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Abstract
In this paper, a model is presented for scalar advection inside canopies. A key result is an advection/diffusion equation that

captures the persistence effect of the diffusion plume from elevated sources through a near-field modifier. The model is

applicable to various source configurations including line source, plane and canopy sources with finite fetch, and horizontally

extensive canopy source. Model prediction agrees reasonably well with the observations of a line and a plane heat source in a

wind tunnel canopy.

The two-dimensional flux footprint in the x–z plane in homogeneous turbulence is expressed in analytical form and that in

canopy turbulence is computed from the numerical solution of the advection/diffusion equation. The footprint calculations

suggest that inclusion of flow inhomogeneity leads to a stronger near-field effect than in homogeneous turbulence, resulting in a

maximum contribution to the observed flux to come from sources further away from the measurement tower. The flux measured

within the roughness sublayer is weighted more heavily by contributions from sources in the lower canopy in unstable conditions

and from the upper canopy in stable conditions. The flux footprint is less sensitive to source height in neutral air than in stratified

air. The cross-wind integrated footprint reported in the literature is a special case of the present model.
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1. Introduction

The objective of this paper is to investigate the

two-dimensional flux footprint function in the x–z

plane for elevated sources inside a canopy, where x is
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the streamwise direction and z is height above

the ground. Such a footprint function is useful for

the interpretation of eddy flux measurement where

the source density S (dimension ML�3T�1, where M

is the mass, L the length and T the time) varies both

with x and z. As in all previous studies of flux

footprint, the flow is assumed to be homogeneous in

the x direction.

Mathematically, the vertical flux, F (dimension

ML�2T�1), of a scalar measured at position, ðxm; zmÞ,
.



X. Lee / Agricultural and Forest Meteorology 127 (2004) 131–141132

Fig. 1. Comparison of the numerical solution (dashed line) of the

non-dimensional footprint function, gðx;Z1; zmÞ � h, for homoge-

neous turbulence and the analytical solution (solid line, Eq. (27)),

with z1=h ¼ 0:8, zm ¼ 1:6, tu�=h ¼ 0:4; sw=u� ¼ 1:25 and

u=u� ¼ 3. Also given is a numerical solution with the near-field

effect turned off (dash-dotted line).
is a weighted average of contributions from all upwind

sources distributed in the x�z plane,

Fðxm; zmÞ ¼
Z xm

�1

Z min ðh;zmÞ

0

Sðx; zÞg

� ðxm � x; z; zmÞ dz dx (1)

where h is canopy height, and g the footprint function

(dimension L�1). In the convolution calculation, the

footprint is dependent upon horizontal separation

distance between the measurement point and the

source location, xm � x, because of horizontal homo-

geneity of the flow, but is a function of both the

measurement height zm and the source height z

because of vertical heterogeneity of the flow.

The footprint function must be positive, and is

meaningful only if z � h,

gðx; z; zmÞ> 0; 0< z � h; x> 0 (2)

Here it is assumed that horizontal diffusion is negli-

gible [models that include this yield a small contribu-

tion from the ‘downwind’ area (e.g. Kljun et al.,

2002)]. Also g is a property of the flow and is

independent of source configuration. This feature

allows us to set up certain source configuration that

is convenient for its numerical solution and for inves-

tigation of its general behavior. In the special case that

S varies with z only, Eq. (1) becomes

Fðxm; zmÞ ¼
Z min ðh;zmÞ

0

S dz

" #

�
Z xm

�1
gðxm � x; z; zmÞ dx

� �
(3)

Conservation of mass for a horizontally extensive

canopy requires

Fðxm; zmÞ ¼
Z min ðh;zmÞ

0

S dz (4)

A comparison of Eqs. (3) and (4) leads to another

important property that the footprint function obeysZ 1

0

gðx; z; zmÞ dx ¼ 1 (5)

