoT

technology. At a fraction of the cost [,$100 (U.S. dollars) per

complete unit, roughly 80% of which is the cost of making the

radiation shelter] of instruments used for weather stations,

they can be deployed in large quantities. They take full ad-

vantage of Bluetooth and GPS functions already embedded in

smartphones, enabling connectivity and geolocation. No spe-

cial training is required to operate these sensors, so volunteer

cyclists and citizen scientists can easily take part in data

collection.

Crowdsourcing or citizen science has the potential to expand

the spatial and temporal data coverage beyond the limits of

traditional stationary monitoring. Data quality is a key factor

that determines the utility of crowdsourcing data (Castell et al.

2015; Meier et al. 2017). Only through rigorous quality controls

can useful conclusions be drawn from crowdsourced data. This

challenge poses a high requirement for sensor reproducibility

and accuracy. In mobile observations that aim to quantify

temporal and spatial variations, reproducibility among multi-

ple sensors is more important than absolute accuracy. The

Smart-T reproducibility, measured as one standard deviation

of the offset from a reference, was 0.038–0.058C for tempera-

ture and 0.18%–0.33% for RH (Fig. 7). The actual reproduc-

ibility should be better than these because these standard

deviations were affected by the measurement noise of the

reference sensor. The performance reported here is better than

the reproducibility of the temperature sensors (0.128C) used

in a crowdsourcing experiment (Meier et al. 2017; one standard

deviation of the data in their Fig. 2a).

Further improvement to Smart-T data quality may be made

by accounting for the offset of each individual sensor, as long as

the batch of sensors deployed in the study is calibrated against

the same working reference standard. A lookup table of offset

values and the associated Bluetooth tags, prepared prior to

field deployment and based on a calibration test, can be used

for postfield correction of the data. For example, the Smart-T

sensor (tag 6FD2) used in the transect experiment shown

FIG. 6. Smart-Tmeasurement in response to a step change in (a) air temperature and (b) relative

humidity. The smooth curves are regression fitting. The independent variable x in the regression

equation is time elapsed (s) since 1732:00 LT (time is formatted as H:MM:SS on the x axes).
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in Fig. 2 had an offset of 0.118C for temperature and 5.89%

for RH against the reference sensor (I-Met 57540). The

same reference sensor was also used in the transect inter-

comparison experiment. After removing these offsets from

the transect data, the temperature discrepancy between the

two sensors was reduced slightly from 0.078 to 20.058C, al-
though the humidity discrepancy did not improve (from

2.6% to 23.0%).

According toMeier et al. (2017) and Venter et al. (2020), two

other sources of error, radiation interference and erroneous

FIG. 8. Relationship between vapor pressure anomaly and air temperature anomaly at (a) 0500, (b) 1400, (c) 1900

and (d) 2200 LT using all observations along the route shown in Fig. 3. The color scale shows data density. Anomaly

is the difference between the actual value and the whole-routemean value for each observation. Also shown are the

linear correlation coefficient (r) and the statistical significance (p).

FIG. 7. A box-and-whisker plot showing the offset of (a) air temperature and (b) relative humidity between

Smart-T sensors and three reference sensors (HOBO, I-Met XQ2 57232, and I-Met XQ2 57540) in the two indoor

tests. The horizontal red linemarks themedian value, the box represents themiddle 50th percentile, and the top and

the bottom ends of thewhiskersmark themaximumand theminimumvalue, respectively. Offset is calculated as the

Smart-T reading minus the reference reading.
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meta information on sensor position, can degrade the quality

of the temperature data collected with distributed IoT sen-

sors. We have not done a rigorous evaluation of the Smart-T

radiation shelter housing (Fig. 1a). As shown in Fig. 2, ex-

cellent agreement between the Smart-T and the I-Met sensor

(0.058C) was found during an outdoor test under bright sun-

light (solar radiation: 317 Wm22), suggesting that radiation

contamination was minimal, at least when the bicycle was

moving at a normal speed. In this experiment, radiation in-

terference on the I-Met unit should be negligible because its

sensor was very small (6 mm in diameter) and it was placed

under a homemade white radiation shelter with ventilation.

Regarding sensor positioning, because coordinate informa-

tion is updated for each data sample, data collected inad-

vertently, such as when the sensor is still indoors or when the

bicycle is in a parked position, can be easily identified and

removed.

