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Land use/land cover change has significant influences on climate system on both local 

and global scales by altering the biogeochemical and biogeophysical processes. 

Urbanization has been one of the most significant anthropogenic modifications to the 

Earth’s surface in recent decades. The influence of urbanization on surface climate has a 

profound impact on the lives of urban residents, who comprise more than half of the 

world’s population now and will comprise 70% of the world’s population by the year of 

2050. Conversion of natural land to urban land leads various changes in surface climate 

such as changes in temperature, humidity, precipitation, and air pollution. Among them, 

urban heat island (UHI), a ubiquitous phenomenon in which surface temperatures are 

higher in urban areas than in surrounding rural areas, represents one of the most 

significant human-induced changes to the surface climate. It is also a long-recognized 

and widely studied phenomenon in the research field of urban climate. 

 

Although the candidate causes of UHI have been known for a long time, there is little 

knowledge on the relative contribution of each factor to UHIs. Previous modeling studies 

mostly focused on a short time scale of UHIs rather than on a climate scale. The 

observation-based studies cannot mechanistically quantify the contributions of each 

biophysical process to UHIs. Nor have these contributions been contrasted in different 

climate regimes. This dissertation aims to fill these gaps, for the first time quantifying the 



contributions of primary causes to UHIs and contrasting among difference climate 

regions. 

 

A long-held perception is that reduction in evaporative cooling in urban land is the 

dominant driver of UHI. In this dissertation, however, we used MODIS observations and 

climate modeling to show that this perception is somewhat erroneous. We conducted two 

separate climate simulations: one in current climate (1972-2004) and the other in future 

climate (2005-2100). The current-climate simulation was driven by a carefully revised 

climatology dataset, and the future-climate simulation was driven by the community earth 

system model outputs. 

 

Results show that, for cities across North America, daytime UHI is strongly correlated 

with precipitation, whereas nighttime UHI is correlated with the logarithm of population 

but invariant with climate. The geographic variations in daytime UHI are largely driven 

by variations in the efficiency with which urban and rural areas convect heat to the lower 

atmosphere. This convection effect depends on the local background climate, 

contributing 3.0 ± 0.3 K (mean and standard error, s. e.) warming to daytime ΔT in cities 

in humid climate but causing 1.5 ± 0.2 K cooling in dry climate. Our results also show 

that in the humid eastern United States, there is evidence of higher daytime UHI in drier 

years. These relationships imply that UHIs will exacerbate heatwave stress on human 

health in wet climates. During nighttime, our results reaffirmed that the release of stored 

heat is the dominant driver of UHIs. Results also support the city albedo management as 

a viable means of mitigating UHIs on large scales. 



 

Results of the future-climate simulation show that under the high emission climate 

change scenario (representative concentration pathway 8.5), daytime UHIs generally 

decrease in all three climate zones, indicating that urban and rural areas respond 

differently to climate change. Nighttime UHIs do not show any significant trends. 

Attribution of UHIs demonstrates how urban land-atmosphere interactions change with 

climate change. 
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1.1 Land use change 

Land use/land cover change influences the climate system by altering biogeochemical 

and biophysical processes at the surface. The biogeochemical effect, such as changes 

in CO2 concentration, impacts the climate system on the global scale but hardly on 

the local scale. The biophysical effect, however, including changes in surface albedo, 

emissivity, surface roughness, evaporation and thermal storage, has important impacts 

on the climate system at both local and global scale by triggering biophysical 

feedbacks from the surface energy balance perspective[Bonan, 2008; Lee et al., 

2011]. Ongoing anthropogenic land-use activities, such as urban expansion, are 

occurring at local scales which are too small to influence the global climate, but have 

direct effects on local climate [Kalnay and Cai, 2003; Zhou et al., 2004]. Conversion 

of different landscapes causes localized warming or cooling effect through 

perturbations to the biophysical processes of the Earth’s surface energy balance, 

among which urban heat island (UHI) is one of the most prominent effect that 

humans bring to the Earth. 

 

1.2 Urban climate and urban heat island 

Urbanization has been the most significant anthropogenic modification to the Earth’s 

surface in recent decades [Grimm et al., 2008; Kalnay and Cai, 2003; Oleson, 2012]. 

Although urban area takes a small fraction of the Earth’s land surface till now, its 

climate has a profound impact on the human beings, because urban residents 

comprise more than half of the world’s population[Grimm et al., 2008]. Many 

globally recognized environmental problems such as climate change, air pollution, 
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flood, water pollution, energy crisis, and disease stem from or are exacerbated by 

human activities within urban areas [Bettencourt and West, 2010]. In recognition of 

these public issues, increasing attention has been drawn to interdisciplinary research 

of understanding the urban environment and climate, and devising adaptation and 

mitigation strategies [Georgescu et al., 2014; Mackey et al., 2012; Stone et al., 2012; 

Stone et al., 2014; Stone et al., 2013]. 

 

Conversion of natural land to urban land leads to a number of differences in 

climatology between urban and its surrounding rural areas. Among them, urban heat 

island (UHI), a concept describing the phenomenon that urban areas are generally 

warmer than the surrounding rural areas, is one of the most well-documented and 

actively studied topics in the field of urban climatology [Arnfield, 2003]. The UHI is 

first recognized by Luke Howard in 1820 [Landsberg, 1981] and was first 

scientifically studied in 1970s. From then on, a large number of research efforts have 

been made on observing, modeling, and understanding the UHI [Arnfield, 2003; Chen 

et al., 2011; Clinton and Gong, 2013; Fischer et al., 2012; Gallo et al., 2002; 

Georgescu et al., 2014; C S B Grimmond et al., 2010; S Grimmond, 2007; Hung et al., 

2006; Imhoff et al., 2010; Li and Bou-Zeid, 2013; Oke, 1973; 1976; 1982; Oleson, 

2012; Oleson et al., 2011; Peng et al., 2012; Roth et al., 1989; Taha, 1997; Voogt and 

Oke, 2003]. The UHI, however, remains a compelling field for climate research 

because there are still a number of unresolved questions regarding the mechanism, the 

impacts, and the mitigation of UHI. The emergence of the idea that there are multiple 

UHIs even brings more complexities to the research of UHI.  
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Previous reports have confirmed the presence of more than one UHI concepts, 

including surface UHI as defined by the surface radiative temperature difference and 

observed by remote sensing technologies, the UHI in the urban canopy layer as 

measured by screen height air temperature, and the UHI upper in the urban boundary 

layer. These UHIs behave differently and are controlled by different physical 

processes [Oke, 1976; 1982; Roth et al., 1989; Voogt and Oke, 1997]. Among these 

UHIs at different levels, the canopy layer air temperature UHI and the satellite-

derived radiative surface UHI are the two most widely measured and studied 

concepts. The former suffers from inhomogeneity in the urban landscape. The latter is 

a valuable spatial average, but is influenced by the emissivity of the surface. Neither 

exactly matches the human experience of UHI as an individual walks across the rural 

or urban landscape. For the purpose of comparing different cities, the surface 

temperature approach is easier and more stable. Nichol et al. [2009] showed that the 

correlation between the surface and screen-height air temperature can be weak on 

neighborhood scales and improves considerably at the scale of urban–rural transition. 

Therefore in this dissertation, I focused the UHI intensity defined by the urban-rural 

difference of surface radiative temperature. 

 

1.3 Contributors to UHI 

Candidate causes of UHI include: 

• high heat capacity and heat conductivity of urban construction materials 

which lead to increased surface heat storage;  
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• large vertical faces and reduced wind speeds which lead to decreased 

turbulent heat transport;  

• larger impervious areas and less vegetation which lead to decreased latent heat 

flux; 

• additional supply of energy – anthropogenic heat flux. 

These factors of UHI have been known for a long time [S Grimmond, 2007]. No 

matter what urban characteristics these factors change, they essentially contribute to 

UHI by perturbing the terms in the surface energy balance. 

 

A number of studies have explored the relative contributions of the candidate causes 

to the UHI [Piringer et al., 2002]. These studies can be grouped into two categories. 

First category is the studies based on a single city or a few cities [Giannaros and 

Melas, 2012; Hicks et al., 2010; Roth and Chow, 2012; Tereshchenko and Filonov, 

2001; K C Wang et al., 2007]. These studies mostly focused on the temporal variation 

of the UHI. Some recent modeling studies conducted sensitivity analyses to test the 

influence of urban parameters to UHI [Oleson et al., 2011; Oleson et al., 2008a], but 

the parameters examined are basically internal urban factors such as morphology, 

physical and thermal parameters. The second category is the studies using a large 

number of locations. These studies are able to investigate the dominant factor that 

drives the spatial variation of UHI on a large scale. However, identification of the 

primary factor of UHI is still controversial. One traditional view suggests that the 

urban geometry or morphology, such as city size or city height-to-width ratio, is the 

primary driver of UHI spatial variation [Oke, 1973; 1981; 1987]. Another long-held 
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perception from studies in recent years is that reduction in evaporative cooling 

because of the sharp decrease in vegetation cover between urban and rural areas is the 

dominant driver [Imhoff et al., 2010; Peng et al., 2012; Taha, 1997].  

 

In this dissertation, I will combine theory, observations, and climate modeling to 

disentangle the relative contributions of both natural and anthropogenic processes to 

urban heat island. Because this is a mechanistic study of UHI, land surface modeling 

is necessary.  

 

1.4 Land surface models  

A land surface model (LSM) is usually the land component of a climate model. In 

terms of the physics, a LSM contains two major schemes: biogeophysical 

parameterization and biogeochemical parameterization. There are major functions for 

a LSM to its climate model. First is to update surface state variables such as surface 

temperature, surface humidity, soil moisture, and soil temperature. The second 

function is to calculate surface turbulent fluxes including energy flux, momentum 

flux, and mass flux to provide boundary conditions for the atmospheric model. 

 

Surface energy balance (SEB) is one of the most important constrains for solving the 

equations in the LSMs. In most LSMs, the emitting long-wave radiation term, the 

sensible heat flux, the latent heat flux, and the heat storage term are parameterized as 

functions for surface radiative temperature. Therefore the SEB equation can be solved 

numerically for surface radiative temperature. Using surface radiative temperature to 
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parameterize sensible heat flux accurately requires some special treatments to heat 

transfer resistance, which are, however, neglected by most of the LSMs. Therefore 

through the completion of this dissertation, we investigated the impacts of using 

surface radiaitve temperature in bulk transfer method on predicting sensible heat flux. 

Because this part of work does not fit in the major objectives of this dissertation, the 

details of this work is documented in the Appendix of this dissertation (Appendix A).  

 

Most LSMs can be run in two modes: offline stand-alone mode with user-defined 

forcing data and online coupled mode. The forcing data for LSMs are common 

meteorological variables including air temperature, wind speed, specific humidity, 

pressure, shortwave radiation, longwave radiation, and precipitation. These data come 

from either user-defined input if a LSM is run in offline mode or outputs of an 

atmospheric model if it is run in online mode. The key difference between these two 

modes is the scale. Offline mode essentially omits all the large-scale feedbacks and 

the horizontal atmospheric advections. It can be considered as a retrieval of the 

surface response to the current atmospheric state. Online mode incorporates both 

small-scale physics and large-scale dynamics and feedbacks. It is more suitable to 

simulate a process that will trigger or be impacted by the large-scale feedbacks. 

 

Initially, most LSMs are for natural surfaces such as forest, grassland, crops, lake, and 

bare soil. As the recognition of increasing needs for urban modeling research, LSMs 

started to incorporate urban land surface parameterization schemes for urban land. 

Existing urban LSMs can be categorized into three groups according to the extent of 
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complexity. The first one is a group of empirical models, representing the least 

complexity. These models are based on empirical relations and very basic urban form 

parameters such as average building height and vegetation fraction. The Local-Scale 

Urban Meteorological Parameterization Scheme (LUMPS) by C S B Grimmond and 

Oke [2002] is a good example of this kind of LSM. The second group, slightly more 

complex than the first one, is adaptations of existing land surface schemes for soil and 

vegetated surfaces [C S B Grimmond, 2006]. These models simply alter the 

parameterizations or even just values of some parameters of the existing LSMs for 

natural surfaces, to account for the momentum and energy transfer from built-up 

surfaces and the radiation trapping by the canyon effects [Best et al., 2006; Dandou et 

al., 2005; Dupont et al., 2004; Otte et al., 2004]. The anthropogenic heat estimated by 

simple empirical schemes is also incorporated in these models [Souch and Grimmond, 

2006]. The third group is the most complex urban LSM. These models consider the 

three-dimensional effects of buildings, and solve surface energy balance (SEB) 

equation separately for roofs, roads and walls. This group of urban models can be 

further divided into two classes. The first one is single-layer model. This type of 

models assumes that the urban canopy interacts with only one atmospheric layer 

above the uppermost roof of the buildings [Harman et al., 2004; Lemonsu et al., 

2004; Masson, 2000; Masson et al., 2002; Oleson et al., 2008a; Oleson et al., 2008b]. 

The second one is multilayer model. This type of models assumes that the built-up 

area distribute the impacts across multiple layers of atmosphere within the lower 

boundary layer [Kondo et al., 2005; Martilli et al., 2002].  
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Among these urban LSMs of different complexities, which model to choose depends 

on the scale and the objectives of your research. In this dissertation, we used the 

community land model (CLM), which is the land component of NCAR’s climate 

model – community earth system model (CESM). There are three reasons why chose 

this model. First, CLM is a single layer LSM. It has the enough complexity in land 

surface physics to facilitate a mechanistic study, and yet is simple enough in 

computational burden and auxiliary data requirement for cities. Second, our work 

focused on the climatology of urban areas rather than a single event of a few days, 

therefore we chose a climate model which is suitable for long-time simulation as 

opposed to a weather forecast model. Lastly, This model has a surface information 

dataset that contains urban configuration and parameters for the whole globe, which 

allows us to analyze a large number of cities on the large scale easily. This fits the 

objectives of our work. 

 

1.5 Research questions and methods 

This dissertation aims to address the following research questions: 

1) What is the primary driver that largely explains the spatial variation of UHI 

intensity? Is the dominant driver the same for daytime UHI and nighttime UHI? 

2) What is the relative contribution of each biophysical process to urban heat island? 

How do these biophysical contributions to UHI reflect the interactions between urban 

land and lower atmosphere? 

3) How does UHI vary with climate change in the future? How do urban land –

atmosphere interactions change with climate change? 
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In order to address these questions, we designed our research work in three major 

steps. First, choose correct forcing dataset for CLM. Because the focus of our 

research is essentially land – atmosphere interactions on the local scale, we chose to 

run CLM in the offline mode. The question then is what forcing datasets should we 

use. Previous reports have found that most global climate models overestimate the 

incoming solar radiation at Earth’s surface [Wild et al., 2013]. Solar radiation is an 

important driver of surface exchange processes. An overestimated solar radiation 

must lead to a biased solution of surface energy balance equation in CLM. But how 

about reanalysis data? Can we use reanalysis dataset to drive the CLM? Therefore the 

first step of our work was to validate the surface solar radiation of data assimilation 

systems. 

 

Second, after correctly choosing the forcing dataset to drive the CLM, we ran the 

simulation for 33 years using current climatology. An attribution method was 

developed based on surface energy balance equation and bulk transfer 

parameterization for sensible heat flux. We applied the attribution model on the CLM 

modeled data to decompose the UHI into contributions from each biophysical process. 

 

Third, we ran the CLM simulation into the future under Representative Concentration 

Pathway (RCP) 8.5 scenario. Based on the modeled data of this future projection, we 

forecasted the UHI trend under climate change and the urban land – atmosphere 

interactions in the future. 
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1.6 Dissertation outline 

This dissertation explores the physical mechanism of radiative temperature-derived 

urban heat island in the current and future climate with a focus on the natural and 

anthropogenic contributions. 

 

Chapter 1 provides an overview of the motivation of urban studies, previous research 

work on urban climate and UHI, understandings of urban land surface models, and 

the major research questions and methods of this dissertation.  

 

Chapter 2 to 4 present in detail the research work conducted along the path of my 

doctoral dissertation, following the three steps described in Chapter 1. Specifically, 

Chapter 2 describes the work on validation of surface solar radiation of data 

assimilation systems. We also proposed a post-reanalysis algorithm to correct the 

overestimation of surface solar radiation by reanalysis systems. Chapter 3 presents 

relative contributions of biophysical processes to UHI and what process primarily 

determines the large-scale spatial variation of UHI. Chapter 4 shows how UHI and 

urban land-atmosphere interactions will change with climate change in the future.  

 

Chapter 5, the last chapter, summarizes the major results and concluding remarks of 

this dissertation and provides some possible directions for future research. 
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Chapter 2 Reanalysis surface solar radiation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Published as Zhao, L., X. H. Lee, and S. D. Liu (2013), Correcting surface solar radiation of 
two data assimilation systems against FLUXNET observations in North America, Journal of 
Geophysical Research-Atmospheres, 118(17), 9552-9564, doi:Doi 10.1002/Jgrd.50697. 
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Summary 

Solar radiation at the Earth’s surface is an important driver of meteorological and 

ecological processes. The objective of this study is to evaluate the accuracy of the 

reanalysis solar radiation produced by NARR (North American Regional Reanalysis) 

and MERRA (Modern-Era Retrospective Analysis for Research and Applications) 

against the FLUXNET measurements in North America. We found that both 

assimilation systems systematically overestimated the surface solar radiation flux on 

the monthly and annual scale, with an average bias error of +37.2 W m-2 for NARR 

and of +20.2 W m-2 for MERRA. The bias errors were larger under cloudy skies than 

under clear skies. A post-reanalysis algorithm consisting of empirical relationships 

between model bias, a clearness index, and site elevation was proposed to correct the 

model errors. Results show that the algorithm can remove the systematic bias errors 

for both FLUXNET calibration sites (sites used to establish the algorithm) and 

independent validation sites. After correction, the average annual mean bias errors 

were reduced to +1.3 W m-2 for NARR and +2.7 W m-2 for MERRA. Applying the 

correction algorithm to the global domain of MERRA brought the global mean 

surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the 

constraint of the energy balance, other radiation and energy balance terms at the 

Earth’s surface, estimated from independent global data products, also support the 

need for a downward adjustment of the MERRA surface solar radiation. 
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2.1 Background 

Solar energy at the earth’s surface (S) is an important driver of various interactions 

between the land and the atmosphere. To improve our understanding of how 

meteorological processes distribute energy in the climate system, an accurate 

assessment of this variable is required. Because this variable is not among the 

measurements made at standard surface weather stations, models of various 

complexities are used to estimate its spatiotemporal distributions. Atmospheric 

reanalysis is one such class of models. In reanalysis model systems, solar radiation at 

the surface is calculated with radiative transfer models (RTMs). The reanalysis 

modeled products are	
  superior	
  to	
  discrete	
  surface	
  observations	
  because	
  of	
  large	
  

and	
  continuous	
  spatial	
  and	
  temporal	
  coverages.	
  These	
  features	
  are	
  especially	
  

attractive	
  for	
  people	
  interested	
  in	
  climate	
  and	
  ecological	
  patterns	
  on	
  the	
  regional	
  

and	
  global	
  scale.	
  	