The first generation of footprint models is

concerned with scalar diffusion from a ground-level

plane source [(Leclerc and Thurtell, 1990; Schmid,

1994; Horst and Weil, 1992)]. Later studies have

extended the investigation to canopy sources, relying
on either random flight simulations [(Baldocchi, 1997;

Rannik et al., 2002; Strong et al., 2004)] or numerical

solutions of the deterministic advection/diffusion

equation (Lee, 2003). Each approach has its unique

advantages and weaknesses, and both are subject to

the same kind of uncertainties inherent to the

parameterization of canopy turbulence. The random

flight technique uses fewer simplifying assumptions,

while the deterministic approach can sometimes bring

out certain physical processes (e.g., the role of the

near-field effect, Fig. 1) more clearly.

In a companion paper, Lee (2003) combined

Raupach et al. (1986) theory with parameterizations

of the turbulence inside a canopy to investigate how air

stability and source configuration influence the flux

footprint and flux adjustment with fetch in the

roughness sublayer. The footprint function investi-

gated by Lee (2003) was essentially a source-weighted

average of the two-dimensional version

gsðx; zmÞ ¼
1R h

0 S dz

Z h

0

Sg dz (6)

Following Raupach (1989), the source term in the

advection–diffusion equation was adjusted to account

for the fact that the near-field concentration is advec-

tive but not diffusive. It must be recognized that the

source-adjustment approach has not been verified
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experimentally. While it appears adequate for the

study of gs, the approach is too crude for the study

of the 2D footprint function, particularly its behavior

in the near field.

In this study, a system of equations is established

for scalar advection inside canopies. The point of

departure is the problem of diffusion in homoge-

neous turbulence, which is reviewed in Section 2 to

highlight mechanisms relevant to the process of

advection/diffusion from elevated sources. Unlike

Raupach (1989) whose theory targets primarily at

horizontally homogeneous and extensive sources, the

present study focuses on the advection/diffusion

problem from line sources and plane sources with a

finite fetch. The principal result is a conservation

equation that incorporates the persistence of the

diffusion plume in the near-field via a near-field

modifier. The near-field modifier is assumed to take

the same form in canopy turbulence, thus over-

coming a closure problem (Section 3). The model is

evaluated against observations of heat diffusion from

a line source and a plane source in a wind tunnel

canopy (Section 4). In Section 5, the basic equations

for canopy turbulence are solved numerically to

determinate the two-dimensional flux footprint,

using a numerical procedure and canopy turbulence

parameterization described by Lee (2003), for

various stability conditions and measurement

heights.
2. Scalar advection in homogeneous turbulence

2.1. Basic equations for a line source

2.1.1. Expressions for concentration and flux

Let us first consider an elemental line source,

located at a height z1 above the ground and horizontal

position x ¼ 0, in homogeneous turbulence specified

by a horizontal velocity u, a standard deviation of the

vertical velocity sw, and a Lagrangian time scale t.

The line source is infinitely long in the cross-wind

direction. The line source function and the resulting

concentration and flux fields are denoted by lower-

case symbols, to distinguish from those for plane and

canopy sources. The source function is

s ¼ dzðz1Þdxð0Þ (7)
where dz and dx are the Dirac delta functions. The

analytical solution of concentration downwind of the

source is given by

cðx; z; 0; z1Þ ¼
1ffiffiffiffiffiffi

2p
p

szu

(
exp �ðz � z1Þ2

2s2
z

" #

þ exp �ðz þ z1Þ2

2s2
z

" #)
(8)

(e.g., Csanady, 1973). The vertical flux, f ðx; z; 0; z1Þ,
is given by integrating the conservation equation, as

f ðx; z; 0; z1Þ ¼ �u

Z z

0

@c

@x
dz (9)

Substitution of Eq. (8) into Eq. (9) yields

f ðx; z; 0; z1Þ¼
1ffiffiffiffiffiffi

2p
p

s2
z

dsz

dx

(
ðz � z1Þexp �ðz � z1Þ2

2s2
z

" #

þ ðz þ z1Þexp �ðz þ z1Þ2

2s2
z

" #)
(10)

where the plume depth sz is a function of x only and is

obtained from

s2
z ¼ 2s2

wt
x

u
�tþ t exp � x

tu


 �n o
(11)

and its derivative with respect to x is given by

dsz

dx
¼ s2

wt

szu
1 � exp � x

tu


 �n o
(12)

Note that the solution of f does not invoke the gra-

dient–diffusion relationship.