The Smart-T sensor relies on bicycle motion to promote

ventilation and to reduce radiation error. Whether its ra-

diation shield offers adequate ventilation via natural air

motion has not been evaluated. A larger shield (e.g., Young

et al. 2014) may be required for stationary monitoring

(but without the need to change other components of

the sensor).

c. Relationship between temperature, humidity, and surface
morphology
Our street transect data showed that air temperature

and absolute humidity variations were positively correlated

(Fig. 8). This correlation pattern arose from their covariations

with urban surface features. According to Figs. 10 and 11, in-

creasing vegetation fraction was associated with both tem-

perature and absolute humidity reductions, and increasing

impervious surface fraction had the opposite effect. One in-

ference from these results is that expanding urban vegeta-

tion could relief heat stress on both fronts, by lowering air

temperature and humidity.

The intracity spatial correlation between temperature and

absolute humidity in the present study differed from two other

urban mobile studies found in the literature. The mobile

measurement made in street transects of Gaborone, Botswana

(Jonsson 2004), revealed a negative correlation between these

two variables at night (spatial correlation 5 20.47, p , 0.01,

based on the data presented in their Figs. 9 and 10). The second

mobile study, carried out in Padua, Italy (Noro et al. 2015),

only presented one evening transect and the results revealed a

weak negative correlation (spatial correlation 5 20.28, p 5
0.33, based on the data presented in their Figs. 7 and 8). One

reason for this difference may be related to the background

FIG. 9. Spatial variations in wet-bulb temperature at (a) 1400 and (b) 2200 LT 24 Jul and (c) 1400 and (d) 2200 LT 31 Jul 2019. The map

background is a true-color satellite image.
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climatic influence. The City of Nanjing is influenced by the

Asian monsoon, with abundant precipitation in the summer,

whereas Gaborone is located in a semiarid climate zone.

It is instructive to compare the intracity spatial correlation

with temporal correlation from urban–rural site pair analysis.

According to the observations in London, United Kingdom

(Lee 1991), Goteborg, Sweden (Holmer and Eliasson 1999),

Munich, Germany (Mayer et al. 2003), and Krefeld, Germany

(Kuttler et al. 2007), the urban air is generally more moist than

the rural air at night, and the urban–rural differences in ab-

solute humidity and in air temperature are positively corre-

lated over time. In other words, at times when the UHI is

stronger, the urban moisture excess is also greater. Several

mechanisms are proposed by these studies to explain this

FIG. 10. Spatial correlation of air temperature (Ta), water vapor pressure (e) and wet-bulb temperature (Tw) as

functions of buffer radius at 1400 LT. (a)–(c) Correlations with vegetation fraction and (d)–(f) correlations with

impervious surface fraction. Error bars are 61 standard deviation of seven observations.

FIG. 11. As in Fig. 10, but at 2200 LT.

1902 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/10/1891/5008145/jtechd200012.pdf by Purdue U
niversity Libraries user on 16 O

ctober 2020



temporal correlation, including water vapor emission by au-

tomobile engines, removal of water vapor from rural air by dew

formation, and longwave radiation feedback on the UHI as-

sociated with the urban moisture excess. These mechanisms

operate at the whole-city scale. At the neighborhood scale and

the scale of landscape patches, the interplay between temper-

ature, humidity and surface morphology may reflect local

moisture limitation and energy availability. It appears that the

landscape in Nanjing was more limited by energy than by soil

moisture. We suggest that locations with lower fraction of

vegetation and higher fraction of impervious surface generally

had higher absorption of solar radiation and higher amount of

anthropogenic heat release, and a greater level of available en-

ergy, in turn, would lead to higher air temperature and higher

humidity through enhanced sensible and latent heat flux.

5. Conclusions
The Smart-T sensor achieved accuracy and reproducibility

nearly comparable to those of research-grade sensors. Its time

response was adequate for capturing neighborhood-scale spa-

tial variations (40–70 m). Because it simultaneously measure

air temperature and air humidity, it should give a better mea-

sure of human thermal comfort than sensors that measure only

air temperature. No training is required to operate the sensor,

so it is possible to expand the measurement with the help of

volunteer cyclists and citizen scientists.

Street transect data in Nanjing showed that increasing veg-

etation fraction caused reduction in both air temperature and

absolute humidity and that increasing impervious surface

fraction had the opposite effect, in both daytime and nighttime.

Because of their covariations with vegetation and impervious

cover, air temperature and absolute humidity were positively

correlated in space. The maximum correlation of temperature

with these surface morphological parameters occurred at a

buffer radius of 10–30 m in the daytime and 50–100 m at night,

indicating that the temperature source footprint was highly

localized. In comparison, no correlation peak was discernible

for absolute humidity, suggesting that the humidity spatial

variations were associated with larger-scale processes than

temperature variations.
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