  	
  	
  	
  	
  

 

Implementation of RTMs can be divided into two categories: stand-alone mode and 

application embedded in global climate models (GCMs) or reanalysis systems. The 

stand-alone models provide accurate single column calculations, while the 

applications in GCMs and reanalyses are suited for regional and global scales with 

minimal loss of accuracy. Previous efforts have taken advantages of both types of the 

RTMs to produce the radiation fluxes at the top of atmosphere (TOA), within the 

atmosphere and at the surface [Hatzianastassiou et al., 2005; Kiehl and Trenberth, 

1997; Rossow and Zhang, 1995; Zhang et al., 1995; Zhang et al., 2004]. Of interest 
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here is the discrepancy in the estimate of the global mean S. According to the ISCCP-

FD (fluxes using the International Satellite Cloud Climatology Project–D input data), 

the global mean S value is 188.5 Wm-2 for the period of 2000 to 2004 [Trenberth et 

al., 2009]. Using the same cloud climatology in the ISCCP-D series but a different 

RTM and ancillary datasets [Zhang et al., 2004],  Hatzianastassiou et al. [2005] 

estimated a mean value of 171.6 Wm-2. These two estimates differ by 17 Wm-2 or 

9.8%, indicating uncertainties in the various RTMs or input datasets used.  

 

Validation of reanalysis model products against surface observations is an active area 

of research. This is because reanalysis represents only the best “guess” of various 

atmospheric and hydrological variables through a combination of model predictions 

and a variety of observations, the latter of which serve to constrain the model 

calculations. One source of error is the spatial and temporal mismatch between the 

model analytical framework and the observational datasets. In the case of radiative 

fluxes, neither cloud observations nor surface radiation measurements are directly 

assimilated in the model system. (MERRA assimilates clouds indirectly by adjusting 

moisture over the oceans.) Furthermore, as noted above, the RTMs imbedded in the 

modeling system have their own inherent uncertainties. 

 

Several investigators have compared the surface radiation variables produced by 

NARR and MERRA against field observations. Using the data obtained at a 

FLUXNET site in Oklahoma, USA, Kennedy et al. [2011] concluded that both 

MERRA and NARR have positive biases (NARR: 47 Wm-2; MERRA: 19 Wm-2) for 
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S and negative biases for the surface downward longwave radiation. They attributed 

the significant positive bias in NARR to a combination of too low cloud amounts in 

the model domain and too weak light extinction by aerosols and water vapor. 

Markovic et al. [2009] found similar positive biases (40 Wm-2) in the annual mean S 

for NARR at six sites in six states from west to east US and attributed them to a 

negative bias in cloud fraction. Walsh et al. [2009] evaluated surface radiative fluxes 

and cloud fraction from NARR and three other reanalyses against ground 

measurements at Barrow, Alaska in the Arctic, and found positive biases of +4 to +43 

W m-2 in monthly S and the associated negative biases of cloud fraction. Over the 

same region, Zib et al. [2012] found an annual mean high bias of 3.9 Wm-2 for 

MERRA at two BSRN (Baseline Surface Radiation Network) sites.	
  They also related 

the bias errors to biases in the modeled cloud fraction although the radiation biases 

still exist for some time periods despite that the observed cloud fraction is correctly 

reproduced by the model. In a recent evaluation study involving six reanalysis 

products at nine field sites on the Tibetan Plateau, A Wang and Zeng [2012] reported 

an overestimation of up to 40 W m-2 for S in MERRA. According to their study, the 

bias errors appear to be related to latitude. 

 

The few investigations conducted over large spatial scales have confirmed the 

tendency for reanalysis models to overestimate the surface solar radiation. Utilizing 

hourly observations at 33 FLUXNET sites in the US and Canada, Decker et al. [2012] 

evaluated a number of surface micrometeorological and flux variables produced by 

the NCEP/NCAR, CFSR, ERA-40, ERA-Interim, GLDAS and MERRA reanalysis 
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systems, concluding that  all of them overestimate S by varying amounts of 10 to 50 

Wm-2 with ERA-Interim having the best accuracy. In another large-scale evaluation 

study, Wild et al. [1998] compared  surface solar energy of the reanalysis product 

ECMWF (European Center for Medium Range Weather Forecasts) against the 

monthly mean radiation observations at 720 GEBA (Global Energy Balance Archive) 

sites distributed worldwide. In terms of annual means, an underestimation at low 

latitudes in the Northern Hemisphere and an overestimation in the rest of the world 

were found in the study. But overall, the reanalysis bias errors are substantially 

smaller than in GCMs estimates [Wild et al., 1995].  

 

The published studies show that the annual mean bias errors of reanalyzed S are in the 

range of +5 to +60 W m-2. These positive bias errors have undesirable consequences 

for atmospheric and ecological applications. First, these bias errors are 5-30% of the 

observed net all-wave surface radiation balance at mid-latitude forests [Lee et al., 

2011; Rotenberg and Yakir, 2010]. Use of the reanalyzed surface solar radiation to 

drive land surface model calculations will result in extra energy going to the 

atmosphere via sensible and latent heat fluxes assuming other radiation terms remain 

unchanged. An excess of net radiation at the surface, for example, could cause 

excessive surface evaporation especially under moist climate [Betts et al., 1996]. 

Under the assumption that surface evaportransporation is balanced by precipitation, 

this would lead to excessive precipitation in climate models. In reanalysis systems 

excessive surface evaportransporation calculated by the model may not be balanced 

by precipitation assimilated from observations, thus forcing the model to drift to a dry 
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soil state [Viterbo and Courtier, 1995]. Second, the reanalysis S is used to predict 

surface ozone formation [Hickman et al., 2010; Leung and Gustafson, 2005; Mickley 

et al., 2004; Nolte et al., 2008; Weaver et al., 2009]. The study by Nolte et al. [2008] 

suggests that a high bias error of 20 W m-2 in S can cause an increase of surface ozone 

concentration by about 3-5 ppb in eastern Texas and along much of the east coast of 

the US. Third, because solar radiation is the primary driver of plant photosynthesis, 

bias errors in S are problematic for ecological models. Finally, the reanalysis radiation 

data is used to assess the global energy budget of the climate system [Bosilovich et 

al., 2011; Stephens et al., 2012a; Stephens et al., 2012b; Wild, 2009]. The reported 

bias errors in S are comparable in magnitude to the global mean surface sensible heat 

flux [Trenberth et al., 2009], emphasizing the need for a quantitative correction 

algorithm. 

 

The first objective of this study is to evaluate the two reanalysis S products, NARR 

and MERRA, against the FLUXNET observations in North America. Our strategy is 

to perform the evaluation at a large number of FLUXNET sites across different 

climate regimes, over a wide range of elevations, and at multiple time scales of 

months to multiple years. Simultaneous	
  evaluation	
  of	
  two	
  reanalysis	
  products	
  

may	
  help	
  us	
  to	
  uncover	
  model	
  errors	
  related	
  to	
  the	
  data	
  sources	
  and	
  the	
  

approach	
  taken	
  by	
  the	
  models.	
  FLUXNET	
  is a global network of eddy flux towers 

which maintain continuous measurements of surface meteorological variables and 

land-atmosphere fluxes [Baldocchi et al., 2001]. Because our analysis is conducted 

with monthly averages, it is essential that the sites have long records to produce large 
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enough numbers of gap-free months for rigorous comparison. Many FLUXNET sites 

satisfy this criterion (Table 2.1). In addition, long time series allow us to examine the 

capability of the reanalyses to capture the interannual variations in S.  	
  

 

Our second objective is to develop an algorithm for reducing the systematic errors. A 

computationally efficient post-reanalysis correction algorithm is desired by the end 

users engaged in the applications discussed above. The routine was applied to the 

MERRA data to obtain a sense of its bias in the global mean S estimate. Although the 

algorithm is restricted to MERRA and NARR, the insights gained may be useful for 

developing correction algorithms for other reanalysis products. 

 

As in Decker et al. [2012] and Wild et al. [1998], we validated the reanalyzed S 

products against a large number of observational sites. We expanded the work of Wild 

et al. [1998] by focusing not only on annual mean S but also on its seasonal and 

interannual variations. Instead of using hourly data as in Decker et al. [2012], we 

conducted the comparison using monthly means which have smaller random errors 

than the hourly data, allowing better isolation of systematic errors.  
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Table 2.1  Annual mean surface incoming solar radiation fluxes at and ancillary 

information on the calibration and validation sites. 

Site	
  
Code	
   Site	
  Name	
  

Stat
e	
  

/Pro
v	
  

Lat	
   Long	
  
Elev	
  
(m)	
  

Yeas	
  
Inclu
ded	
  

Annual	
  
Means	
  

Annual	
  Mean	
  
Bias	
  

Reference	
  
Observed	
  
(Wm-­‐2)	
  

NARR	
  
(Wm-­‐

2)	
  

MER
RA	
  

(Wm-­‐

2)	
  

Calibration	
  

CA-­‐
Obs	
  

Old	
  Black	
  Spruce	
   SK	
   53.99	
   -­‐
105.12	
  

629	
   10	
   134.6	
   29.2	
   18.6	
   [Jarvis	
  et	
  
al.,	
  1997]	
  

CA-­‐
Ojp	
   Old	
  Jack	
  Pine	
   SK	
   53.92	
   -­‐

104.69	
   579	
   10	
   133.3	
   30.8	
   19.9	
  
[Baldocchi	
  
et	
  al.,	
  
1997]	
  

CA-­‐
Oas	
   Old	
  Aspen	
   SK	
   53.63	
   -­‐

106.20	
   601	
   10	
   136.4	
   29.6	
   19.5	
   [Blanken	
  et	
  
al.,	
  1997]	
  

CA-­‐
Ca1	
  

BC	
  Douglas-­‐fir	
  1949	
   BC	
   49.87	
   -­‐
125.33	
  

320	
   12	
   127.2	
   34.6	
   21.0	
  
[Humphrey
s	
  et	
  al.,	
  
2003]	
  

US-­‐
UMB	
  

UMBS	
   MI	
   45.56	
   -­‐84.71	
   234	
   8	
   150.8	
   39.3	
   22.5	
   [Schmid	
  et	
  
al.,	
  2003]	
  

CA-­‐
Cbo	
   Borden	
   ON	
   44.20	
   -­‐79.93	
   217	
   14	
   149.2	
   39.8	
   26.0	
   [Lee	
  et	
  al.,	
  

1999]	
  
US-­‐
NR1	
  

Niwot	
  Ridge	
   CO	
   40.03	
   -­‐
105.55	
  

3050	
   5	
   188.0	
   59.8	
   37.0	
   [Monson	
  et	
  
al.,	
  2002]	
  

US-­‐
MMS	
  

Morgan	
  Monroe	
  
State	
  Forest	
   IN	
   39.32	
   -­‐86.41	
   275	
   9	
   167.6	
   41.0	
   22.7	
  

[Schmid	
  et	
  
al.,	
  2000]	
  

US-­‐
Ton	
   Tonzi	
  Ranch	
   CA	
   38.43	
   -­‐

120.97	
   177	
   7	
   218.8	
   23.6	
   6.0	
   [Ma	
  et	
  al.,	
  
2007]	
  

US-­‐
Var	
  

Vaira	
  Ranch	
   CA	
   38.41	
   -­‐
120.95	
  

129	
   8	
   213.1	
   26.9	
   9.0	
   [Ma	
  et	
  al.,	
  
2007]	
  

US-­‐
WBW	
   Walker	
  Branch	
   TN	
   35.96	
   -­‐84.29	
   343	
   10	
   174.3	
   35.6	
   22.8	
  

[Wilson	
  
and	
  

Meyers,	
  
2001]	
  

US-­‐
Aud	
  

Audubon	
  Research	
  
Ranch	
   AZ	
   31.59	
  

-­‐
110.51	
   1469	
   6	
   237.2	
   35.0	
   11.1	
  

[Krishnan	
  
et	
  al.,	
  
2012]	
  

US_S
P2	
   Mize	
   FL	
   29.76	
   -­‐82.24	
   43	
   7	
   184.2	
   41.3	
   18.9	
  

[Gholz	
  and	
  
Clark,	
  
2002]	
  

US-­‐
SP3	
  

Donaldson	
   FL	
   29.75	
   -­‐82.16	
   36	
   7	
   182.1	
   43.1	
   21.1	
  
[Gholz	
  and	
  

Clark,	
  
2002]	
  

Validation	
  

CA-­‐
Qfo	
  

Quebec	
  Mature	
  
Boreal	
  Forest	
  

QC	
   49.69	
   -­‐74.34	
   390	
   1	
   127.9	
   30.9	
   24.7	
  
[Bergeron	
  
et	
  al.,	
  
2007]	
  

CA-­‐
Ca3	
   BC	
  Douglas-­‐fir	
  1988	
   BC	
   49.53	
  

-­‐
124.90	
   120	
   1	
   133.5	
   35.5	
   17.5	
  

[Humphrey
s	
  et	
  al.,	
  
2006]	
  

US-­‐
Ho1	
  

Howland	
  Forest	
  
Main	
   ME	
   45.20	
   -­‐68.74	
   60	
   2	
   150.7	
   37.7	
   28.5	
  

[D	
  Y	
  
Hollinger	
  
et	
  al.,	
  
1999]	
  

US-­‐
Bkg	
   Brookings	
   SD	
   44.35	
   -­‐96.84	
   510	
   4	
   175.3	
   35.4	
   12.4	
  

[Gilmanov	
  
et	
  al.,	
  
2005]	
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US-­‐
Bo1	
   Bondville	
   IL	
   40.01	
   -­‐88.29	
   219	
   7	
   168.7	
   39.6	
   23.7	
  

[S	
  E	
  
Hollinger	
  
et	
  al.,	
  
2005]	
  

US-­‐Slt	
  
Silas	
  Little	
  

Experimental	
  
Forest	
  

NJ	
   39.91	
   -­‐74.60	
   30	
   4	
   159.5	
   48.5	
   27.6	
   [Clark	
  et	
  
al.,	
  2010]	
  

US-­‐
MOz	
   Missouri	
  Ozark	
   MO	
   38.74	
   -­‐92.20	
   219	
   4	
   180.0	
   39.4	
   16.4	
  

[Gu	
  et	
  al.,	
  
2006]	
  

US-­‐
Dk2	
  

Duke	
  Forest	
  
Hardwoods	
   NC	
   35.97	
   -­‐79.10	
   168	
   5	
   183.4	
   35.7	
   15.3	
   [Oren	
  et	
  

al.,	
  2006]	
  

US-­‐
NC2	
  

North	
  Carolina	
  
Loblolly	
  Pine	
   NC	
   35.80	
   -­‐76.67	
   12	
   4	
   170.3	
   40.3	
   27.2	
  

[Noormets	
  
et	
  al.,	
  
2010]	
  

US-­‐
Fmf	
  

Flagstaff	
  Managed	
  
Forest	
  

AZ	
   35.14	
   -­‐
111.73	
  

2160	
   3	
   230.2	
   36.1	
   13.4	
   [Dore	
  et	
  
al.,	
  2008]	
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2.2 Materials 

2.2.1 Surface observations 

The Ameriflux (level 2) and FLUXNET-CANADA 

(http://public.ornl.gov/ameriflux/index.html; http://fluxnet.ccrp.ec.gc.ca/e_about.htm) 

are two regional networks of FLUXNET, consisting of eddy-covariance sites in North 

America, Central America, and South America. In this study, we selected 24 sites, 

spanning a large geographic range of the US and Canada (Figure 2.1). Of these, 14 

sites have long measurement records and were used as calibration sites (sites used to 

develop the correction algorithm). The other 10 sites were used as validation sites 

(sites used to independently validate the corrected S). These sites all measured the 

four components of the surface radiation balance and had high (>90%) data coverage. 

All the sites in this study used a pyranometer to measure S, but the sensor type varies. 

The uncertainty of measured S in Ameriflux is ±3.55 W m-2 according to a cross-site 

comparison with a roving Ameriflux standard pyranometer [Schmidt et al., 2012]. 

 

BSRN [Ohmura et al., 1998], established in 1992, is a global network of continuous 

measurements of radiative fluxes at the Earth’s surface. It has 56 stations, covering a 

latitudinal range from 80oN to 90oS. BSRN monitors the global solar irradiance 

primarily by a combination of diffuse sky irradiance measured by a shaded 

pyranometer and direct solar irradiance measured by an absolute cavity radiometer, 

with a target accuracy of 5 W m-2 [Ohmura et al., 1998].  In this study we selected 42 

BSRN sites for further validation of the correction algorithm outside of North 

America (Figure 2.2 and Table 2.2); at these sites, measurements are complete for at 
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least one year. In addition to the BSRN sites, we also include on the validation list the 

data from the published literature in which the observed annual mean S is reported. 

 

 

Figure 2.1 Map of the selected Ameriflux and FLUXNET CANADA sites. Circles 

denote the calibration sites; and triangles denote the validation sites. 
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Figure 2.2 Map of the validation sites from BSRN and the published literature 
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Table 2.2 Validation sites from BSRN and the published literature. 