2.1.2. The far- and near-field concentrations

Following Raupach (1989), the concentration field

c is separated into a diffusive far-field component cf

and a non-diffusive near-field component cn

c ¼ cn þ cf (13)

The far-field component satisfies the gradient–diffu-

sion relationship

f ¼ �Kf
@cf

@z
(14)

with the far-field diffusivity

Kf ¼ s2
wt (15)



X. Lee / Agricultural and Forest Meteorology 127 (2004) 131–141134
Eq. (14) can be rearranged to give

cf ¼
1

Kf

Z 1

z

f dz (16)

Substitution of Eq. (10) into Eq. (16) yields

cf ¼
dsz=dxffiffiffiffiffiffi

2p
p

Kf

exp �ðz � z1Þ2

2s2
z

" #
þexp �ðz þ z1Þ2

2s2
z

" #( )

(17)

It can be shown from Eqs. (8) and (17) that the

near-field component is related to the far-field

component as

cn � c � cf ¼
exp ð�x=t1u1Þ

1 � exp ð�x=t1u1Þ
cf (18)

where u1 ¼ uðz1Þ and t1 ¼ tðz1Þ. This equation has

the desired property that as x increases the near-field

concentration decreases rapidly. The reader should be

aware that local values of wind speed and the Lagran-

gian time scale are used in Eq. (18). In the case of

homogeneous turbulence discussed here, these values

are constant with height. In the later treatment of

inhomogeneous turbulence, this ensures that the

boundary condition that the near-field effect, hence

the near-field concentration, vanishes for a ground-

level source, is satisfied.

2.2. Extension to a plane source

The above result can be easily extended to an

elemental plane source. The source function in this

case is given by

S ¼ dzðz1Þ; x> 0;
0; x � 0

�
(19)

The corresponding concentration fields (total concen-

tration C, far-field concentration Cf and near-field

concentration Cn) are obtained by the principle of

superposition, as

Cðx; z; z1Þ ¼
Z x

0

c dx;

Cnðx; z; z1Þ ¼
Z x

0

cn dx;

Cfðx; z; z1Þ ¼
Z x

0

cf dx;

(20)
It can be shown that substitution of Eqs. (17) and

(18) into Eq. (20) gives Cn that is identical to that

of Raupach (1989) in homogeneous turbulence in

the limit x!1. In canopy flow where the turbulence

is vertically heterogeneous, the present treatment

predicts a stronger near-field effect than Raupach

(1989).

Eq. (20) is useful only if solutions for the elemental

line source are known (as is the case for homogeneous

turbulence). More generally, a solution for the plane

source should be sought from the mass conservation

equation

u
@C

@x
þ @F

@z
¼ S (21)

and the gradient–diffusion relation

Fðx; z; z1Þ ¼ �Kf
@Cf

@z
(22)

where F is the vertical flux from the plane source. In

Eq. (21), both the near- and far-field concentrations are

advective, but only the far-field concentration is dif-

fusive. A closure problem now exists because there are

three unknowns (F, C and Cf ) with only two equations.