Site label Area Latitude Longitude Elevation
(m) Year Mean 

(W m-2) Reference 

ALE Lincoln Sea 82.49 -62.42 127 2005-2007 103.7   

ASP 
Macdonnell Ranges, 
Northern Territory, 

Australia 
-23.80 133.89 547 2002-2009 260.7   

BER Bermuda 32.27 -64.67 8 2000-2008 191.3   

BRB 
Brasilia City, 

Distrito Federal, 
Brazil 

-15.60 -47.71 1023 2010-2011 231.0   

CAB The Netherlands 51.97 4.93 0 2006-2011 123.0   
CAM United Kingdom 50.22 -5.32 88 2001-2007 128.7   
CAR France 44.08 5.06 100 2000-2010 181.2   

CNR Spain, Sarriguren, 
Navarra 42.82 -1.60 471 2009-2011 168.0   

CLH North Atlantic 
Ocean 36.91 -75.71 37 2000-2009 184.3   

COC Cocos (Keeling) 
Islands -12.19 96.84 5.8 2006-2009 235.0   

DOM Antarctica -75.10 123.38 3233 2006-2009 157.0   
DAR Australia -12.43 130.89 30 2004-2009 238.7   
DWN Australia -12.42 130.89 32 2009-2010 225.5   
DAA South Africa -30.67 23.99 1287 2002-2003 237.0   
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EUR 
Ellesmere Island, 
Canadian Arctic 

Archipelago 
79.99 -85.94 85 2008-2011 102.5   

FLO South Atlantic 
Ocean -27.53 -48.52 11 2000-2004 179.6   

FUA Japan 33.58 130.38 3 2011 152.0   

GVN Dronning Maud 
Land, Antarctica -70.65 -8.25 42 2000-2010 127.2   

ILO Nigeria 8.53 4.57 350 2000-2004 190.8   
ISH Japan 24.34 124.16 6 2011 168.0   

KWA North Pacific Ocean 8.72 167.73 10 2001-2007 228.9   

LAU New Zealand -45.05 169.69 350 2001-2008 163.5   
LER United Kingdom 60.13 -1.18 84 2002-2006 92.8   
LIN Germany 52.21 14.12 125 2000-2004 122.4   

MNM Minami-Torishima 24.29 153.98 7 2011 218.0   

MAN Papua New Guinea -2.06 147.43 6 2000-2008 210.8   

NAU Nauru -0.52 166.92 7 2005-2007 245.7   

NYA Ny-Ålesund, 
Spitsbergen 78.93 11.93 11 2000-2010 78.2   

PAL France 48.71 2.21 156 2006 134.0   
PAY Switzerland 46.82 6.94 491 2000-2008 144.4   
PTR Brazil -9.07 -40.32 387 2009 219.0   
REG Canada 50.21 -104.71 578 2000-2007 160.3   
SAP Japan 43.06 141.33 17 2011 140.0   
SBO Israel 30.91 34.78 500 2005-2009 240.4   
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SOV Saudi Arabia 24.91 46.41 650 2002 265.0   
SPO Antarctica -89.98 -24.80 2800 2000-2009 129.0   
SYO Cosmonaut Sea -69.01 39.59 18 2000-2005 127.2   
SMS Brazil -29.44 -53.82 489 2009-2011 197.7   
TAM Algeria 22.78 5.51 1385 2002-2010 265.2   
TAT Japan 36.05 140.13 25 2005 161.0   
TOR Estonia 58.25 26.46 70 2000-2010 111.4   
XIA China 39.75 116.96 32 2006-2009 161.3   

Tibet China 31.90 91.70 4620 2003 246.1 Wang and Zeng 
[2012] 

Yatir Israel 31.35 35.05 650 2000-2005 238.0 Rotenberg and Yakir 
[2010] 

Tapajos 
SP Brazil -3.01 -54.58 100 June2000-

May2001 180.0 da Rocha et al. 
[2004] 

Forest 
Rondonia Brazil -10.08 -61.93 145 Sep1999-

Sep2000 206.0 von Randow et al. 
[2004] 

Pasture 
FNS Brazil -10.75 -62.37 293 Sep1999-

Sep2000 202.8 von Randow et al. 
[2004] 

Lake 
Taihu China 31.40 120.22 7 2011 154.7 Deng et al. [2013] 

GEBA 
Stockholm  Switzerland 59.30 17.95 55 2000 114.0 Wild [2009] 

Mount Pui Thailand 18.80 98.90 1263.1 1998 167.0 Tanaka et al. [2003] 
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2.2.2 NARR 

The North American Regional Reanalysis (NARR), carried out by the National 

Center for Environmental Prediction (NCEP), is a long-term, near real-time, high-

resolution, high-frequency, atmospheric and land surface reanalysis product 

[Mesinger et al., 2006]. This regional reanalysis provides a much-improved dataset of 

land hydrology and land-atmosphere interactions compared to the earlier global 

reanalysis dataset NCEP-NCAR. NARR covers the period from 1979 up to the 

present, with the data archived at 3-hourly, daily, and monthly time scales. The grid 

resolution is approximately 32 km. Documented in the NARR outputs are 

meteorological, hydrological and ecological variables. Here we used the surface 

incoming shortwave radiation flux data. 

 

The radiative fluxes at the surface are computed through the radiation scheme 

embedded in the NCEP Eta model, which has a shortwave [Lacis and Hansen, 1974] 

and a longwave package [Fels and Schwarzkopf, 1975]. The shortwave absorption 

scheme considers the amount and type of cloud, the humidity, the solar elevation 

angle and the vertical distribution of ozone within the stratosphere. The cloud 

information is obtained from the cloud microphysics in the Eta model [Ferrier et al., 

2002]. 

 

2.2.3 MERRA 

MERRA [Rienecker et al., 2011], maintained by NASA Global Modeling and 

Assimilation Office, is the second generation reanalysis dataset, which uses the 
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Goddard Earth Observing System Data Assimilation System - Version 5 (GEOS-5). 

GEOS-5 includes GEOS-5 atmospheric circulation model and the gridpoint statistical 

interpolation. MERRA implements a procedure called incremental analysis updates 

[Bloom et al., 1996] to slowly converge modeled calculations toward the 

observations. A key feature of this global reanalysis is that it takes advantage of a 

variety of recent satellite observations to improve the estimates of earth’s energy and 

water cycles. Same with NARR, MERRA spans the satellite era, from 1979 to the 

present. Most of the MERRA outputs are archived hourly at its native spatial grid 

resolution of 2/3 degree × 1/2 degree. 

 

The radiative transfer model developed at the Goddard Climate and Radiation Branch 

at NASA is utilized in MERRA to generate the radiative fluxes at the top of the 

atmosphere (TOA) and at the surface. The shortwave radiation scheme, documented 

in Chou and Suarez [1999], resolves the absorption by water vapor, ozone, oxygen, 

carbon dioxide and aerosols. The longwave radiation scheme, documented in Chou et 

al. [2001], calculates the absorption by water vapor, trace gases, clouds and aerosols. 

A prognostic cloud scheme embedded in MERRA assumes that clouds are maximum-

randomly overlapped.  

 

2.3 Method 

2.3.1 Spatial interpolation 

In order to account for the spatial mismatch between modeled grids and surface 

observations, the reanalysis data were horizontally interpolated, using a bilinear 



	
   41	
  

interpolation technique, to the measurement site from the center of the four 

surrounding grid cells with a weighting factor that is inversely proportional to the 

distance. The same technique was used by Wild et al. [1998] in their validation of the 

ECMWF reanalysis. The interpolation was done at the 3-hourly intervals for NARR 

and at hourly intervals for MERRA, and daily mean values were computed with the 

interpolated data. The interpolation should eliminate errors arising from latitudinal 

mismatch especially for measurement sites located near the edge of a grid cell. The 

slight mismatch between the interpolated model grid elevation and that of the 

measurement site (500 m at most) has negligible consequences and is ignored.  

 

2.3.2 Monthly average 

The space-time sampling mismatch between model products and surface 

measurements can cause large uncertainties in validation studies [Rossow and Zhang, 

1995; Zhang et al., 2004]. This is because surface measurements are for single points 

in space, whereas modeled fluxes are for the area of a grid cell. At hourly time steps, 

large random errors are unavoidable due to variations of cloud within the grid cell. 

Using longtime temporal averages to compare the cell mean and the point 

measurement should reduce the errors caused by the problem [Zhang et al., 2004]. 

For this reason, we conducted the comparison using monthly averages. 

 

The original observational data are half-hourly. We excluded outliers (daytime 

negative values) in the original data. In order to avoid introducing new uncertainties, 

we did not perform any gap filling for missing data or daytime outliers. Instead, we 
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excluded the day if one or more half-hourly observation was missing during the 

daytime and excluded the whole month if five or more days were missing in that 

month. (Missing nighttime values were substituted by zero.) To ensure proper 

comparison, we also excluded the same days to calculate the reanalyzed monthly 

means. 

 

2.3.3 Dependence of bias error on clearness index 

We utilized the concept of clearness index (kt) to develop an algorithm for correcting 

the reanalysis bias errors. This index is defined as the ratio of global solar radiation 

received at the surface to the extraterrestrial radiation at the TOA (Se) [Gu et al., 

1999], 

,
e

t S
Sk =                                                              (2.1) 

where Se is given by 

      [ ] ,sin)365/360cos(033.01 βdsce tSS +=                              (2.2) 

In Equation 2.2, scS is the solar constant, dt is the day of the year, and β denotes the 

solar elevation angle. The hourly values of Se given by Equation 2.2 were converted 

into monthly means using the same method as for the reanalyzed S.  The clearness 

index was used as an independent variable to relate with the model errors in this 

study.  

 

A bias ratio (bm) was used to measure the relative bias error, as: 

,
m

m
m S

SS
b

−
=                                                              (2.3) 
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where mS  denotes the modeled solar radiation at the surface, and S denotes the 

observed solar radiation. Using the bias ratio rather than the actual bias non-

dimensionizes the error, and helps to eliminate the possible latitudinal dependence of 

the bias [Wild et al., 1998].  

 

The reanalysis systems have much better performance under clear-sky conditions than 

under cloudy sky conditions. Wild et al. [1998] has demonstrated the accurate 

performance of the radiation scheme in ECMWF under clear-sky conditions. 

Similarly, MERRA is also able to calculate the clear-sky surface global radiation flux 

reasonably well [Kennedy et al., 2011]. Under cloudy skies, both NARR and MERRA 

underestimate the cloud fraction [Kennedy et al., 2011; Zib et al., 2012], contributing 

to overestimation of S. Here we used the following simple linear equation to include 

the dependence of bias on sky conditions 

bkab tm +⋅=                                                      (2.4) 

where a  and b  are  empirical coefficients. 

 

2.3.4 Dependence of bias error on elevation 

Site elevation can also introduce model bias errors [Frauenfeld et al., 2005; A Wang 

and Zeng, 2012; P Zhao et al., 2007], for two reasons. First, if elevation at the model 

grid does not match that at the observational point, the sunlight optical path is not 

correctly resolved by the model, leading to underestimation or overestimation of the 

sunlight extinction. However, among all the observation sites chosen for this study, 

the elevation mismatch is at most 0.5 km, and according to the observed elevation 
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gradient of S in the eastern US [Richardson et al., 2004], the resulting bias in S 

should be no greater than 2%. Second, our analysis suggests that either the lack of 

fully resolved orographic clouds or the bias in higher cloud liquid water path (LWP) 

result in increased bias errors at higher elevation sites. Empirically, this second 

elevation effect is captured here by modifying the coefficient b in Equation 2.4 to be a 

function of the site elevation ze (< 5 km)  

21
2

0 czczcb ee ++= ,                                                      (2.5) 

where 0c , 1c and 2c are  empirical coefficients.  

 

To determine the regression coefficients in Equations 2.4 and 2.5, we first applied the 

geometric mean regression to Equation 2.4, using monthly data from all the 

calibration sites, to obtain the slope coefficient a separately for NARR and MERRA. 

Next we applied Equation 2.4 to the monthly data at individual sites with the fixed 

slope coefficient to determine the intercept coefficient b. Finally, the coefficients c0, 

c1 and c2 in Equation 2.5 were found by regression of the site b value against its 

elevation. To avoid abnormal behavior of the quadratic curve beyond the valid data 

range, we set a threshold of 5 km in site elevation, beyond which b remains constant. 

 

2.3.5 Post-reanalysis correction 

The above set of equations cannot be used directly to correct the model bias errors 

because the clearness index is an unknown variable without actual measurement of 

the surface solar radiation. However, a solution for the corrected monthly mean S can 

be derived from Equations 2.3 and 2.4, as  
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,)1(

em

em

SaS
SSbS

+

−
=                                                         (2.6) 

where a is fixed for each of the two reanalysis products and b depends on the 

surface elevation of the model grid according to Equation 2.5. To avoid negative 

bias ratio, we set the thresholds for kt as kt > 0.75 for NARR and kt > 0.70 for 

MERRA, or,  

75.0)1(
>

+
−

em

m

SaS
Sb     for NARR                                                                                (2.7)

 

70.0)1(
>

+
−

em

m

SaS
Sb     for MERRA                                                                            (2.8) 

 No correction was conducted above these thresholds.	
  

 

2.4 Results and Discussion 

2.4.1 Relations of bias errors to clearness index and elevation 

Sky condition is the primary factor that drives the variations of model bias error for 

both NARR and MERRA. Applying the regression analysis to 1253 monthly 

observations pooled together from the 14 calibration sites, we obtained the following 

empirical relationships:  

65.089.0 +⋅−= tm kb  for NARR                                        (2.9) 

55.082.0 +⋅−= tm kb  for MERRA                                    (2.10) 

The slopes of these regression equations are large, reflecting large sensitivity to the 

clearness index. The sensitivity to the clearness index is slightly larger for NARR 

than for MERRA. The intercepts of the regression equations represent the model bias 

ratios under the theoretical limit of tk = 0. In this limit, NARR has larger bias errors 
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than MERRA. These intercepts also give the upper limits of the model bias ratios. 

According to the regression 2R values, the clearness index explains 62% of the 

variations of the bias errors in NARR and 36% in MERRA. MERRA has a smaller 

2R value than NARR, in part due to the few outliers (Figure 2.3b) which will be 

discussed in section 2.4.3; excluding these outliers, the R2 would improve to 0.52. 

 

The negative relationships shown in Figure 2.3 confirm that the model bias errors are 

larger under cloudy skies than under clear skies. This indicates that the NARR and 

MERRA model systems have poor capability of describing cloudiness. When 

7.0≥tk , both  reanalysis systems have bias ratios near zero. When 2.0≤tk , NARR 

and MERRA have bias ratios of  around 0.5 and 0.4, respectively. Like other 

reanalysis systems, NARR and MERRA parameterize cloud with cloud microphysics 

packages instead of directly assimilating cloud observations. Our results suggest that 

these parameterizations have a tendency to underestimate cloud amount. Similarly, 

Walsh et al. [2009], Kennedy et al. [2011], and Zib et al. [2012] found that a negative 

bias in the modeled cloud fraction is associated with a positive bias in the reanalyzed 

surface solar radiation. Wu et al. [2012] found  significant underestimation of cloud 

fraction (20-40%) in three reanalyses over the Southern Great Plains, USA and this 

underestimation is related to underestimation of other cloud properties such as cloud 

albedo and surface relative shortwave cloud forcing.  
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Figure 2.3 Relationship between monthly mean clearness index, S / Se, and monthly 

mean model bias ratio, (Sm - S) / Sm, for the calibration sites. a: NARR, regression 

equation 65.089.0 +×−= xy (R2 = 0.62, n = 1253) b: MERRA, regression equation 

55.082.0 +×−= xy (R2 = 0.36, n =1253). 
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Underestimation of the cloud liquid water path (LWP) is another possible source of 

error. The amount of cloud liquid water influences the reflection and absorption of 

shortwave radiation. Zib et al. [2012] found that the radiation biases still exist for 

some time periods despite that the observed cloud fraction is correctly reproduced by 

the model. Cullather and Bosilovich [2012] reported that MERRA cloud LWP is 

about 45% of that of microwave retrievals in the Arctic and this bias is consistent 

with biases in the surface net radiation. M Zhao and Wang [2010] evaluated ECMWF 

cloud LWP against long-term observations at Barrow, Alaska in the Arctic during 

1999-2007 and found that the model on average underestimates LWP by 30 g m-2. 

Outside of the Arctic, Duynkerke and Teixeira [2001] found that the ECMWF 

reanalysis ERA-15 strongly underestimates marine stratocumulus cloud cover and 

LWP off the coast of California. Similar results were found in ERA-40 by Stevens et 

al. [2007].    

 

Figure 2.4 illustrates that the model bias errors tend to be larger at higher elevation 

sites. The regression equations are  

63.0070.0010.0 2 ++−= ee zzb   for NARR                                 (2.11) 

51.0065.00087.0 2 ++−= ee zzb  for MERRA                             (2.12) 

In this Figure we have added the available high elevation FLUXNET validation and 

BSRN sites (elevation greater than 1 km). Even though the regressions were 

established with only two high elevation FLUXNET calibration sites, they captured 

the overall elevation dependence reasonably well. The choice of the quadratic fitting 
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function is somewhat arbitrary. Use of a linear fit function would yield similar results 

(Table 2.3). 

 

 

Figure 2.4 Relationship between the intercept coefficient of Equation 2.4 and the site 

elevation for the calibration sites. The slope coefficient of Equation 2.4 is fixed at -

0.89 for NARR and -0.82 for MERRA. Circles: NARR; Triangles: MERRA; Star: 

available high elevation sites from BSRN and validation sites. 
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Table 2.3 Statistics of monthly S correction by quadratic fit (Equation 2.11 and 2.12) 

and linear fit (NARR: 63.0044.0 += ezb ; MERRA: 50.0057.0 += ezb ) 

 

Site	
  
Code	
  

NARR	
   MERRA	
  
Quadratic	
  fit	
   Linear	
  fit	
   Quadratic	
  fit	
   Linear	
  fit	
  

ME	
  
(Wm-­‐2)	
  

RMSE	
  
(Wm-­‐2)	
  

ME	
  
(Wm-­‐

2)	
  

RMSE	
  
(Wm-­‐2)	
  

ME	
  
(Wm-­‐

2)	
  

RMSE	
  
(Wm-­‐2)	
  

ME	
  
(Wm-­‐

2)	
  

RMSE	
  
(Wm-­‐2)	
  

Calibration	
  
CA-­‐Obs	
   -­‐11.3	
   21.6	
   -­‐7.7	
   19.5	
   1.1	
   16.4	
   3.5	
   17.6	
  
CA-­‐Ojp	
   -­‐7.8	
   20.5	
   -­‐4.5	
   19.4	
   3.1	
   16.8	
   5.4	
   18.3	
  
CA-­‐Oas	
   -­‐7.7	
   19.5	
   -­‐4.4	
   18.1	
   5.6	
   17.3	
   7.8	
   18.9	
  
CA-­‐Ca1	
   -­‐9.7	
   19.2	
   -­‐8.3	
   18.5	
   -­‐0.3	
   22.2	
   1.5	
   23.2	
  
US-­‐
UMB	
   6.4	
   17.8	
   7.5	
   18.5	
   7.2	
   13.5	
   9.2	
   14.4	
  

CA-­‐Cbo	
   4.9	
   19.3	
   5.8	
   19.7	
   10.4	
   17.1	
   12.9	
   19.0	
  
US_NR1	
   6.4	
   22.0	
   -­‐9.7	
   19.1	
   6.6	
   23.0	
   -­‐20.7	
   25.3	
  
US-­‐
MMS	
   1.5	
   15.6	
   3.1	
   15.9	
   2.5	
   16.3	
   5.2	
   16.8	
  

US-­‐Ton	
   9.0	
   22.2	
   9.3	
   22.2	
   -­‐1.1	
   9.9	
   -­‐0.4	
   9.7	
  
US-­‐Var	
   14.9	
   24.9	
   14.9	
   24.9	
   3.4	
   10.4	
   4.1	
   10.5	
  
US-­‐
WBW	
   -­‐11.9	
   22.9	
   -­‐9.7	
   21.7	
   1.4	
   20.3	
   4.1	
   20.3	
  

US-­‐Aud	
   7.2	
   24.8	
   14.3	
   26.6	
   -­‐3.2	
   24.4	
   -­‐3.5	
   24.5	
  
US_SP2	
   -­‐0.6	
   32.4	
   -­‐1.4	
   32.5	
   -­‐2.7	
   34.5	
   -­‐0.8	
   34.0	
  
US-­‐SP3	
   6.6	
   35.5	
   5.7	
   35.4	
   3.3	
   36.6	
   5.1	
   36.5	
  
Average	
   0.6	
   22.7	
   1.1	
   22.3	
   2.7	
   19.9	
   2.4	
   20.6	
  

Validation	
  
CA-­‐Qfo	
   -­‐17.9	
   21.3	
   -­‐16.1	
   19.5	
   1.5	
   18.0	
   3.7	
   19.6	
  
CA-­‐Ca3	
   1.6	
   25.6	
   1.7	
   25.6	
   2.0	
   31.5	
   3.3	
   31.6	
  
US-­‐Ho1	
   -­‐0.6	
   21.2	
   -­‐1.2	
   21.1	
   12.9	
   19.3	
   15.1	
   21.5	
  
US-­‐Bkg	
   8.0	
   24.2	
   11.6	
   26.0	
   -­‐3.0	
   16.5	
   -­‐0.3	
   16.5	
  
US-­‐Bo1	
   4.5	
   19.3	
   5.5	
   19.6	
   8.3	
   23.5	
   10.9	
   24.5	
  
US-­‐Slt	
   19.6	
   31.4	
   18.6	
   30.6	
   12.7	
   18.8	
   14.8	
   20.5	
  
US-­‐MOz	
   12.0	
   23.5	
   13.1	
   24.3	
   1.5	
   14.0	
   4.2	
   14.3	
  
US-­‐Dk2	
   -­‐0.6	
   20.5	
   0.0	
   20.6	
   -­‐2.4	
   21.5	
   0.2	
   21.2	
  
US-­‐NC2	
   2.6	
   19.8	
   1.4	
   19.6	
   12.6	
   24.8	
   14.5	
   25.3	
  
US-­‐Fmf	
   0.8	
   23.0	
   4.4	
   24.0	
   -­‐4.2	
   16.6	
   -­‐12.6	
   20.0	
  
Average	
   3.0	
   23.0	
   3.9	
   23.1	
   4.2	
   20.5	
   5.4	
   21.5	
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The elevation dependent-intercept brings much improvement to the algorithm for 

high elevation sites, regardless of the form of the fitting function for the intercept 

parameter. For example, at the Niwot Ridge site in Colorado (site ID, US-NR1; 

elevation, 3050 m), the monthly mean NARR and MERRA were biased high by 62.6 

and 39.4 Wm-2, respectively (Table 2.4). Using the intercepts in Equations 2.9 and 

2.10 (without accounting for site-specific elevation) reduced the bias errors slightly to 

61.5 and 35.7 Wm-2, respectively. Using the elevation-dependent intercept parameters 

(Equations 2.11 and 2.12) the bias errors were reduced to 6.4 and 6.6 Wm-2 (Table 

2.4). At a site in Tibet (elevation 4620 m, Table 2.2; [A Wang and Zeng, 2012]), the 

monthly MERRA was biased high by 19.8 Wm-2. Using the correction with the 

intercept given in Equation 10 and with the elevation dependent intercept (Equation 

2.12) reduced the bias error to 18.5 and 2.0 Wm-2, respectively.  With the elevation-

dependent intercept, significant improvements were also seen at Audubon Research 

Ranch, Arizona (elevation 1469 m) and Flagstaff Managed Forest, Arizona (elevation 

2160 m; Table 2.1) and at five BRNS and the literature sites with elevation >1000 m 

(Table 2.2).  
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Table 2.4  Statistics of monthly mean surface incoming solar radiation fluxes in NARR and MERRA before and after correction. 

	
  	
   NARR	
   Corrected	
  NARR	
   MERRA	
   Corrected	
  MERRA	
  

Site	
  
Code	
  

ME	
  	
  	
  	
  
(Wm-­‐

2)	
  

RMSE	
  
(Wm-­‐2)	
   R2	
   ME	
  	
  	
  	
  

(Wm-­‐2)	
  
RMSE	
  
(Wm-­‐2)	
   R2	
   ME	
  	
  	
  	
  

(Wm-­‐2)	
  
RMSE	
  
(Wm-­‐2)	
   R2	
   ME	
  	
  	
  	
  

(Wm-­‐2)	
  
RMSE	
  
(Wm-­‐2)	
   R2	
  

Calibration	
  
CA-­‐Obs	
   31.3	
   35.1	
   0.98	
   -­‐11.3	
   21.6	
   0.95	
   20.9	
   28.3	
   0.98	
   1.1	
   16.4	
   0.97	
  
CA-­‐Ojp	
   32.7	
   37.4	
   0.98	
   -­‐7.8	
   20.5	
   0.94	
   22.0	
   29.1	
   0.98	
   3.1	
   16.8	
   0.98	
  
CA-­‐Oas	
   32.9	
   37.1	
   0.98	
   -­‐7.7	
   19.5	
   0.95	
   23.8	
   30.6	
   0.98	
   5.6	
   17.3	
   0.98	
  
CA-­‐Ca1	
   33.6	
   37.5	
   0.98	
   -­‐9.7	
   19.2	
   0.95	
   20.5	
   29.9	
   0.98	
   -­‐0.3	
   22.2	
   0.97	
  
US-­‐
UMB	
   35.6	
   37.6	
   0.99	
   6.4	
   17.8	
   0.98	
   20.9	
   22.2	
   0.99	
   7.2	
   13.5	
   0.98	
  

CA-­‐Cbo	
   43.4	
   46.1	
   0.98	
   4.9	
   19.3	
   0.95	
   28.5	
   31.3	
   0.98	
   10.4	
   17.1	
   0.97	
  
US_NR1	
   62.6	
   70.8	
   0.96	
   6.4	
   22.0	
   0.96	
   39.4	
   46.5	
   0.97	
   6.6	
   23.0	
   0.96	
  
US-­‐
MMS	
   40.9	
   42.8	
   0.98	
   1.5	
   15.6	
   0.95	
   22.4	
   25.7	
   0.97	
   2.5	
   16.3	
   0.95	
  

US-­‐Ton	
   22.1	
   23.9	
   0.99	
   9.0	
   22.2	
   0.97	
   4.7	
   10.8	
   0.99	
   -­‐1.1	
   9.9	
   0.99	
  
US-­‐Var	
   26.5	
   28.2	
   0.99	
   14.9	
   24.9	
   0.98	
   8.6	
   12.7	
   0.99	
   3.4	
   10.4	
   0.99	
  
US-­‐
WBW	
   36.3	
   38.1	
   0.97	
   -­‐11.9	
   22.9	
   0.90	
   23.5	
   26.9	
   0.96	
   1.4	
   20.3	
   0.90	
  

US-­‐Aud	
   34.9	
   39.8	
   0.94	
   7.2	
   24.8	
   0.94	
   11.1	
   15.2	
   0.98	
   -­‐3.2	
   24.4	
   0.89	
  
US_SP2	
   37.8	
   40.9	
   0.90	
   -­‐0.6	
   32.4	
   0.63	
   16.7	
   25.8	
   0.84	
   -­‐2.7	
   34.5	
   0.58	
  
US-­‐SP3	
   43.4	
   47.3	
   0.86	
   6.6	
   35.5	
   0.59	
   22.0	
   31.5	
   0.78	
   3.3	
   36.6	
   0.53	
  
Average	
   36.7	
   40.2	
   0.96	
   0.6	
   22.7	
   0.90	
   20.4	
   26.2	
   0.96	
   2.7	
   19.9	
   0.90	
  

Validation	
  
CA-­‐Qfo	
   30.9	
   35.9	
   0.99	
   -­‐17.9	
   21.3	
   0.98	
   24.7	
   34.4	
   0.98	
   1.5	
   18.0	
   0.98	
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CA-­‐Ca3	
   35.5	
   35.4	
   0.98	
   1.6	
   25.6	
   0.94	
   17.5	
   24.5	
   0.96	
   2.0	
   31.5	
   0.93	
  
US-­‐Ho1	
   37.7	
   43.8	
   0.97	
   -­‐0.6	
   21.2	
   0.94	
   28.5	
   32.5	
   0.98	
   12.9	
   19.3	
   0.99	
  
US-­‐Bkg	
   35.4	
   40.7	
   0.97	
   8.0	
   24.2	
   0.94	
   12.4	
   20.1	
   0.97	
   -­‐3.0	
   16.5	
   0.96	
  
US-­‐Bo1	
   39.6	
   43.2	
   0.95	
   4.5	
   19.3	
   0.93	
   23.7	
   30.8	
   0.93	
   8.3	
   23.5	
   0.91	
  
US-­‐Slt	
   48.5	
   53.0	
   0.98	
   19.6	
   31.4	
   0.96	
   27.6	
   30.5	
   0.98	
   12.7	
   18.8	
   0.97	
  
US-­‐MOz	
   39.4	
   41.8	
   0.98	
   12.0	
   23.5	
   0.96	
   16.4	
   19.9	
   0.98	
   1.5	
   14.0	
   0.96	
  
US-­‐Dk2	
   35.6	
   38.0	
   0.97	
   -­‐0.6	
   20.5	
   0.90	
   15.4	
   19.8	
   0.95	
   -­‐2.4	
   21.5	
   0.88	
  
US-­‐NC2	
   40.0	
   43.4	
   0.98	
   2.6	
   19.8	
   0.91	
   27.0	
   31.0	
   0.96	
   12.6	
   24.8	
   0.89	
  
US-­‐Fmf	
   38.5	
   48.9	
   0.87	
   0.8	
   23.0	
   0.96	
   14.7	
   24.0	
   0.94	
   -­‐4.2	
   16.6	
   0.98	
  
Average	
   38.1	
   42.4	
   0.96	
   3.0	
   23.0	
   0.94	
   20.8	
   26.7	
   0.96	
   4.2	
   20.5	
   0.95	
  
	
  

	
  

	
  

	
  

	
  

	
  

 

 



	
   54	
  

2.4.2 Annual and monthly bias errors before and after correction 

Equation 2.6 was used to obtain the corrected monthly mean S at both the calibration 

and validation sites. In this post-reanalysis correction, the coefficient a was -0.89 for 

NARR and -0.82 for MERRA, the coefficient b was given by Equations 2.11 and 2.12 

as a function of site elevation. The algorithm reduced the annual mean bias errors 

from +37.2 Wm-2 (range 23.6 to 59.8 W m-2) and +20.2 Wm-2 (range 6.0 to 37 W m-

2), which are much larger than the measurement uncertainties of 3-5 Wm-2, to +1.3 

Wm-2 (range -17.9 to 19.6 W m-2) and +2.7 Wm-2 (range -3.9 to 16.6 W m-2) for 

NARR and MERRA, respectively (Table 1). Figure 2.5a shows the overestimation of 

surface solar radiation on the annual scale in NARR and MERRA. After correction 

the annual mean values are evenly distributed along the 1:1 line as illustrated in 

Figure 2.5b. 
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Figure 2.5 Comparison of annual mean surface incoming shortwave radiation flux at 

the calibration sites. a: before correction; b: after correction. Circles: NARR; 

Triangles: MERRA. Each data point represents an annual mean value for a site year. 
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The monthly statistics for the individual sites are listed in Tables 2.4. Because the 

data samples are slightly different, the monthly mean bias errors are not identical to 

the annual bias errors shown in Table 2.1. Averaging among all the sites, the 

correction algorithm reduced the magnitudes of both the monthly mean bias errors 

and RMSEs (root mean-square errors) for the two reanalyses. The values of R2 were 

slightly reduced after the correction. For the calibration and the validation sites, the 

average R2 were both 0.96 before correction for NARR and MERRA; after the 

correction, the average R2 for the calibration sites were reduced to 0.90 for both 

NARR and MERRA, and for the validation sites reduced to 0.94 and 0.95, 

respectively. The larger reduction of the average R2 for the calibration sites was 

caused by overcorrection at the two Florida sites, Mize (US-SP3) and Donaldson 

(US-SP2) near Gainesville. The calibration and validation sites behave very similarly 

in terms of the magnitudes of monthly mean bias errors, RMSE and R2 before and 

after the correction, demonstrating robustness of the correction coefficients in 

Equations 2.6, 2.11 and 2.12. 

 

2.4.3 Temporal and spatial variations in bias errors 

The time series plots in Figure 2.6 illustrate that the corrected S tracked the observed 

interannual variabilities reasonably well at the six selected calibration sites (Old 

Aspen, Saskatchewan; Borden, Ontario; Morgan-Monroe State Forest, Indiana; 

Walker Branch, Tennessee; Donaldson, Florida; Vaira Ranch, California). These sites 

span a large latitudinal/longitudinal band, including both good (panels a, b, c) and one 

of the two worst sites (Donaldson, FL, panel e) in terms of the algorithm 
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performance. The monthly mean errors of the good sites were significantly reduced, 

with the correlation coefficients of monthly variability retained (Table 2.4), and the 

correlation coefficients of interannual variability were improved (Table 2.5). The two 

worst sites are Mize and Donaldson, both in Florida in the subtropical Mediterranean 

climate regime. Although the monthly mean error of Donaldson site was reduced, the 

correlation coefficients of monthly variability significantly decreased from 0.86 and 

0.78 to 0.59 and 0.53 for NARR and MERRA, respectively. 
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Figure 2.6 Annual mean surface incoming shortwave radiation flux at six selected 

sites. Open circles: NARR before correction; Black circles: NARR after correction; 

Open triangles: MERRA before correction; Black triangles: MERRA after correction; 

stars: observations. a: Old Aspen , Saskatchewan (site ID CA-Oas); b: Borden, 

Ontario (site ID CA-Cbo); c: Morgan-Monroe State Forest, Indiana (site ID US-

MMS); d: Walker Branch, Tennessee (site ID US-WBW); e: Donaldson, Florida (site 

ID US-SP3); f: Vaira Ranch, California (site ID US-Var). 
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Table 2.5 Correlation coefficients between the modeled and the observed annual 

mean radiation at the calibration sites. 

	
  	
  

	
  	
   R	
  

Site	
  Code	
   NARR	
   Corrected	
  
NARR	
   MERRA	
   Corrected	
  

MERRA	
  
CA-­‐Obs	
   0.85	
   0.98	
   0.74	
   0.82	
  
CA-­‐Ojp	
   0.65	
   0.52	
   0.61	
   0.67	
  
CA-­‐Oas	
   0.87	
   0.95	
   0.79	
   0.85	
  
CA-­‐Ca1	
   0.94	
   0.94	
   0.80	
   0.88	
  
US-­‐UMB	
   0.90	
   0.91	
   0.95	
   0.96	
  
CA-­‐Cbo	
   0.83	
   0.79	
   0.85	
   0.90	
  
US-­‐NR1	
   0.49	
   0.57	
   0.17	
   0.22	
  
US-­‐MMS	
   0.59	
   0.61	
   0.41	
   0.79	
  
US-­‐Ton	
   0.98	
   0.98	
   0.93	
   0.95	
  
US-­‐Var	
   0.86	
   1.00	
   0.83	
   0.97	
  
US-­‐WBW	
   0.90	
   0.84	
   0.94	
   0.96	
  
US-­‐Aud	
   0.24	
   0.25	
   0.31	
   0.22	
  
US_SP2	
   -­‐0.20	
   0.32	
   -­‐0.13	
   0.12	
  
US-­‐SP3	
   -­‐0.41	
   -­‐0.35	
   -­‐0.51	
   -­‐0.50	
  
Average	
   0.61	
   0.67	
   0.55	
   0.63	
  

 

 

Table 2.5 lists the correlation coefficient of the observations with the modeled annual 

mean S before and after the correction for the 14 calibration sites. (The validation 

sites are not listed as they do not have sufficient records for the computation of the 

correlation coefficient.) The two reanalysis systems generally capture the interannual 

variations (linear correlation R > 0.6), again with the two Florida sites being notable 

exceptions where both systems have negative correlation coefficients with the 

observations and the correction algorithm was unable to rectify this problem. 
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Averaged across all the calibration sites, the correction algorithm improved the 

correlation coefficient slightly by 0.06 for NARR, and 0.08 for MERRA.  

 

Figure 2.7 illustrates the seasonal pattern of the bias errors before and after correction 

for the 6 selected sites as in Figure 2.6. Before correction, the seasonal cycles of bias 

were site-dependent. Old Aspen, Saskatchewan and Borden, Ontario had maximum 

bias errors in June (Figure 2.7a-b). Morgan Monroe State Forest, Indiana, Walker 

Branch, Tennessee, and Donaldson, Florida had peak bias errors in April (Figure 

2.7c-e). Vaira Ranch, California did not have much seasonal variation (Figure 2.7f). 

Generally the cold season bias was smaller than the warm season errors.  

 

After correction, the bias at the two northern sites (Old Aspen and Borden) had no 

obvious seasonal cycle. The algorithm overcorrected the modeled surface solar 

radiation in the summer at Donaldson (Figure 2.7e), and to a lesser degree at Morgan 

Monroe State Forest and Walker Branch (Figure 2.7c &d). At Donaldson, 

overcorrection caused negative monthly mean biases of up to 40 Wm-2 to both 

reanalyses. Similar magnitude of overcorrection was also found for Mize (site ID US-

SP2) which is 8 km away from Donaldson. On the annual time scale, the warm 

season negative bias was compensated by the cold season positive bias, resulting in, 

fortuitously, much reduced mean bias (Table 2.4). At Vaira Ranch, our correction 

procedure did not bring improvements to S from May to October (Figure 2.7f). 

During these months, the clearness index was 0.70 - 0.75, which are beyond the kt 

threshold of correction.   
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Figure 2.7 Same as Figure 2.6 except for monthly composite bias errors. 
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The difficulty encountered at Varia Ranch and Donaldson indicates that factors other 

than cloudiness and elevation also contribute to the model bias errors. Measurement 

errors, according to the cross-site comparison of the radiometers at these sites against 

an Amerflux roving standard, are too small to explain the anomalous results [Schmidt 

et al., 2012].  A possible explanation is incorrect description of aerosols at these 

locations in the models, noting that even the original NARR and MERRA data fail to 

capture the interannual variations of S. Despite this limitation, our simple correction 

algorithm has resulted overall reduction of the RMSEs for the sites we examined 

(from 41.1 to 22.8 W m-2 for NARR and from 26.4 to 20.1 W m-2 for MERRA; Table 

2.4).   