This problem is overcome by first taking the derivative

of Eq. (20) with respect to x

c ¼ @C

@x
; cn ¼ @Cn

@x
; cf ¼

@Cf

@x
(23)

Next Eqs. (17), (18), (20), (21) and (23), and

C ¼ Cn þ Cf (24)

are manipulated to eliminate C. The final result is

1 þ exp ð�x=t1u1Þ
1 � exp ð�x=t1u1Þ

� �
u
@Cf

@x
¼ @

@z
Kf

@Cf

@z

� �
þ S

(25)

Eq. (25), which is exact in homogeneous turbulence,

captures the near-field effect by including the group

1 þ exp ð�x=t1u1Þ
1 � exp ð�x=t1u1Þ

� �

called here as near-field modifier, in the advection

term.
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2.3. An analytical solution of flux footprint

An exact solution of the flux footprint function

exists under the assumption of homogeneous turbu-

lence, noting that substitution of Eq. (7) into Eq. (1)

gives

f ðxm; zm; 0; z1Þ ¼ gðxm; z1; zmÞ (26)

Thus the exact solution is

gðx; z1; zmÞ¼
1ffiffiffiffiffiffi

2p
p

s2
z

dsz

dx

(
ðzm�z1Þexp �ðzm�z1Þ2

2s2
z

" #

þ ðzm þ z1Þexp �ðzm þ z1Þ2

2s2
z

" #)
(27)

This function satisfies the conditions specified by Eqs.

(2) and (5).

Eq. (27) is useful in two ways. First, it is used to

check the accuracy of the numerical procedure

described below (Section (3.3)). Second, an apprecia-

tion of the impact of flow inhomogeneity on the

footprint function is gained by comparing the

analytical solution with numerical calculations for

inhomogeneous turbulence (Section (5.1)).
3. Scalar advection in canopy turbulence

3.1. Basic equations

Let us consider the same source configuration

given by Eq. (19). In an idealized canopy flow, the

turbulence is homogenous horizontally but not

vertically. To overcome the closure problem, we

assume that the near-field modifier has the same form

of that pertaining to homogeneous turbulence so that

Eq. (25) can be used to achieve a numerical solution

of Cf . It is worth mentioning that while Eq. (25) is

now an approximation, Eq. (20) and its derivative

form, Eq. (23), are exact as long as the turbulence is

horizontally homogeneous. Therefore, once the

plane source solution is known, it can be manipulated

to give the line source solution. This is a useful

feature for model validation because line sources are

used much more frequently than plane sources in

diffusion experiments.

Once Cf is known, the vertical flux F is obtained

from Eq. (22) with the far-field eddy diffusivity given
by Eq. (15), and Cn and C are given by

Cn ¼
Z x

0

exp ð�x=t1u1Þ
1 � exp ð�x=t1u1Þ

@Cf

@x
dx (28)

and Eq. (24).

To determine the footprint function, we take

advantage of the fact that for the source configuration

specified by Eq. (19), Eq. (1) can be written as

Fðxm; zm; z1Þ ¼
Z xm

0

gðxm � x; z1; zmÞdx (29)

Therefore, the footprint function is obtained by differ-

entiating F with respect to xm,

gðxm; z1; zmÞ ¼
@Fðxm; zm; z1Þ

@xm
(30)

The present treatment differs from Raupach (1989),

who overcomes the closure problem via a slight

modification of the source term

u
@Cf

@x
¼ @

@z
Kf

@Cf

@z

� �
þ S� (31)

where S� is related to the real source strength S as

S� ¼ 0 for x � ut;
S for x> ut

�
(32)

The source-adjustment approach appears adequate for

the source-weighted footprint function (Eq. (6)) but is

too crude for the determination of the two-dimen-

sional footprint, in part because of the discontinuity at

x ¼ ut. Eq. (25) does not suffer this shortcoming.

3.2. Parameterization of canopy turbulence

In the investigation of the effects of air stability and

measurement height on the footprint function, the

parameterizations in Lee (2003) are used for profiles

of the horizontal velocity u, the standard deviation of

the vertical velocity sw, and the Lagrangian time scale

t. Briefly, t is parameterized according to Legg et al.

(1986) for neutral air and Leuning (2000) for stratified

air. All the parameters are made non-dimensional by

canopy height, h, and friction velocity, u�, and are

functions of non-dimensional height z=h and a

stability parameter z (= h=L, where L is the Monin–

Obukhov length). In the model validation against wind

tunnel observations (Section 4), the same parameter-

ization of t for neutral air is used together with the
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Fig. 2. Profiles of normalized temperature downwind of a heat line

source in a wind tunnel canopy. Source height is z=h ¼ 0:85.

Symbols are observations at various distances from the source

(circles, x=h ¼ 0:38; crosses, 1.32; triangles, 2.78; asterisks, 5.72;

upside down triangles, 11.6). Lines represent numerical solution at

the same distances.
observed profiles of u and sw reported by Raupach et

al. (1986).

3.3. Numerical method

To establish the footprint function, we begin by

specifying z1 (source height), zm (measurement height)

and the stability parameter z. Eq. (25) is discretized

according to Patankar (1980) and the solution for Cf is

sought with a line-by-line method in the forward wind

direction. The procedure is repeated for a number of

preset z1 values covering the range 0– h.

The boundary conditions are

Cf ¼ 0; x ¼ 0;
@Cf

@z
¼ 0; z ¼ 0 and 40h (33)

The same numerical scheme is used in the model

validation against the observation by Coppin (1986) of

heat advection from a plane source in a wind tunnel

canopy. For comparison with the observation by Legg

et al. (1986) of heat advection from a line source in the

same wind tunnel canopy, a solution is first sought for

an elemental plane source placed at the same height as

the line source (z1=h ¼ 0:85). Next a solution of the

concentration fields for an elemental line source is

obtained by differentiating the plane source solution

with respect to x (Eq. (23)). After that, the vertical flux

is obtained from Eq. (14). Finally, the elemental line

source solution is scaled by the heat release rate and is

compared with the actual observation.

Fig. 1 shows that the numerical solution of g

for homogeneous turbulence is virtually identical to

the analytical solution (Eq. (27)), indicating that

the numerical procedure is sufficiently accurate for

footprint investigation. Also shown in Fig. 1 is a

solution with the near-field modifier set to unity, which

is equivalent to turning off the near-field effect. Without

the near-field effect, the footprint function displays a

much higher peak at a position much closer to

the observational point than the actual footprint

function.
4. Comparison with experimental data

Figs. 2 and 3 compare the model predictions of

temperature and vertical heat flux with actual

observations downwind of a line source in a wind
tunnel canopy (Legg et al., 1986). The temperature

scale is defined as

u� ¼
Qs

rcphu�

where Qs is the line source strength (in W m�1), r and

cp are the air density and specific heat of air at constant

pressure, respectively, and u� the friction velocity. In

the air layer in the upper canopy and higher, there is

very good agreement between the calculated and

observed temperature both in the near and far fields.

The model underestimates temperature in the lower

canopy in the near-field (x=h ¼ 0:38 and 1.32). Legg

et al. (1986) and Flesch and Wilson (1992) also

reported similar underestimation by their random

flight simulation models. It appears that either para-

meterization of the turbulence in the lower canopy is

inaccurate in all these modeling studies or the mea-

surement was in error.

Fig. 3 provides a direct experimental test of the

footprint prediction, keeping in mind that the vertical

flux field resulting from a line source is equivalent to

the footprint function (Eq. (26)). Overall, the shape of



X. Lee / Agricultural and Forest Meteorology 127 (2004) 131–141 137

Fig. 4. Comparison of modeled profiles of temperature (dashed

line) and vertical heat flux (solid line) with those observed in a wind

tunnel canopy with a plane heat source (circles, temperature;

triangles, heat flux). Dash-dotted line is the modeled far-field

concentration profile. Source height is z=h ¼ 0:8.

Fig. 3. As in Fig. 2 but for normalized vertical heat flux.
the predicted profile curves looks quite similar to the

observed shape. The model prediction misses a few

quantitative details, the most noticeable one being a

large flux peak predicted by the model very close to

the source (x=h ¼ 0:38).