 

The outliers in the left corner of Figure 2.3b came from the Douglas Fir 1949 site on 

Vancouver Island, British Columbia. The original MERRA data had very low and 

even slightly negative bias ratios. These points all came from the winter months with 

low monthly mean S (< 30 W m-2; lowest among the sites we examined). Our 

algorithm caused slight overcorrection during these months. But the performance on 

the annual scale was not adversely affected, as evidenced by the large reduction of the 

mean bias error from 21.0 to -1.8 W m-2 (Table 2.1). This wintertime overcorrection 

was also found in Douglas Fir 1988 site, which is about 50 km away, and for the 

same reason, the algorithm was able to bring improvement, reducing the annual mean 

bias error from 17.5 to 2.0 W m-2 (Table 2.1).  

 

 



	
   63	
  

2.4.4 Comparison between the two reanalysis products 

The error structures of the two products share several similar features. The bias ratios 

of both reanalyses show dependence on clearness index and surface elevation 

(Figures 2.3 and 2.4). In addition, the two products show similar seasonal variations 

in the bias errors (Figure 2.7). The reasonable correlations with the observed annual 

mean S suggest the similar interannual variations in the bias errors for the two 

reanalyses (Figure 2.6, Table 2.5).  

 

There are also a number of differences. In general, MERRA shows better agreement 

with observations than NARR (Table 2.1, Figure 2.5a). The mean errors of NARR 

and MERRA for all the sites were +37.3 and +20.5 Wm-2, respectively, and their 

RMSEs were 41.1 and 26.4 Wm-2, respectively (Table 2.4). The significantly positive 

bias in NARR likely resulted from a combination of underestimation of cloud and a 

lack of aerosols and water vapor in the atmospheric column [Kennedy et al., 2011]. 

After correction, the average bias errors of NARR and MERRA for all the sites were 

brought down to 1.6 and 3.3 Wm-2, respectively and the RMSEs were 22.8 and 20.1 

Wm-2, respectively.  

 

Both uncorrected NARR and MERRA capture well the observed seasonal (R2 > 0.8 

for most sites) and interannual variations (R > 0.6 for most sites). MERRA showed 

no superiority compared to NARR in terms of capturing the observed seasonal and 

interannual variability. The correction procedure did not improve the capability of 
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capturing seasonal variability and improved slightly interannual variability for the 

two reanalysis products (Table 2.5).  

 

2.4.5 Implication for the global radiation and energy balances 

Our results indicate that MERRA overestimates the global mean S. In order to apply 

our algorithm on the global domain, examining the algorithm’s performance outside 

of North America is required in addition to the performance evaluation done for the 

North American sites discussed above. Towards this goal, we selected 42 BSRN sites 

which have at least one year continuous S measurement and 8 sites from the literature 

(Figure 2.2 and Table 2.2). The algorithm was able to adjust the modeled annual 

mean S towards the 1:1 line for the sites both in and outside North America (Figure 

2.8). Even though the algorithm was developed from the calibration sites on land, it 

improved the results at the BSRN ocean sites: the average bias error was 13.9 W m-2 

before correction and -3.0 W m-2 after correction for these sites (Figure 2.9). Aerosol 

loading varies between land and ocean sites. The improvement at the ocean sites 

suggests that the clearness index as an independent variable has some capacity to 

implicitly account for the aerosol impact. For the sites outside North America, the 

mean bias error was 14.5 W m-2 before correction and -2.1 W m-2 after correction. 

Excluding the four obvious outliers, the mean bias error was 16.7 W m-2 and 1.3 W 

m-2 before and after correction, respectively. The four outlier sites are in the tropics 

(site IDs Llorin, Kwajalein, Momote and Tapajos). At these sites the original 

MERRA S matched reasonable well with the observations, and the correction 
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algorithm caused a low bias. If all the 12 tropical sites are considered (Table 2.2), the 

MERRA bias is 15.4 W m-2 before correction and 0.7 W m-2 after correction.   

 

 

 

Figure 2.8 Comparison between observed and modeled annual mean surface 

incoming shortwave radiation flux before and after correction at the calibration, the 

validation, the BSRN and the sites from the literature. Each data point represents 

measurement at one site. 
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Figure 2.9 Same with Figure 2.8  Blue star: ocean sites before correction; red star: 

ocean sites after correction. 
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The reasonably good performance of the algorithm both in North America and 

elsewhere provides the basis of using it on the global domain. According to the 

default MERRA data, the global annual mean S is 192.8 Wm-2 for the year 2000 -

2004, the same years as used by Trenberth et al. [2009]. After correction, it was 

reduced to 175.5 Wm-2. The default MERRA overestimates the global S by 17.3 Wm-

2.   

 

Obviously, if S is adjusted in the light of this study, equivalent adjustments on other 

terms of the radiation and energy balances are required for energy closure. In Table 

2.6, we summarize the revised global surface radiation and energy balance and 

compare it with the estimates of Trenberth et al. [2009]. Briefly, in Trenberth et al. 

[2009], the global mean S is an improved estimate from that of Kiehl and Trenberth 

[1997] using ISCCP-FD and CERES and with an improved calculation of the 

absorption by atmospheric aerosol and water vapor. Their S value is very close to the 

CERES satellite estimate (186.7 Wm-2) for the period 2000-2010 [Kato et al., 2013]. 

The global mean albedo is derived from field and satellite observations. The outgoing 

longwave radiation is derived from satellite observations of emissivity and the surface 

temperature. The sensible heat flux is the average of three reanalysis products 

spanning the range of 15.7 and 18.9 W m-2. The latent heat flux is estimated under the 

assumption that precipitation is equal to global evaporation; this number is uncertain 

because considerable uncertainty exists in precipitation measurements, especially 

over the oceans. The incoming longwave radiation is computed as a residue of the 

surface energy balance. 
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Table 2.6 Comparison of two estimates of the global radiation and energy balances. 

Units are W m-2. S: incoming solar radiation; Su: reflected solar radiation; L↓: 

incoming longwave radiation; L↑: outgoing longwave radiation; H: surface sensible 

heat flux; LE: surface latent heat flux 

	
  	
   S	
   Su	
   L↓	
   L↑	
   H	
   LE	
  
Trenberth	
  et	
  al.	
  

(2009)	
   184	
   23	
   333	
   396	
   17	
   80	
  

This	
  study	
   175	
   22	
   344	
   396	
   20	
   76	
  
	
  

In our revised depiction, the energy balance terms were estimated from independent 

sources independent of the energy balance constraint. The good energy balance 

closure (within 5 Wm-2) serves as an independent confirmation that the MERRA 

global S value was indeed biased high. Our assessment was based on the following 

considerations: 

• We estimated the reflected shortwave radiation by adopting the same albedo 

of Trenberth et al. [2009]. 

• The incoming longwave radiation L↓ was provided by Stephens et al. [2012b] 

according to the synthesis products. These authors found a systematic 

underestimation of reanalyzed L↓ and attributed the bias also to the 

underestimation of modeled cloudiness. Globally this underestimation is on 

the order of 10 Wm-2. 

• As for the outgoing longwave radiation, we adopted Trenberth et al. [2009]’s 

number because it is derived from observations, not from reanalysis products.  

• The revised latent heat flux was an area-weighted average of a recent estimate 

of the terrestrial [Mu et al., 2011] and the ocean latent heat flux [Yu et al., 
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2008]. Mu et al. [2011] provides a global land surface evaportransporation 

dataset over 2000-2006 based on MODIS and a global meteorological 

reanalysis, which has been validated at 46 Ameriflux tower sites. The ocean 

dataset provides multi-decadal estimates of air-sea fluxes over global oceans 

using bulk transfer formulation. (Here we used the ocean flux data from 2000 

to 2004, the same period as our S estimate.) The global mean latent heat flux 

is insensitive to uncertainties in the land evaporation estimates and is largely 

determined by the ocean value. Replacing Mu et al.’s [2011] land value by 

Jung et al.’s [2011] value (39 W m-2) changes the global latent heat flux 

slightly, to 76.5 W m-2. Similarly, there is a relatively large spread among a 

variety of the land latent heat flux products examined by Jimenez et al. [2011]; 

When combined with the ocean flux of Yu et al. [2008],  the resulting global 

mean value lies in a very narrow range of 75.2 – 77.0 W m-2. 

• Similarly, the revised estimate of sensible heat flux was a combination of the 

land [Jung et al., 2011] and the ocean flux [Yu et al., 2008]. Jung et al. [2011] 

applied a machine learning technique - model tree ensembles to upscale 

FLUXNET observations to the global scale from 1982 to 2008. We adopted 

their long-term mean value of the terrestrial sensible heat flux. 

The downward adjustment in S is mostly compensated by an upward adjustment of 

the incoming longwave radiation by a similar amount. A recent study by [Stephens et 

al., 2012a] suggests that much of the extra incoming longwave radiation (as 

compared to Trenberth’s assessment) to the surface is offset by more latent heat flux 

from the surface. Our study suggests an alternative hypothesis that the compensation 



	
   70	
  

exists between S and L↓without the need to adjust the other energy balance terms 

significantly. 

 

2.5 Conclusion 

In this study, the surface incoming shortwave radiation S modeled by two data 

assimilation systems, NARR and MERRA, was evaluated against observations from 

24 FLUXNET sites in the US and Canada at multiple time scales. NARR and 

MERRA systematically overestimated the surface solar radiation flux on both 

monthly and annual scales. Their bias errors were larger under cloudy skies than 

under clear skies and increased with increasing elevation. The two products show 

similar capability to reproduce the seasonal and interannual variations of S, and 

similar seasonal variations in the bias errors. MERRA generally shows better 

agreement than NARR with the flux tower measurements.  

 

A simple post-reanalysis correction algorithm was proposed on the basis of the 

dependence of the bias  on sky clearness and surface elevation. Results show that the 

correction algorithm worked well on the annual scale for the FLUXNET sites in 

North America; it reduced the annual mean bias errors from +37.2 Wm-2 and +20.2 

Wm-2 to +1.3 Wm-2 and +2.7 Wm-2 for NARR and MERRA, respectively. The 

algorithm slightly improved the modeled interannual variability for the two products. 

The algorithm showed good performance as well for sites outside North America 

except for 4 tropical sites.  
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There are a few limitations to this algorithm. The algorithm overcorrected S in Florida 

in the summer and the annual mean S at 4 sites near the equator. But this simple 

algorithm was able to reduce the overall mean bias errors and the RMSEs of the sites 

considered.  

 

The global mean S was 192.8 W m-2 for 2000 to 2004 according to MERRA. The 

correction algorithm reduced it by 9.0% to 175.5 W m-2. This corrected S is 12.5 and 

8.8 W m-2 lower than that given by Stephens et al. [2012a] and Trenberth et al. 

[2009]. It appears that various modeled products likely have similar problems in 

underestimating the atmospheric absorption of shortwave radiation. 
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Chapter 3 Urban heat islands in current climate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Published as Zhao, L., X. Lee, R. B. Smith, and K. Oleson (2014), Strong contributions of 
local background climate to urban heat islands, Nature, 511(7508), 216-219, 
doi:10.1038/nature13462. 
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Summary 

Urban heat island (UHI), the ubiquitous phenomenon of higher surface temperature in 

urban buildup land than that of its surrounding, represents one of the most significant 

human-induced changes to the earth’s surface climate [Kalnay and Cai, 2003; Zhou et 

al., 2004]. Even though they are localized hot spots in the landscape, these islands 

have profound impact on the lives of urban residents who comprise more than 50% of 

the world’s population [Grimm et al., 2008]. A barrier to UHI mitigation is the lack of 

quantitative attribution of various factors contributing to the intensity of UHI (ΔT, 

temperature of urban center minus rural temperature) [Voogt and Oke, 2003]. A 

common perception is that reduction in evaporative cooling in urban land is the 

dominant driver of ΔT [Taha, 1997]. Here we perform a factor separation analysis of 

surface radiative temperature with a climate model to show that, for cities across 

North America, variations in daytime ΔT are largely explained by variations in 

convection efficiency (associated with aerodynamic resistance) between urban and 

nonurban land. If urban areas are aerodynamically smoother than surrounding rural 

areas, urban heat dissipation is relatively less efficient and urban warming occurs 

(and vice versa). This convection effect depends on local background climate, 

increasing daytime ΔT by 3.0 ± 0.3 K (mean and standard error) in humid climates 

but decreasing ΔT by 1.5 ± 0.2 K in dry climates. In the humid eastern United States, 

there is evidence of higher ΔT in drier years. These relationships imply that UHIs will 

exacerbate heatwave stress on human health in wet climates where high temperature 

effects are already compounded by high air humidity [Fischer and Schar, 2010; Smith 

et al., 2013] and in drier years when positive temperature anomalies may be 
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reinforced by a precipitation-temperature feedback [Schar et al., 2004]. Results also 

support albedo management as a viable means of reducing ΔT on large scales [Akbari 

et al., 2009; Georgescu et al., 2013].      

 

3.1 Background 

The conversion of natural to urban land causes several notable perturbations to the 

surface energy balance. Reduction of evaporative cooling is generally thought to be 

the dominant factor contributing to UΗΙ. Anthropogenic heat release is an added 

energy input to the energy balance and should increase the surface temperature. 

Energy input via radiation will also increase if albedo is reduced in the process of 

land conversion. Buildings and other artificial materials can store more radiation 

energy in the daytime than natural vegetation and soil; release of the stored energy at 

night contributes to nighttime UHI. Finally, energy redistribution through convection 

between the surface and the atmospheric boundary layer can either increase or reduce 

ΔT, depending on whether the efficiency of convection in urban land is suppressed or 

enhanced in reference to the adjacent nonurban land. Although these concepts have 

been known for some time[Arnfield, 2003; S Grimmond, 2007; Oke, 1982], a 

quantitative understanding of their contributions to UHI across different climate 

regimes still remains elusive[Voogt and Oke, 2003]. 

 

A number of recent modeling studies on UHIs are primarily on the scale of a few 

days [Li and Bou-Zeid, 2013; Li et al., 2014; Oleson et al., 2008b]. Few studies were 

conducted to model the UHIs on the scale of climate. The UHI that we investigated in 
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this dissertation is in the context of climatology, rather than a synoptic event of a few 

days.  

 

From the previous chapter, we have learned that MERRA and NARR have systematic 

high bias in surface incoming solar radiation. It appears that various modeled 

products likely have similar problems in overestimating the surface incoming solar 

radiation. Therefore, the reanalysis data cannot be directly used to drive the land 

surface model before certain corrections. We chose to use a carefully revised 

reanalysis climatology based on surface observations [Qian et al., 2006] as the model 

forcing data. This dataset significantly reduced the high bias of the surface incoming 

solar radiation in the original reanalysis. In addition, it also corrected other variables 

that would be used to drive the land surface model including precipitation, air 

temperature, and surface specific humidity.  
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3.2 Results and discussion 

3.2.1 Geographic pattern over North America 

The climatic context can be understood by posing the following question in a thought 

experiment: if two cities are built identically in terms of morphological and 

anthropogenic aspects but in different climates, will they have the same ΔT? The 

answer depends on time of the day according to the MODIS satellite observations of 

the surface temperature. For 65 selected cities in North America, the annual mean 

midnight ΔT (surface temperature of urban core pixels minus that of rural pixels) is 

positively correlated with the logarithm of population (correlation coefficient r = 

0.54, confidence level p < 0.001; Figure 3.1d), but is invariant with climate, showing 

statistically insignificant correlation with precipitation (r = 0.05, p = 0.70; Figure 

3.2), solar radiation (r = 0.15, p > 0.20) and air temperature (r = 0.20, p > 0.10). On 

the other hand, the annual mean midday ΔT is strongly correlated with precipitation (r 

= 0.74, p < 0.001, Figure 3.1b) and has a weaker statistical dependence on population 

size than the nighttime ΔT (r = 0.27, p = 0.027; Figure 3.2). The nighttime ΔT shows 

little spatial coherence (Figure 3.1c), but the daytime ΔT has a discernible spatial 

pattern that follows precipitation gradients across the continent (Figure 3.1a). 

Twenty-four of the cities are located in the humid southeast United States, which 

coincides roughly with the Köppen-Geiger temperate climate zone (Figure 3.3a). 

Their daytime annual mean ΔT is on average 3.9 K and is 3.3 K higher than that of 

the 15 cities in the dry region (Figure 3.3e and 3.3d). For comparison, the nighttime 

ΔT differs by 0.1 K between the two groups (Figures 3.3f and 3.3g, p > 0.60). These 

results are in broad agreement with previous remote sensing studies on UHI across 
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biophysical and developmental gradients [Clinton and Gong, 2013; Imhoff et al., 

2010; Peng et al., 2012; Roth et al., 1989].     

 

 

Figure 3.1 Precipitation and population influences on MODIS-derived annual mean 

UHI intensity. a, map of daytime UHI. b, dependence of daytime UHI on 

precipitation (r = 0.74, p < 0.001). c, map of nighttime UHI. d, dependence of  

nighttime UHI on population (r = 0.54, p < 0.001). Red, green and blue symbols 

denote cities with annual mean precipitation less than 500 mm, between 500 and 1100 

mm and over 1100 mm, respectively. Lines in panels b and d are linear regression fit 

to the data. 
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Figure 3.2: Precipitation and population influences on MODIS-derived annual mean 

UHI intensity. a, Dependence of daytime UHI on population size (r = 0.27, p = 

0.027). b, Dependence of nighttime UHI on  precipitation (r = 0.05, p = 0.70). Red, 

green and blue symbols denote cities with annual mean precipitation less than 500 

mm, between 500 and 1100 mm and over 1100 mm, respectively. The solid line in 

panel a is the linear regression fit to the data. 
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Figure 3.3 Attribution of UHI intensity in three Köppen-Geiger climate zones. a, 

map of climate zones: white, mild temperate/mesothermal climate; grey, continental 

/microthermal climate; dark grey, dry climate. b, d and e, daytime values of MODIS 

and modeled ΔT and its component contributions. c, f and g, nighttime values. Green 

bars denote model-predicted ΔT and blue bars denote UHI intensity calculated as the 

sum of the component contributions. Error bars are 1 s. e. for each climate zone. 
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3.2.2 Contributions of biophysical processes 

At first glance, the relationship with precipitation (Figure 3.1b) seems consistent with 

the hypothesis that reduction in evaporative cooling in urban land is the main driver 

of daytime ΔT, as the denser vegetation in wet climate regions has higher evaporation 

rate than the vegetation in dry climates. However, our model-based intrinsic 

biophysical mechanism analysis does not support such interpretation. In the model 

domain, ΔT is a perturbation signal to the surface temperature caused by biophysical 

contrast between nonurban and urban land units in the same model gridcell [Oleson, 

2012]. This signal is further decomposed, using the method described in Lee et al. 

[2011], into contributions from changes in radiation balance, evaporation, convection 

efficiency and heat storage, and from anthropogenic heat addition (Figure 3.3). The 

credibility of the model is supported by the reasonable agreement of the modeled ΔT 

with the MODIS ΔT (r = 0.31, p < 0.02 for daytime and r = 0.30, p < 0.025 for 

nighttime) and by the successful depiction of a nighttime ΔT versus albedo relation 

(Figure 3.4). Furthermore, the model has reproduced the observed positive correlation 

between the daytime ΔT and precipitation (Figure 3.5a).  
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Figure 3.4: Albedo influence on annual mean nighttime UHI intensity. a, 

Dependence of nighttime MODIS-derived UHI on white-sky albedo difference (= 

urban albedo minus rural albedo; r = -0.60, p < 0.001). b, Dependence of nighttime 

modeled UHI on modeled albedo difference (r = -0.56, p < 0.001 excluding four 

outliers; r = -0.18, p = 0.16 with all data points). The four outliers in the upper right 

corner of panel b are coastal cities (Olympia, Washington; Seattle, Washington; 

Salem, Oregon; Vancouver, British Columbia) that have high biases of the modeled 

ΔT compared to the MODIS ΔT. Lines are linear regression fit to the data 
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Figure 3.5 Relationship between model-predicted daytime ΔT and precipitation 

among the cities.  a, Correlation of ΔT and the individual biophysical components 

with annual mean precipitation. Lines are linear regression fit to the corresponding 

data. b, ΔT – precipitation covariance explained by different biophysical factors. Note 

that the covariance explained by the anthropogenic heat term is negligibly small. 
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We find that it is the changes in convection efficiency associated with aerodynamic 

resistance change rather than in evapotranspiration that control the daytime ΔT-

precipitation spatial covariance among the cities (Figure 3.5). In the humid climate 

(the Köppen-Geiger temperate/mesothermal zone ), convection is less efficient at 

dissipating heat from urban land than from natural land, and the associated 

temperature increase is 3.0 ± 0.3 K, which dominates the overall ΔT (Figure 3.3e). At 

these locations, the nonurban land is in general densely vegetated, thanks to ample 

precipitation, and is aerodynamically rough. Quantitatively, this difference is 

manifested in a lower aerodynamic resistance to sensible heat diffusion in the 

nonurban (39 s m-1) than the urban land (62 s m-1). Measured with the scale of 

aerodynamic resistance, urbanization has reduced the convection efficiency by 58%.      

 

The opposite occurs in the dry climate zone where urban land is rougher than non-

urban land and has enhanced convection efficiency. The result is actually a cooling 

effect (Figure 3.3d). In this zone, the urban landscape has lower aerodynamic 

resistance (53 s m-1) than the adjacent nonurban land (66 s m-1) which is typically 

inhabited by vegetation of low stature such as shrubs, sagebrushes and grasses. On 

average, the urban land is about 20% more efficient in removing heat from the 

surface by convection than the nonurban land. The average cooling signal is -1.5 ± 

0.2 K. In a few of the cities, convection is much more efficient than in the 

surrounding natural land so that ΔT becomes negative (Figures 3.1a and 3.5a). It has 

been suggested that negative ΔT, a phenomenon known as “urban heat sink”, arises 
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from evaporative cooling of trees and lawns planted in the city [Clinton and Gong, 

2013; Imhoff et al., 2010; Peng et al., 2012]. Our explanation seems more logical, 

because the MODIS urban temperature comes from the urban core pixels with 

negligible amounts of vegetation cover (enhanced vegetation index < 0.18) and the 

urban land unit in the climate model is completely free of vegetation. An analogous 

situation exists in a semi-arid plantation forest where trees serve as efficient “heat 

convectors” leading to a lower surface temperature than in the adjacent smoother 

shrub land [Rotenberg and Yakir, 2010].    

 

At night, release of the stored heat is the dominant contributor to ΔT across all three 

climate zones (Figures 3.3c, 3.3f and 3.3g). The dependence on population size 

(Figure 3.1d), which is an indicator of the city’s horizontal dimension, can be 

understood in light of these results. At night, the released heat is trapped in a very 

shallow atmospheric boundary layer. As air moves across the urban airshed, it will 

accumulate more heat with increasing travel distance. Having a longer upwind fetch, 

the center of a larger city should experience stronger warming [Oke, 1982]. We note 

that the climate model cannot explicitly capture population dependence because 

population size is not a model parameter and the heat advection occurs at subgrid 

scales not resolved by its one-dimensional parameterization of land-atmosphere 

interactions.   
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3.2.3 Inter-annual variability of ΔT 

There is some evidence of precipitation control on interannual variability in the 

daytime ΔT for individual cities. For each city, we have calculated the linear 

regression slope of the annual daytime ΔT against the annual precipitation and refer 

to it as temporal sensitivity to precipitation. Both the MODIS and the model data 

show a negative dependence of the sensitivity on site mean precipitation (Figure 3.6b 

and 3.6d). Twenty-four cities have annual mean precipitation exceeding 1100 mm. 

According to the model, 100% of these cities, which are mostly distributed in eastern 

United States, have negative temporal sensitivity (Figure 3.6c), meaning higher ΔT in 

drier years. The mean temporal sensitivity of this group of cities is -0.0021 K/mm. 

The MODIS results are less consistent due to shorter data records, showing negative 

sensitivity for 42% of them (Figures 3.6a and 3.6b).  
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Figure 3.6. Temporal sensitivity of UHI intensity to precipitation. a and c, Map of the 

temporal sensitivities according to MODIS and the climate model, respectively. b and 

d, Dependence of  MODIS and model-predicted temporal sensitivity on annual mean 

precipitation, respectively. The outlier city in the MODIS panels is Whitehorse, 

Yukon. The four outlier cities in the model panels are Boise and Nampa in Idaho, 

Winnipeg in Manitoba and Calgary in Alberta. Lines in panels b and d are linear 

regression fit to the data. 
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In order to gain further insights into the interannual variability, we have compared the 

daytime ΔT-precipitation correlation for Billings in Montana (annual mean 

precipitation 353 mm) and Richmond in Virginia (1183 mm). We choose these two 

cities because they have nearly the same morphological and biophysical 

specifications (Table 3.1) and therefore are essentially identical in the model world. 

The sensitivity to precipitation is positive at Billings and negative at Richmond 

(Figure 3.7). In contrast to the spatial variations across the continent (Figure 3.5b), 

the ΔT interannual variability shown here is driven primarily by changes in surface 

evaporation (Figure 3.8).  
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Table 3.1: Urban parameters of a city pair in CLM 

City Richmond Billings 
State Virginia Montana 
Latitude (o) 37.53 45.79 
Longitude (o) -77.42 -108.54 
Canyon Height/Width 0.48 0.48 
Mean building height (m) 12 12 
Roof thickness (m) 0.15 0.15 
Wall thickness (m) 0.28 0.28 
Wind height in canyon (m) 6 6 
Roof fraction 0.55 0.50 
Pervious road fraction 0.66 0.64 
Emissivity (Impervious road) 0.91 0.91 
Emissivity (pervious road) 0.95 0.95 
Emissivity (roof) 0.65 0.65 
Emissivity (wall) 0.91 0.91 
Albedo (Impervious road) 0.13 0.13 
Albedo (pervious road) 0.08 0.08 
Albedo (roof) 0.30 0.30 
Albedo (wall) 0.34 0.34 
Roof thermal conductivity (W m-1 K-1) 0.84 0.84 
Wall thermal conductivity (W m-1 K-1) 1.06 1.06 
Impervious road thermal conductivity (W m-1 K-1) 1.67 1.67 
Layers of impervious road 2 2 
Roof heat capacity (MJ m-3 K-1) 0.76 0.76 
Wall heat capacity (MJ m-3 K-1) 0.81 0.81 
Impervious road heat capacity (MJ m-3 K-1) 2.06 2.06 
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Figure 3.7: Time series of MODIS and model-predicted daytime ΔT and annual 

precipitation. a, Billings, Montana. b, Richmond, Virginia. 
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Figure 3.8: Relationship between interannual variations in model-predicted daytime 

ΔT and precipitation. a, Correlation of ΔT and the individual biophysical components 

with annual precipitation at Billings, Montana. b, same as in panel a except for 

Richmond, Virginia. c, ΔT – precipitation temporal covariance explained by different 

biophysical factors at Billings, Montana. d, same as in panel c except for Richmond, 

Virginia. Lines are best linear regression fit to the data points. 
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Our results can be interpreted in the context of heatwave climatology. A measure of 

heatwave intensity is the degree of deviation, in multiples of standard deviation (σ, 

North America mean value ~0.6 K) of summertime temperature from the 

climatological mean [Hansen et al., 2012]. For example, the 2003 European 

heatwave8 is an event measured at 5σ. These statistical considerations are based on 

regional background climatology. Being an additional anomaly on this background 

condition, UHI will aggravate heat stress on human health. In southeast United States, 

where the heat stress is already amplified due to high air humidity [Smith et al., 

2013], the daytime ΔT is equivalent to 7σ (Figure 3.3e). The situation may be further 

worsened in drier years when the positive temperature anomaly is likely to increase 

owing to a precipitation – temperature feedback [Schar et al., 2004]. Empirical 

evidence exists for such synergistic effects [Li and Bou-Zeid, 2013]. Using the 

temporal sensitivity of -0.0021 K/mm, a 500 mm reduction in the annual precipitation 

corresponds to an increase in the daytime ΔT by 1.1 K or ~2σ. We caution that these 

numbers represent the upper bound of the UHI-added stress because UHI intensity at 

the screen-height [Gallo et al., 2002] (the height of air temperature observation at a 

standard weather station) and under all-sky conditions should be smaller than our ΔT 

which is for clear skies and for the surface. On the other hand, summertime ΔT is 

generally larger than annual ΔT [Arnfield, 2003; Clinton and Gong, 2013; Hung et 

al., 2006; Imhoff et al., 2010; Peng et al., 2012; Roth et al., 1989].      
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3.2.4 Implications for urban mitigation strategies 

The health impact of heatwaves is one factor that motivates the growing efforts to 

mitigate UHI. According to our results, a strategy that focuses on reducing 

anthropogenic heat would bring virtually no relief, but this might be because of the 

primitive anthropogenic heat scheme in the model [Oleson, 2012]. Managing the 

convection efficiency or heat storage of urban land does not seem viable, even though 

these are large contributors to ΔT, because it would require fundamental changes to 

the urban morphology such as a city-wide increase in building height. On the other 

hand, efforts to increase urban albedo have the promise of producing measurable 

results on a large scale. For the cities in southern United States, the reduction of net 

radiation loading amounts to a daytime cooling effect of 0.7 K (Figure 3.3e). In the 

model, this reduction is caused by the fact that these cities have an average albedo 

that is 0.06 higher than the surrounding natural land. This albedo difference is 

modest, considering that phasing in reflective roofs in Chicago [Mackey et al., 2012] 

has already increased the city-wide albedo by ~0.02 and that some cool-roof 

implementations [Georgescu et al., 2013] aim to increase the urban-rural albedo 

contrast by as much as 0.6. Albedo increases have little direct effect on the nighttime 

UHI (Figure 3.3g) but may have an indirect cooling benefit through the reduction in 

the daytime heat storage and therefore less heat release from storage at night [Oleson 

et al., 2008a; Peng et al., 2012; Rosenzweig et al., 2009]. The negative correlation 

between the nighttime ΔT and urban-rural albedo contrast [Peng et al., 2012] (Figure 

3.4) can be viewed as empirical evidence of this indirect benefit. 
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3.3 Conclusions 

This study investigated the contributions of biophysical processes to urban heat island 

(ΔT), defined as urban – rural difference in radiative surface temperature, across 

difference climate regimes. The analysis of MODIS land surface temperature (LST) 

over 65 selected cities in the North America shows that the annual-mean midday ΔT 

is strongly correlated with precipitation, and that the annual-mean midnight ΔT is 

positively correlated with the logarithm of population but statistically invariant with 

precipitation. This midday ΔT – precipitation correlation can be recognized as a 

geographic pattern. A 33-year simulation was conducted using CLM. We developed a 

ΔT attribution method, and applied the method to the modeled data to estimate the 

contribution of each biophysical process to ΔT. The modeled results show that, for 

cities across North America, this geographic variation in daytime ΔT is largely 

explained by changes in convection efficiency between urban and nonurban land. 

This convection effect depends on the local background climate, contributing 3.0 ± 

0.3 K (mean and standard error, s. e.) warming to daytime ΔT in cities in humid 

climate but causing 1.5 ± 0.2 K cooling in dry climate. At nighttime, the dominant 

contributor to ΔT is the release of the heat storage. The correlation between nighttime 

ΔT and population can be understood as the accumulative effect of the stored heat 

release as air moves across the urban land.  

 

The yearly ΔT data derived from both MODIS and CLM were analyzed to examine 

the interannual variability of ΔT. We found that in the humid eastern United States, 

the annual daytime ΔT is negatively correlated with the annual precipitation. This 
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indicates that there will be higher ΔT in drier years. This relationship implies that 

UHI will exacerbate heatwave stress on human health in wet climates where high 

temperature effects are already compounded by high air humidity and in drier years 

when positive temperature anomalies may be reinforced by a precipitation -

temperature feedback. 

 

The implications of this study on urban mitigation strategies were also introduced. 

Our results support the city albedo management as a viable means of reducing ΔT on 

large scales.  

 

3.4 Methods 

3.4.1 MODIS LST, precipitation, and population data 

MODIS-Aqua land surface temperature (LST) data obtained at 65 cities in the US and 

Canada were used in this analysis. This is an 8-day clear-sky composite dataset. The 

spatial resolution is 1 km.  The satellite overpass time is approximately 13:30 and 

01:30 local time, which are close to the times of daily maximum and minimum 

temperature, and therefore the measurement gives better representation of the diurnal 

range of the ΔT than that of the other MODIS satellite Terra. According to the 

product QC (quality control) flag, the data we used have an average LST error less 

than or equal to 2 K. While selecting urban-rural paired pixels, we avoided the rural 

pixels that have large elevation differences and large latitude differences from the 

urban core. Specifically, the upper thresholds for elevation difference and latitude 

difference are 100 m and 0.1 degrees. Nine urban pixels (3×3) were selected in the 
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city center, paired with 1-3 patches of 9-49 pixels each (3×3 to 7×7) in the 

surrounding nonurban land. Because of topographic and latitudinal limitations, the 

number of rural pixels varied (one patch for 15 cities, two patches for 41 cities and 

three patches for 9 cities). The magnitude of ΔT is insensitive to the number of urban-

rural pixels. Fixing the number of urban and rural pixels for all the cities to 1 patch of 

3×3 pixels altered the ΔT by at most 0.6 K. All the pixels selected were validated by 

the MODIS land cover map and cross-checked against Google Earth. Rural pixels are 

classified in the MODIS land cover map as natural surfaces such as forests, grassland, 

cropland and bare soils. To avoid high bias of UHI, we excluded water pixels. Urban 

pixels are classified in the MODIS land cover map as urban and built-up surface. The 

resulting ΔT represents the difference between the city core and minimally developed 

land outside the city. The annual mean values were calculated based on the 10 years’ 

time series of the MODIS LST (2003 - 2012). A linear gap filling was done for short 

periods of missing values to minimize the impact of missing data on the annual 

means. If there are more than 3 consecutive missing values, we excluded that year.  

 

Cities were chosen so that each state, province, or territory was represented by at least 

one city, with the exception of 4 provinces and a territory in Canada (Nova Scotia, 

Prince Edward Island and Newfoundland and Labrador; Table 3.2). The chosen cities 

are large enough to be resolved by the climate model, except for 5 small cities 

(Helena, Montana; Augusta, Maine; Whitehorse, Yukon; Yellowknife, Northwest 

Territories; Iqaluit, Nunavut). These cities span a population range of 7000 – 379300. 

In addition, we avoided the cities on hilly terrain.   



	
   96	
  

 

The US precipitation data were obtained from PRISM (PRISM Climate Group, 

Oregon State University, http://prism.oregonstate.edu). The precipitation data for 

cities in Canada were obtained from Environment Canada 

(http://climate.weather.gc.ca/). The PRISM datasets are elevation-corrected grid 

estimates of monthly, yearly and event-based climatic variables. The precipitation 

data for Canadian cities are station measurements. 

 

The population data were obtained from the US Census 2010 

(http://quickfacts.census.gov) and Canada 2011 Census from Statistics Canada 

(http://www12.statcan.gc.ca/census-recensement/2011/dp-pd/index-eng.cfm). 
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Table 3.2: List of selected cities in the United States and Canada 

City, 
State/Province Population  

City size 
in CLM 
(km2) 

City, 
State/Province Population  

City size 
in CLM 
(km2) 

Albany, NY 9.79E+04 15.45 Louisville, KY 7.41E+05 45.75 
Albuquerque, NM 5.53E+05 25.24 Madison, WI 2.33E+05 22.73 

Atlanta, GA 4.20E+05 117.03 Minneapolis, MN 3.83E+05 90.58 
Augusta, ME 1.86E+04 NA Montgomery, AL 2.06E+05 12.99 
Austin, TX 8.21E+05 63.16 Montreal, QC 1.65E+06 41.10 

Baton Rouge, LA 2.30E+05 17.70 Nampa, ID 8.16E+04 6.56 
Billings, MT 1.06E+05 2.14 Nashville, TN 6.36E+05 30.35 

Bismarck, ND 6.13E+04 6.05 Oklahoma City, 
OK 5.80E+05 10.72 

Boise, ID 2.06E+05 12.84 Olympia, WA 4.65E+04 12.94 
Boston, MA 6.18E+05 86.42 Philadelphia, PA 1.53E+06 71.51 
Calgary, AB 1.10E+06 21.48 Phoenix, AZ 1.45E+06 53.91 
Casper, WY 5.53E+04 3.33 Pierre, SD 1.36E+04 0.89 

Cheyenne, WY 5.95E+04 2.46 Portland, OR 5.94E+05 54.50 
Colorado Springs, 

CO 4.16E+05 29.43 Providence, RI 1.78E+05 16.06 

Columbia, SC 1.29E+05 2.56 Raleigh, NC 4.04E+05 37.60 
Columbus, OH 7.87E+05 14.55 Richmond, VA 2.04E+05 8.00 

Dallas, TX 1.20E+06 153.98 Sacramento, CA 4.89E+05 36.27 
Denver, CO 6.00E+05 75.02 Saint John, NB 7.01E+04 1.42 

Des Moines, IA 2.03E+05 32.56 Salem, OR 1.55E+05 14.41 

Dover, DE 3.60E+04 1.84 Salt Lake City, 
UT 1.86E+05 57.87 

Hartford, CT 1.25E+05 25.03 Saskatoon, SK 2.22E+05 13.07 
Helena, MT 2.82E+04 NA Seattle, WA 6.21E+05 108.04 

Henderson, NV 2.58E+05 31.46 Springfield, IL 1.16E+05 12.97 
Houston, TX 2.10E+06 151.09 Tallahassee, FL 1.81E+05 7.58 

Indianapolis, IN 8.30E+05 37.56 Topeka, KS 1.27E+05 5.16 
Iqaluit, NU 6.70E+03 NA Toronto, ON 2.62E+06 215.29 

Jackson, MS 1.74E+05 15.76 Trenton, NJ 8.49E+04 36.53 
Jefferson City, MO 4.31E+04 3.54 Tucson, AZ 5.20E+05 27.73 

Lansing, MI 1.14E+05 6.47 Vancouver, BC 6.04E+05 129.04 
Las Vegas, NV 5.84E+05 31.46 whitehorse, YT 2.33E+04 NA 

Lincoln, NE 2.58E+05 17.24 Winnipeg, MB 6.64E+05 47.08 
 Little Rock, AR 1.94E+05 13.64 Yellowknife, NT 1.92E+04 NA 
Los Angeles, CA 3.79E+06 213.56       
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3.4.2 Climate model and simulation 

We used NCAR’s climate model CESM (Community Earth System Model)[Hurrell 

et al., 2013] to simulate the UHI in the United States and in Canada In this model 

system, the land surface processes are represented by the Community Land Model 

(CLM)[Oleson et al., 2010].	
  We used CLM version 4.0. In CLM, the land surfaces 

are categorized into 5 land units: vegetation, glacier, wetland, urban and lake. Each 

gridcell can have one or more of these land units. The surface radiation and energy 

balance equations are solved separately for these land units, and the results are 

aggregated to yield gridcell means. Specifically, the urban land unit is modeled using 

a “canyon” structure and consists of the following sub-surfaces: roof, sunlit wall, 

shaded wall, pervious (e.g. bare soil) and impervious (e.g. road, sidewalk, parking lot) 

canyon floor. It should be noted here that the pervious canyon floor in the urban land 

unit potentially evaporates more than the comparable bare soil in the rural land, as all 

of the water in the bare soil column is available for evaporation in the urban land unit. 