Fig. 4 compares the temperature and vertical flux

profiles at a distance of x=h ¼ 33:8 from the leading

edge of a plane source in the same wind tunnel canopy

(Coppin, 1986). This is the longest fetch distance at

which the observation was made. Profiles at other

shorter fetch distances are deemed less suitable for the

comparison because the flow field was not fully

adjusted with fetch. The temperature scale is defined as

u� ¼
Hs

rcpu�

where Hs is the plane source strength (in W m�2). The

agreement is excellent for the heat flux up to a height
of z=h ¼ 4:5 and for temperature up to a height of

z=h ¼ 1:5. Warland and Thurtell (2000) also reported

similar disagreement with their model and suggested

that it was caused by measurement errors. According

to their calculations, Raupach (1989) theory appeared

to underestimate the near-field effect in this canopy. In

comparison, the near-field effect (the difference

between the dashed and dash-dotted lines, Fig. 4) of

this model is more pronounced, which improves the

model prediction.
5. Results for flux footprint

5.1. Behavior of the 2D footprint function

Fig. 5 is a contour plot of the footprint function

based on Eq. (27) for a measurement height of

zm=h ¼ 1:6, with the u, t and sw values taken at the

source height from those specified for canopy

turbulence in neutral air. The actual numerical

solution for the canopy flow is presented in Fig. 6.

The solution for homogeneous turbulence predicts that
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Fig. 7. Contour plot of the normalized footprint function, gh, in

neutral stability. Bottom: measurement height zm=h ¼ 1:2, max-

imum 0.44, contour interval 0.044; top: measurement height

zm=h ¼ 3:0, maximum 0.027, contour interval 0.0027.

Fig. 5. Contour plot of the normalized footprint function, gh, from

the analytical solution for homogeneous turbulence. Measurement

height is zm=h ¼ 1:6. The maximum value of gh is 0.142. Contour

interval is 0.014.
the maximum contribution to the observed flux comes

from sources at a distance of x=h ¼ 1 upwind whereas

the numerical solution suggests the maximum at

x=h ¼ 2. The persistence of the diffusion plume (or

the near-field effect) is stronger in the vertically

inhomogeneous turbulence, causing the position of the

maximum contribution to locate further upwind.

The effect of measurement height on the footprint

function is illustrated in Fig. 7 for neutral air. At a

measurement height close to the canopy top

(zm=h ¼ 1:2), the flux is weighted more heavily by

contributions from the sources in the upper canopy. In

the upper roughness sublayer (Fig. 6) and inertial

sublayer (Fig. 7, top panel), the flux footprint is not

very sensitive to z. The vertical extent of the roughness

sublayer is set at z=h ¼ 2:16. At this height the
Fig. 6. As in Fig. 5 but from the numerical solution of canopy

turbulence in neutral stability. The maximum value of gh is 0.159.

Contour interval is 0.016.
Lagrangian time scale of the roughness sublayer

matches its inertial sublayer form (Lee, 2003).

The insensitivity to z is, however, limited to near-

neutral stability. In moderately unstable air (z ¼ �1,

Fig. 8, bottom panel), the eddy time scale becomes

relatively large, particularly in the upper canopy. The

persistence of the diffusion plume emanating from the

upper canopy is much stronger than that from the

lower canopy. Consequently, the footprint contour

shows an upwind tilt, The maximum contributions

come from the lower canopy at x=h ¼ 0:3.

In stable air, the tilt structure reverses direction and

is much more pronounced than in unstable air (z ¼ 1,

Fig. 8, top panel). The near-field effect is far out-

weighted by the fact that diffusion is very slow in

stable air and thus it takes the diffusion plume a long

time to influence the measurement if the vertical

separation distance between zm and the source height

is large. These patterns are broadly consistent with the

model calculations made by Baldocchi (1997).
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Fig. 8. Contour plot of the normalized footprint function, gh, for a

measurement height zm=h ¼ 1:6. Bottom: unstable (z ¼ �1), max-

imum 0.85, contour interval 0.085; top: stable (z ¼ 1), maximum

0.0094, contour interval 0.00094.

Fig. 9. Comparison of three estimates of the cross-wind integrated

footprint function for a measurement height zm=h ¼ 1:6 and neutral

stability: solid line, numerical solution; dashed line, analytical

solution; dash-dotted line, solution based on the Monin–Obukhov

similarity.
5.2. Comparison with published models

The cross-wind integrated footprint function

studied by Leclerc and Thurtell (1990) and Horst

and Weil (1992) and others can be considered as a

special case of the present model. These studies imply

that the source distribution is a function of x only. If we

express

S0ðxÞ ¼ hSðxÞ (34)

as the total surface source strength (dimension

ML�2T�1), we can rewrite Eq. (1) as

Fðxm; zmÞ ¼
Z xm

�1
S0ðxÞ

1

h

Z h

0

gðxm � x; z; zmÞdz

� �
dx

(35)

where zm > h. Thus, the cross-wind integrated foot-

print function is essentially the algebraic average of
the two-dimensional function along the vertical direc-

tion, gz (dimension L�1),

gzðx; zmÞ ¼
1

h

Z h

0

gðx; z; zmÞ dz (36)

Fig. 9 compares three estimates of the cross-wind

integrated footprint function for a measurement height

of zm=h ¼ 1:6 and neutral stability. In method 1, the

numerical solution of g is integrated according to Eq.

(36) (solid line). In method two, a solution is

computed from the homogeneous turbulence solution

(Eq. (27)), using values of u, sw and t taken from

those specified from canopy flow at various depths

inside the canopy, and is integrated according to Eq.

(36) (dashed line). In method three, the cross-wind

integrated footprint function is solved numerically

using the advection–diffusion equation for the atmo-

spheric surface layer and the Monin–Obukhov

similarity functions of the diffusivity and the wind

profiles [Model II in Lee, 2003, dash-dotted line]. The

first two methods account for the near-field effect.

Even with the crude assumption of homogeneous

turbulence, method two does a better job than method

three. The poor performance of method three is caused

by the lack of the near-field effect and its poor

representation of the turbulence in the roughness

sublayer. The solution based on the Monin–Obukhov

similarity is clearly inadequate in the roughness

sublayer.
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6. Conclusions

In this paper, a model is presented for scalar

advection inside canopies. The core equations are the

mass conservation equation involving the far-field

concentration (Eq. (25)), the flux–gradient relation-

ship (Eq. (22)) and an expression for the near-field

concentration (Eq. (28)). The persistence of the

diffusion plume in the near-field is captured by a

near-field modifier in the conservation equation. The

near-field concentration is identical to that of Raupach

(1989) in homogeneous turbulence and is stronger

than the latter in vertically inhomogeneous turbulence.

The model prediction of temperature and heat flux

agrees reasonably well with the observations of a line

and a plane heat source in a wind tunnel canopy.

Although the present study emphasizes an ele-

mental plane source with a step change at the leading

edge (Eq. (19)), by principle of superposition these

equations should be applicable in the more general

case of a canopy source whose source density S is an

arbitrary function of both x and z, as long as the flow is

horizontally homogeneous. The classic case of

advection-free, horizontally extensive and homoge-

neous canopy, which is of interest to some modelers, is

further discussed in Appendix A.

The numerical scheme developed for the plane

source is a convenient intermediate step for canopy

source as well as line source problems. The two-

dimensional footprint function covering the full

vertical extent of a canopy is constructed from the

plane source solution by adjusting successively the

plane source height. The solution for a line source is

obtained by differentiating the solution for a plane

source placed at the height of the line source (Eq.

(23)). The ability to obtain a line source solution is a

useful feature for model validation because line

sources are used much more frequently in diffusion

experiments than plane sources.

An analytical solution is derived for the footprint

function in homogeneous turbulence. Flux footprint

in canopy turbulence is computed from the numerical

solution of the governing equations discussed above.