The vegetated land unit corresponds to nonurban or rural land. This landunit may 

contain up to 15 different plant functional types and bare soil.   

 

The model was run in the offline mode (uncoupled from an active atmospheric 

model). The urban and rural parameterizations in each gridcell were driven by the 

same atmospheric forcing. The atmospheric forcing data used in this study is a careful 

reconstruction of the climatology from 1972 to 2004 [Qian et al., 2006]. It was 

derived from a combination of the NCEP-NCAR reanalysis [Kalnay et al., 1996], 

observation-based analyses and observational records. Therefore the dataset has an 
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improved accuracy compared to the NCEP-NCAR reanalysis. We ran the model for 

33 years from 1972 to 2004 after a 60-year spin-up. The simulation was conducted at 

the finest resolution as a standard model configuration supported by this version of 

the model (0.23o longitude × 0.31o latitude) in order to resolve individual cities. 

Please note that	
  even	
  in	
  this	
  finest	
  resolution	
  the	
  gridcell	
  is	
  still	
  large	
  so	
  that	
  the	
  

total	
  urban	
  area	
  in	
  a	
  gridcell	
  can	
  be	
  a	
  combination	
  of	
  several	
  urban	
  areas.	
  The 

surface skin temperature was determined from the emitted longwave radiation for 

each land unit with an emissivity of 0.88 for the urban land unit and 0.96 for the 

vegetated land unit. The urban emissivity is the mean value of the weighted averages 

of the emissivity values of the urban sub-surfaces prescribed in the model for the 

selected cities. The rural emissivity is the mean value of the weighted average of the 

vegetation and soil emissivity. 

 

To construct the UHI, urban and rural flux and state variables were extracted from the 

model output at the gridcells where the selected cities reside. CLM invokes the urban 

parameterization only if the urban area fraction exceeds a threshold of 0.1%. 

Therefore 5 small cities used in the MODIS data analysis (Helena, Montana; Augusta, 

Maine; Whitehorse, Yukon; Yellowknife, Northwest Territories; Iqaluit, Nunavut) are 

neglected by the model. 

 

We only included the modeled data at 1:00 and 13:00 local time each day in this 

analysis; these times were selected to match closely the MODIS overpass times. To 

replicate the MODIS clear-sky conditions, we excluded cloudy days whose clearness 
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index [Gu et al., 1999] was less than 0.5. We then converted the daily values into 8-

day averages. The gap filling and processes of calculating annual means are the same 

as with the MODIS data. Under all-sky conditions, the modeled UHI intensity is on 

average 0.59 K lower during the daytime and 0.02 K lower at night than the clear-sky 

values, and the pattern regarding the component contributions remains unchanged 

from the clear-sky plot (Figure 3.3). 

 

3.4.3 Attribution of UHI 

Attribution of UHI is accomplished by a surface energy balance analysis. We used a 

factor separation method to isolate the contribution to the model-predicted ΔT from 

each individual biophysical factor associated with urban land conversion. In this 

analysis, the nonurban land is regarded as the base state, and urbanization is a 

perturbation to this base state. The perturbation signal is denoted by Δ. For example, 

ΔT  = Tu – Tr, where Tu is urban surface temperature and Tr is rural surface 

temperature within the same model gridcell. Following the method of Lee et al. 

[2011], the solution of the UHI intensity can be approximated by  

     (3.1)  
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f =
λ0ρCp

ra
(1+ 1

β
)      (3.2)    

Rn
* = (1− a)K↓+ L↓ − (1−ε)L↓ −εσTa

4
                        (3.3) 

	
      (3.4) 

 	
   	
   	
   	
   	
   	
  (3.5) 

where T – surface temperature, λ0 –	
  local climate sensitivity ( 34/1 Tεσ= ), f – energy 

redistribution factor, Rn
*  – apparent net radiation, ρ – air density, Cp – specific heat of 

air at constant pressure, ra – aerodynamic resistance to heat diffusion, β 	
  – Bowen 

ratio, a – surface albedo, K↓ 	
  – incoming solar radiation, L↓ 	
  – incoming longwave 

radiation, ε – emissivity, σ – Stefan-Boltzmann constant, Ta – air temperature at a 

reference height. In this factor separation analysis, we assume that ra, β, Rn* and QS 

and QAH are parameters associated with the external perturbation (land use 

conversion) and are independent of T, and the partial derivative operation can then be 

carried out on these variables. 

 

In Eq (3.1), the terms on the right hand side represent, in order from the first to the 

last, contributions from changes in radiation balance (term 1), aerodynamic resistance 

(term 2), Bowen ratio (term 3), and heat storage (term 4) and from anthropogenic heat 

addition (term 5).  Since ra is the resistance to sensible or convection heat flux, term 2 

is essentially a measure of change in the convection efficiency between urban and 

nonurban land. In an abstract sense, changes in β  (term 3) can result from changes in 

Δf1 =
−λ0ρCp

ra
(1+ 1

β
)Δra
ra

Δf2 =
−λ0ρCp

ra
(Δβ
β 2
)
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sensible heat flux (H), latent heat flux (LE) or both (Eq 3.6). In the present context of 

partial derivative operation, however, H and LE are not independent because the delta 

term Δf2  is evaluated with the net radiation Rn
*  and other valuables held constant. 

Thus a reduction in β  is accomplished by channeling more radiation energy to the 

surface latent heat flux and it is appropriate to attribute term 3 to changes in surface 

evaporative cooling.      

 

The calculation was performed separately for 1:00 and 13:00 local time, with cloudy 

days omitted. Three sets of variables were used. The first set comes directly from the 

forcing data and includes precipitation, incoming solar radiation (K↓ ), reference 

height air temperature (Ta, air temperature at 30 m above the surface), air pressure 

and downward longwave radiation ( L↓). The second set has model-predicted 

variables, including reflected shortwave radiation (aK↓ ), sensible heat flux (H), latent 

heat flux (LE), storage heat flux (Qs) and anthropogenic heat flux (QAH). The third set 

of variables, including surface temperature (T), air density (ρ ), Bowen ratio (β ), and 

aerodynamic resistance (ra) were derived from the forcing data and the model-

predicted variables. Specifically, Bowen ratio was calculated as 

β =
H
LE

                               (3.6) 

and the aerodynamic resistance to heat diffusion was calculated from 

ra =
ρCp(T −Ta )

H
                 (3.7) 
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The aerodynamic resistance determined from Eq 3.7 is the sum of the diffusion 

resistance in the atmospheric surface layer and the excess resistance associated with 

the thermal roughness [Garratt, 1994; Voogt and Grimmond, 2000] (Appendix A). 

The urban and nonurban land units within each model gridcell have the same forcing 

variables and have different values for the second and third sets of the variables. It 

should be noted here that the model underestimates the anthropogenic heat flux (QAH) 

due to the primitive anthropogenic heat scheme. The total anthropogenic heat in the 

model only includes heating and air conditioning (HAC) fluxes, waste heat generated 

by HAC and the heat removed by air conditioning. These fluxes are based on some 

prescribed parameters in the surface dataset of CLM and calculated heat transfer into 

and out of roofs and walls. The traffic heat flux is neglected by the current version of 

the model [Oleson et al., 2011].  

 

The sum of the component contributions is slightly lower than the modeled ΔT 

(Figure 3.3) because high-order terms are ignored in the linearization of the surface 

longwave radiation term of the energy balance equation and nonlinear interactions 

among the factors are omitted in the analysis. Comparison between model-predicted 

ΔT and calculated ΔT (sum of the individual contributions) reveals excellent 

correlation for daytime (r = 0.88, p < 0.001) and nighttime (r = 0.55, p < 0.001). 

 

3.4.4 Covariance analysis 

The covariance analysis was performed on modeled ΔT and its components against 

precipitation. Let CR, CH, CLE, Cs and CAH be the contribution from radiation, 
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convection efficiency, evaporation, storage and anthropogenic heat, respectively 

(terms 1 to 5 in Eq. 3.1). Eq. 3.1 can be rewritten as 

ΔT =CR +CH +CLE +Cs +CAH + e  

where e is an error term arising from nonlinear interactions. Because the covariance 

operation is linear, the ΔT – precipitation covariance is equal to the sum of the 

covariance between each component and precipitation,  

),(),(),(
),(),(),(),(

PeCovPCCovPCCov
PCCovPCCovPCCovPTCov

AHs

LEHR

+++

++=Δ
           (3.8) 

where P is precipitation. Eq. 3.8 decomposes the total covariance between ΔT and 

precipitation into the covariance contribution from its five components and a residual 

error term. We presented covariance here rather than correlation coefficient because 

the correlation is not a linear operation. In Figures 3.5 and 3.8, we normalized the 

covariance between each component and precipitation by the total ΔT – precipitation 

covariance.  

 

We applied this technique to the analysis of both spatial covariance and temporal 

covariance. In the analysis of spatial covariance, each data point is the annual mean 

value of a city (Figure 3.5). In the analysis of the temporal covariance at a city, each 

data point is the annual value of that city (Figure 3.8). 
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Chapter 4 Urban heat islands under climate change 
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Summary 

Predictions of urban heat island under climate change in the future are crucial for 

urban climate change mitigations and spatial planning and development. A 96-year 

simulation using community land model (CLM) driven by CESM RCP8.5 output 

climatology was conducted. Results show that ΔT generally decreases across all three 

climate regions under the RCP8.5 scenario. The spatial pattern of ΔT that we 

observed in the current climate still holds in the future. The variations in convection 

efficiency between urban and rural areas still large explain the geographic variation of 

daytime ΔT. The release of stored heat is the prominent contributor of nighttime ΔT. 

Compared to the current climate, the flourishing vegetation in the rural areas due to 

climate change affects the contributions of convection efficiency and radiation to 

daytime ΔT. At night, the two major changes in the future are the increased 

contribution from release of stored heat and the significant decreased contribution of 

evaporation. 
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4.1 Background 

From the previous chapter, I have learned the contribution of each biophysical 

process to the urban heat island under current climate. How UHIs will change in 

future and how these contributions from the biophysical processes change with 

climate change remain elusive questions. Therefore I continued my study to the UHI 

projection under future scenarios. 

 

A recent modeling study has shown that the UHI, defined as 2-m air temperature, 

would generally decrease in the future with magnitudes depending on the RCP 

scenarios, because urban and rural areas respond differently to changes in 

climate[Oleson, 2012]. However, whether the UHI, defined as surface radiative 

temperature difference, behaves similarly with the 2-m UHI in the future scenario is 

unclear. Surface radiative temperature is a more direct metric of the surface energy 

budget than the 2-m height air temperature, because it is derived from the surface 

energy balance equation. Therefore a study of UHI defined by surface radiative 

temperature under climate change is worthwhile. 

 

4.2 Methods 

4.2.1 CLM simulation 

We ran CLM in an uncoupled mode driven by the output data from the CESM fully 

coupled simulation. The output data from CESM simulations are existing data 

maintained by NCAR. The fully coupled CESM simulations were conducted 

following the protocol of CMIP5 [Taylor et al., 2009] in four Representative 
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Concentration Pathways (RCP) scenarios (RCP8.5, RCP6, RCP4.5 and RCP2.6; 

[Moss et al., 2010]). The four RCP scenarios represent from lowest to highest 

anthropogenic greenhouse gas emission pathways. In order to emphasize the effects 

of anthropogenic climate forcing on the UHI, we only used the output data from 

CESM RCP8.5 simulation to drive the CLM. Although the simulation was conducted 

in this uncoupled way, the land-atmosphere-ocean feedbacks and the horizontal 

advection have been computed in the fully coupled CESM simulation and reflected in 

its atmospheric output. Therefore this way can be considered as a shortcut to retrieve 

the land surface properties compared to running the fully coupled CESM under the 

RCP8.5 scenario. 

 

The model was run for 96 years from 2005 to 2100. The spin-up was waived because 

we used an initial dataset which represents an equilibrium climate state to start the 

simulation. The spatial resolution of the simulation is 0.9° longitude × 1.25° latitude.  

 

4.2.2 Data analysis 

We used the same 65 selected cities in the US and Canada as we did in the previous 

chapter. The cities are grouped in three climate zones according to Köppen-Geiger 

climate classification. The modeled data were analyzed with respect to the three 

climate zones. In order to show the complete simulated trend, we concatenated the 

modeled data in “current climate” (1972 to 2004; Chapter 3) and the future 

projections from 2005 to 2100. Time series of modeled precipitation, 2m height air 

temperature, surface incoming solar radiation, and ΔT were analyzed.  
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We applied the same ΔT attribution method on the modeled results of last thirty years 

of this century (2071-2100) to investigate how the contribution of each biophysical 

process changes with climate change.  

 

The annual mean values only reflect the average state of the daytime and nighttime 

ΔT. In order to investigate the variability of ΔT, we analyzed the distributions of ΔT 

and compared them between current climate and future climate to see how variability 

of ΔT changes with climate change in the future. The data used in this analysis are all 

daily values.  

 

4.3 Results and discussion 

4.3.1 Trends 

Like most climate modes or Earth system models, CESM overestimates the incoming 

solar radiation at the surface as well, according to our results. This is consistent with 

what we demonstrated in Chapter 2. Figure 4.1d, 4.2d and 4.3d show significant 

inconsistency in midday surface incoming solar radiation between the current climate 

(1972-2004) and the future climate (2005-2100) across the three climate zones. The 

inconsistency is because of the two different forcing data of solar radiation. The 

radiation forcing for current climate simulation is an revised climatology reanalysis 

data based on surface observations, and the downward solar radiation at the surface is 

reduced by 10-20% after revision[Qian et al., 2006]. The solar radiation for the future 

projection simulation, however, is purely modeled by the radiative transfer model of 
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CESM without any observation-based bias correction. From Figure 4.1c and 4.2c, we 

can see that this inconsistency of incoming solar radiation causes a sharp increase in 

2m-height air temperature in the continental and temperate climates. This indicates 

that the overestimation of surface incoming solar radiation in the mode will result in 

significant high biases in the prediction of near-surface temperature. This finding 

together with our work described in Chapter 2 calls for attentions to the 

overestimation of surface incoming solar radiation in climate models.   

 

Across all three climate zones, the rural 2m-height air temperature persistently 

increases due to the background climate warming, which is as expected (Figure 4.1c, 

4.2c and 4.3c). Specifically, the warming rates are 0.07 K yr-1, 0.04 K yr-1, and 0.07 K 

yr-1 in the continental, temperate and dry climates, respectively. The annual mean 

precipitation in the three regions show slight increasing trends as well (Figure 4.1b, 

4.2b and 4.3b). The average increasing rates are 1.1 mm yr-1, 2.0 mm yr-1, and 1.3 

mm yr-1 in the continental, temperate and dry climates, respectively. 

 

Figure 4.1a, 4.2a and 4.3a show that daytime ΔT generally decreases in all three 

climate zones. This is consistent with Oleson [2012]’s findings, although the ΔT in 

his study is defined by 2m-height air temperature rather than surface radiative 

temperature. This persistent decreasing trend in ΔT indicates that urban and rural 

areas respond differently to changes in climate. Urban surfaces stay the same under 

climate change in the CLM, whereas the rural areas respond to the climate change. 

Generally, because of the increasing precipitation and higher atmospheric CO2 
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concentrations in the future, the vegetation in the rural areas become denser. This will 

affect the radiation balance, convection, and evapotranspiration over rural areas. How 

these surface energy fluxes influence ΔT will be discuss in detail in the next section.  

 

The two water-sufficient climate zones show more significant decreasing trends in 

daytime ΔT than the dry climate does (Figure 4.1a, 4.2a and 4.3a). This is consistent 

with what we discovered about the interannual variability of daytime ΔT in Chapter 

3: in humid climates, the annual daytime ΔT is negatively correlated with annual 

precipitation. In the future, this relationship still holds. Figure 4.4 shows that the 

inter-annual variability of daytime is primarily driven by variations in precipitation in 

both current climate and future climate. In comparison, Figure 4.5 shows that in dry 

climates, this ΔT – precipitation temporal correlation is insignificant.  