According to the footprint calculations, the flux

measured within the roughness sublayer is weighted

more heavily by contributions from sources in

the lower canopy in unstable conditions and from

the upper canopy in stable conditions. The flux
footprint is less sensitive to source height in

neutral air.

The cross-wind integrated footprint reported in the

literature is a special case of the present model. Model

intercomparison (Fig. 9) and numerical experiments

(Fig. 1) show that accounting for the persistence of the

diffusion plume in the near-field is crucial for the

determination of the flux footprint of elevated sources.
Acknowledgements

This work was supported by the U.S. National

Science Foundation through grant ATM-0072864 and

by the Biological and Environmental Research

Program (BER), U.S. Department of Energy, through

the northeast regional center of the National Institute

for Global Environmental Change (NIGEC) under

Cooperative Agreement No. DE-FC03-90ER61010.
Appendix A. The case of an advection-free,

horizontally homogeneous canopy

The above theory can be extended to an extensive

canopy whose source strength is a function of height

only. In this case, horizontal advection vanishes. The

far-field concentration reaches the equilibrium value

given by

CfðzÞ � CfðzrÞ ¼
Z zr

z

1

Kfðz0Þ

Z z0

0

Sðz00Þ dz00
" #

dz0

(A.1)

(Raupach, 1989), where zr is a reference height.

The solution for Cn is found numerically in a two-

step process. First, a non-equilibrium Cf is solved

from Eq. (25) with the boundary conditions specified

by Eq. (33) and

S ¼ 0 for x � 0;
SðzÞ for x> 0

�
(A.2)

Next, the non-equilibrium Cf is put into Eq. (28) to

give a solution for Cn. Theoretically, to reach the

equilibrium solution for Cn, the integration limit in

Eq. (28) should be infinitely large. But because the

near-field modifier decays exponentially with x, it is

found that an integration limit of 5h is sufficient.
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The present theory appears to improve the

prediction of the concentration profile in comparison

to Raupach’s original theory which is shown to

underestimates the near-field effect (Warland and

Thurtell, 2000). The improvement comes at the cost of

a numerical approach that is somewhat cumbersome,

although this is not a serious limitation given the

computing power offered by today’s desktop compu-

ters.
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Rannik, Ü., Aubinet, M., Kurbanmuradov, O., Sabelfeld, K.K.,

Markkanen, T., Vesala, T., 2002. Footprint analysis for measure-

ments over a heterogeneous forest. Bound.-Layer Meteorol. 97,

137–166.

Raupach, M.R., 1989. A practical Lagrangian method for relating

scalar concentrations to source distributions in vegetation cano-

pies. Quart. J. R. Meteorol. Soc. 115, 609–632.

Raupach, M.R., Coppin, P.A., Legg, B.J., 1986. Experiments on

scalar dispersion within a model plant canopy. Part I. The

turbulence structure. Bound.-Layer Meteorol. 35, 21–52.

Schmid, H.P., 1994. Source areas for scalar and scalar fluxes.

Bound.-Layer Meteorol. 67, 293–318.

Strong, C., Fuentes, J.D., Baldocchi, D., 2004. Reactive hydrocar-

bon flux footprints during canopy senescence. Agric. For.

Meteorol. 127, 159–173.

Warland, J., Thurtell, G.E., 2000. A Lagrangian solution to the

relationship between a distributed source and concentration

profile. Bound.-Layer Meteorol. 96, 453–471.


	A model for scalar advection inside canopies and application to footprint investigation
	Introduction
	Scalar advection in homogeneous turbulence
	Basic equations for a line source
	Expressions for concentration and flux
	The far- and near-field concentrations

	Extension to a plane source
	An analytical solution of flux footprint

	Scalar advection in canopy turbulence
	Basic equations
	Parameterization of canopy turbulence
	Numerical method

	Comparison with experimental data
	Results for flux footprint
	Behavior of the 2D footprint function
	Comparison with published models

	Conclusions
	Acknowledgements
	The case of an advection-free, horizontally homogeneous canopy
	References