 

During nighttime, ΔT does not show significant trends in the three climate regions 

(Figure 4.6). This is because the dominant driver of nighttime ΔT is the release of the 

stored heat rather than precipitation. The heat storage is determined by the urban 

built-up structures and materials. However, in CLM all the urban canyon parameters 

stay constant from year to year. Therefore the background climate trends do not 

significantly drive the variation of nighttime ΔT. 
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Figure 4.1 Modeled time series of ΔT and background climate variables from 1972 to 

2100 in continental/microthermal climates. a: daytime ΔT; b: annual precipitation; c: 

2m-height air temperature; d: midday surface incoming solar radiation 
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Figure 4.2 Same with Figure 4.1 except for in temperate/mesothermal climates.  
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Figure 4.3 Same with Figure 4.1 except for in dry climates. 
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Figure 4.4 Correlation between daytime ΔT and annual precipitation in continental 

and temperate climates. a: continental/microthermal climates; b: 

temperate/mesothermal climates. 
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Figure 4.5 Same with Figure 4.4 expect for in dry climates 
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Figure 4.6 Modeled time series of nighttime ΔT in the three climate regions. a: 

continental/microthermal climates; b: temperate/mesothermal climates; c: dry 

climates. 
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4.3.2 Biophysical feedbacks in the future 

The spatial pattern of ΔT that we observed in the current climate still holds in the 

future. In the daytime, there is higher ΔT in wetter climates and lower ΔT in dry 

climates. This geographic variation is still driven by variations in the convection 

efficiency between urban and rural areas. This convection effect still depends on the 

local background climate, increasing daytime ΔT by 2.1 K in humid climates but 

decreasing ΔT by 0.6 K in dry climates in the end of this century. In the nighttime, 

release of the stored heat is still the dominant contributor to ΔT across all three 

climate zones. 
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Figure 4.7 Comparison of attribution of ΔT between present and future in 

continental/microthermal climates. b: present daytime; c: future daytime; d: present 

nighttime; e: future nighttime 
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Figure 4.8 Same with Figure 4.7 except for in temperate/mesothermal climates 
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Figure 4.9 Same with Figure 4.7 except for in dry climates. 
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Figure 4.7 - 4.9 show the comparison of ΔT attribution between current climate 

(1972-2004) and future climate (2071-2100) in the three climate regions. In the dry 

climates, the negative contribution of convection term to daytime ΔT decreases 

significantly in the future compared to that in the current climate. This is because the 

increasing precipitation and the fertilization of enriched CO2 in the atmosphere dense 

the vegetation in the rural areas. Therefore the rural surface becomes rougher in the 

future compared to that in the current climate, which reduces the difference in the 

convection efficiency between urban and rural areas. In the relatively wetter regions – 

continental and humid climates, the change in the contribution of convection 

efficiency is not that clear. In the continental climates, the convection term increases 

in the future compared to in the current climate; whereas in the temperate climates, 

the convection term decreases. This is because for dense vegetation, the surface 

roughness length is not a monotone function of LAI [Raupach, 1994]. The surface 

roughness length increases as LAI increases in the range of small LAI. Beyond a 

certain threshold, the roughness length starts to decrease as LAI further increases. 

This means that at high LAI surfaces, although the increasing precipitation and 

enriched CO2 in the atmosphere would fertilize the vegetation and increase the LAI, 

the surface does not necessarily become rougher. In the continental climates, the 

surface roughness is still in the increasing phase when LAI increases in the future. 

Therefore the difference in convection efficiency between rural and urban areas is 

enlarged in the future. The opposite occurs in the temperate climate zone, where the 

LAI in the rural areas is already high. The increasing LAI in the future actually 

reduces the surface roughness length. The result is that the rural surface is less rough 
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in the future compared to in the current climate. Thus the convection efficiency in the 

rural areas is lessened. 

 

Vegetation typically has a lower albedo than dry soil and concrete. Therefore a 

landscape covered by denser vegetation in the future due to the ample precipitation 

could be darker compared to an open or partially covered landscape in the current 

climate. The contribution of radiation term to the daytime ΔT can be understood in 

light of these results. The changes in the radiation term in the continental and dry 

climates are good demonstrations. In the current climate, the cities in these two zones 

are slightly darker than the surrounding rural areas due to the canyon effect. 

Specifically, the urban effective albedo is 0.001 and 0.004 less than the rural albedo 

in continental and dry climates, respectively. In the future climate, the contribution of 

the radiation terms become negative in these two zones. This is because the rural 

areas are darker than the urban areas in the future, making the rural areas absorb more 

energy. This radiation difference between urban and rural areas creates a cooling 

effect to the urban in these two zones. 

 

In the night, there are two prominent changes in the contributions of biophysical 

processes to ΔT between current and future climate. First, the contribution from 

release of stored heat increases across all three climate zones. The reason for this lies 

in two aspects. One is the overestimated incoming solar radiation in the model for the 

period of 2005 - 2100. The extra solar radiation absorbed in the daytime will be 

stored and release in the nighttime. The other reason is the increased longwave 
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forcing due to the global warming is stored during daytime and is released at night. 

Second, the contribution of evaporation to nighttime ΔT is positive in all three 

climate zones in the current climate, but turns to negative in the future. The reason for 

this phenomenon lies in the projected increasing precipitation. In CLM, the pervious 

surface in the urban canyon is allowed to evaporate the whole water column in the 

soil. Therefore the increased precipitation might significantly raise the urban 

evaporation, and thus causing a cooling effect. But this result might be because of the 

unrealistic scheme of urban soil evaporation in the CLM. 

 

4.4 Conclusions 

In this study, the CESM modeled urban heat island intensity (ΔT) in the RCP8.5 

scenario was examined for 65 selected North American cities. The UHI here is 

defined as the difference in surface radiative temperature between urban and rural 

surfaces in the model grid cell. Although the background near-surface temperature 

increases in the future, ΔT is found to decrease in the RCP8.5 scenario. Similar with 

in the current climate, the daytime ΔT is still higher in wetter climates, and lower in 

dry climates in the future. This geographic variation is still largely explained by the 

variations in the convection efficiency between urban and rural areas. In the 

nighttime, the release of stored heat is still the prominent contributor of ΔT. 

 

Because of the enriched CO2 in the atmosphere and increasing precipitation in the 

future, the rural areas are generally greening. This results in increased convection 

efficiency in rural areas in the continental and dry climates, and decreased rural 
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convection efficiency in the temperate climates in the daytime. Because vegetation 

typically has a low albedo, denser vegetation in the future makes the rural surface 

darker, leading to a warming effect to rural surfaces, and thus negatively contributes 

the daytime ΔT.  

 

For the nighttime ΔT, two prominent changes in the contribution of biophysical 

processes emerge: increased contribution from heat storage and decreased 

contribution from evaporation (sign changed from positive to negative). The 

increased contribution of heat storage is because of the increased longwave radiative 

forcing due to the greenhouse gas effect. The decreased contribution of evaporation is 

because urban landunit responses strongly to the increased precipitation in the CLM. 
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Chapter 5 Summary and future works 
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5.1 Major results 

5.1.1 Overestimated surface solar radiation 

In this dissertation, the surface incoming shortwave radiation S modeled by two data 

assimilation systems, NARR and MERRA, was validated against observations from 

24 FLUXNET sites in the US and Canada. Results show that the two data 

assimilation systems overestimated the surface solar radiation on both monthly and 

annual scales. MERRA generally shows better agreement with the surface 

observations than NARR. Specifically, the annual mean bias errors for the 

FLUXNET sites in North America are +37.2 W m-2 and +20.2 W m-2 for NARR and 

MERRA, respectively. The bias errors were larger under cloudy skies than under 

clear skies and increased with increasing elevation.  

 

We proposed a post-reanalysis correction algorithm based on the dependence of the 

bias on sky clearness and surface elevation. The correction algorithm worked well on 

the annual scale for the sites in the North America, reducing the annual mean bias 

errors from +37.2 W m-2 and +20.2 W m-2 to +1.3 W m-2 and +2.7 W m-2 for NARR 

and MERRA, respectively. The algorithm also showed good performance for the 

BSRN sites outside North America. 

 

Although the algorithm was able to reduce the overall mean bias errors in surface 

incoming solar radiation modeled by NARR and MERRA, there are a few limitations 

to this algorithm. First, the algorithm does not help much on improving the modeled 

interannual variability of surface incoming solar radiation for the two products. 
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Second, the algorithm might have overcorrection problem for some specific locations, 

such as the four sites near the equator in our selected sites. 

 

We also applied the correction algorithm to the whole global domain of MERRA data 

for the year 2000 to 2004 to revise the current estimate of global mean S. The 

algorithm reduced the MERRA modeled global mean S by 9.0% to 175.5 W m-2. This 

corrected S is lower than that estimated by Stephens et al. [2012a] and Trenberth et al. 

[2009]. This research calls for attentions and more work needed on the problem of 

overestimation of surface incoming solar radiation by most GCMs. 

 

5.1.2 Strong contributions of local background climate to UHIs 

This study quantifies for the first time the primary causes of the urban heat island 

effect on the large spatial scale. We used MODIS data of land surface temperature to 

calculate the UHI intensity (ΔT) at both daytime and nighttime for 65 cities evenly 

distributed across North America. The MODIS results showed that the annual mean 

midnight ΔT is positively correlated with the logarithm of population, but is 

statistically invariant with climate, showing insignificant correlation with 

precipitation (r = 0.05, P = 0.70), solar radiation (r = 0.15, P > 0.20), and air 

temperature (r = 0.20, P > 0.10). However, the annual mean midday ΔT is strongly 

correlated with precipitation (r = 0.74, P < 0.001) and has a weaker correlation with 

population size than does the midnight ΔT (r = 0.27, P = 0.027). We used a climate 

model – CESM and a ΔT attribution method, to show that this geographic patter in 

daytime ΔT is largely explained by change in convection efficiency between urban 



	
   129	
  

and rural areas. This convection effect actually depends on the local background 

climate, contributing 3.0 ± 0.3 K (mean ± 1 standard error, s. e.) warming to daytime 

ΔT in cities in humid climate but causing 1.5 ± 0.2 K cooling in dry climate. At 

nighttime, results reaffirmed the consensus view that, regardless of the local climate, 

the release of the heat stored in the built-up structures is the dominant contributor to 

nighttime ΔT. 

 

This study also showed that in the humid eastern United States, the annual daytime 

ΔT is negatively correlated to annual precipitation. This means that there is higher ΔT 

in dried years. These relationships imply that UHIs will exacerbate heatwave stress 

on human health in wet climates where high temperature effects are already 

compounded by high air humidity and in drier years when positive temperature 

anomalies may be reinforced by a precipitation–temperature feedback. 

 

The ΔT attribution results also reaffirmed that the city albedo management is a viable 

means of mitigating ΔT on large scales. 

 

5.1.3 UHI in the future 

In this study, we ran the CLM simulation under Representative Concentration 

Pathway 8.5 scenario from 2005 to 2100. Results show that the daytime ΔT generally 

decreases across all three climate zones because urban and rural areas respond 

differently to climate change. The ΔT attribution results show that the climate change 

made changes in the contributions of certain biophysical processes to ΔT. At daytime, 
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because of the increasing vegetation in the future, the contribution of convection 

efficiency to ΔT increases in the dry and continental climates, but decreases in the 

temperate region. The contribution of radiation also drops compared to that in current 

climate, because the denser vegetation in the rural areas darkens the rural surfaces in 

the future.  

 

At nighttime, there are two major changes in the biophysical contributions to ΔT 

compared to that in the current climate. First, the contribution of the release of the 

stored heat increases in the future across all three climates. This is because of the 

overestimated surface solar radiation by CESM and the increased longwave radiative 

forcing due to the global warming. Second, the contribution of evaporation 

significantly decreases in the future. This is because the urban landunit responses 

stronger to the increased precipitation than do the rural areas. But this might be 

because of the primitive scheme of urban pervious surface in the CLM.      

 

This study also revealed the overestimation of the surface incoming solar radiation in 

CESM. There is a sharp inconsistency between the modeled period driven by 

corrected reanalysis dataset and the period driven by CESM pure model outputs. 

 

5.2 Contributions of the dissertation 

Through the completion of this dissertation, the following contributions have been 

made: 
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1) Our work emphasizes the importance of improving the accuracy of surface 

incoming solar radiation modeled by both GCMs and reanalysis systems. The 

overestimated surface radiation will not only cause the inaccurate estimate of global 

surface energy budget, but also result in systematic bias errors in projected surface 

climate by various climate models.  

2) A computationally efficient post-reanalysis correction algorithm is proposed for 

the end users engaged in the applications using NARR and MERRA radiation 

products. 

3) This dissertation, for the first time, quantifies the contribution of each biophysical 

process to urban heat island. A long-held perception is that reduction in evaporative 

cooling in urban land is the dominant driver of UHI. However, we used a climate 

model to show that this common perception is erroneous. It is the changes in 

convection efficiency between urban and rural areas that largely explain the spatial 

variation of daytime UHI. This convection effect depends on local background 

climate. 

4) A ΔT attribution method was proposed. This method, derived from the surface 

energy balance equation, attributes changes in surface temperature into contributions 

from difference biophysical processes. This method was used in the diagnostic way in 

this dissertation. It can also be used in a prognostic way. For example, this method 

can be used to predict the surface temperature change in response to changes in land 

surface properties such as land management.  

5) Changes in UHI and urban land – atmosphere interactions with climate change in 

the future were examined. 
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5.3 Future works 

Building off of my present research, this dissertation has opened up a number of new 

directions for future studies. 

 

5.3.1 Surface incoming solar radiation 

My present study has showed that two data assimilation systems persistently 

overestimate incoming solar radiation at the Earth’s surface because of the 

underestimation of the cloud absorption. This overestimation problem exists almost 

every global climate model (average bias: 2 – 24 W m-2) [Wild et al., 2013]. Incoming 

solar radiation is an important driver of surface energy exchange. An overestimated 

incoming solar radiation in the model must lead to a biased prediction of surface 

temperature solved from the surface energy balance equation. However, there is little 

quantitative knowledge on how the extra solar radiation will affect the surface 

temperature prediction and the modeled surface energy fluxes. Future direction can be 

investigating the sensitivity of modeled surface climate to overloaded surface 

incoming solar radiation in the climate models. 

 

Considerable uncertainties exist in the CMIP5 climate model projections [Knutti and 

Sedlacek, 2013]. If the future direction described above shows that the surface 

temperature responds significantly to the surface incoming solar radiation, then the 

high bias of surface incoming solar radiation in the climate models could be a 
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significant driver of the uncertainties in surface temperature projections by CMIP5 

GCMs.  

 

5.3.2 Climate mitigations through land-use management 

The local to regional warming trends are quite different than the observed global 

warming trend [Stone et al., 2012]. Land use/land cover changes account for more 

than 50% of the observed warming trend at local to regional scales [Kalnay and Cai, 

2003; Zhou et al., 2004]. To adapt to the climate change, mitigation strategies such as 

urban management are needed for future development planning. A major challenge 

faced by humanity is the lack of quantitative assessment of land management 

strategies. Although a number of recent modeling studies evaluated a series of urban 

adaptation strategies by implementing them in the model [Georgescu et al., 2014; Li 

et al., 2014; Stone et al., 2013], considerable uncertainties exist due to the choice of 

modeling systems and the relatively arbitrary and unrealistic strategy implementation 

in the models.  

 

The ΔT attribution model that we proposed in this dissertation can be used in a 

prognostic way. It can mechanistically demonstrate what biophysical processes would 

be affected and how much each process would contribute to mitigate the warming if 

land management strategies are implemented. Applying this theoretical model on 

either observed or modeled data could predict and assess the cooling effects of 

various mitigation strategies. Because this model, independent of any climate models, 

is derived from surface energy balance equation, it would provide more robust 
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benchmark results of quantifying the mitigation effects than the simulation results 

using any specific climate models. The insights gained from this work would be of 

great help to policy makers for designing climate mitigation strategies and planning 

the future development. 

 

5.3.3 Effects of Land use/land cover change on land-atmosphere interactions 

This dissertation has investigated the contributions of local background climate to 

urban heat islands over North American cities. The work can be expanded to other 

regions in the Earth including China and India where rapid urbanization is happening. 

Studies over these places could generate new insights. 

 

In addition, urbanization is only one example of the human-induced changes to the 

Earth’s surface. All types of land use activities such as deforestation and afforestation 

affect the Earth’s surface climate. Therefore future work could be extended to other 

types of land use change activities. The future research questions include: How do 

surface climate and land-atmosphere interactions respond to other types of land 

surface changes? How do these interactions change with climate change? How do 

these interactions vary in different climate zones? Does land use change affect not 

only the mean climate state but also the extreme events? 
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Appendix A Radiometric resistance to heat transfer 
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Summary 

Sensible heat flux is an important component of the surface energy balance. Land 

surface models often use the radiative surface temperature instead of the aerodynamic 

temperature to predict the surface sensible flux, because the former is much easier to 

be observed by remote sensing or to be computed from the surface energy balance 

equation. In this study, using measurements at 44 FLUXNET sites we examine the 

stability and LAI (leaf area index) dependence of the radiometric resistance, a 

resistance that should be included in the bulk transfer method if the radiometric 

temperature is used for the flux calculation. Results show that the radiometric 

resistance is much higher under stable conditions than under unstable conditions. In 

unstable conditions, the radiometric resistance is highly sensitive to LAI, decreasing 

exponentially as LAI increases. Omission of the radiometric resistance from the bulk 

transfer method will cause large overestimation in the sensible heat flux, especially 

for low LAI surfaces and under unstable conditions. 

 

A.1 Introduction 

The bulk transfer equation  (Equation 1) [Garratt and Francey, 1978; Garratt and 

Hicks, 1973; Monteith, 1973] is a widely employed method for estimating sensible 

heat flux (H) in land surface models (LSMs) [Mahrt and Vickers, 2004]. It uses the 

difference between the air temperature at a reference height in the surface layer (Ta) 

and the aerodynamic temperature (T0), and a heat resistance that accounts for the heat 

diffusion between the two heights:  
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                                                 (A.1) 

where  is air density, and Cp is the air heat capacity and  Rah is given as,   

                                                (A.2) 

where k is the von Karman constant, z is the measurement height of Ta and wind 

speed u, d is the displacement height, z0 is the roughness length for momentum, zh is 

the roughness length for heat, and and are the stability correction functions 

for momentum and heat, respectively.  

 

The accuracy of Equation (A.1) depends on how the surface temperature is chosen. 

Use of Rah defined in Equation (A.2) requires that T0 be the aerodynamic temperature 

at the roughness length for heat, zh. The two roughness lengths in Equation (A.2) are 

typically different [Garratt and Hicks, 1973] and their ratio is a function of surface 

stiffness and the roughness Reynolds number [Molder and Lindroth, 2001]. A 

universal and robust parameterization of zh across a large variety of land cover types 

does not exist. Therefore two alternative approaches are used to remove zh from the 

bulk transfer method. In one approach, zh is assumed to be equal to z0, and Rah is 

simply reduced to the aerodynamic resistance Ra,                                        

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (A.3)	
  

. In the other approach, Rah is expressed as a combination of the aerodynamic 

resistance, Ra and the excess resistance, Rex,   

H = ρCp
T0 −Ta
Rah

ρ

Rah =
[ln(z− d

z0
)−ΨM ][ln(

z− d
zh
)−ΨH ]

k2u

ΨM ΨH

Ra =
[ln(z− d

z0
)−ΨM ][ln(

z− d
z0
)−ΨH ]

k2u
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                                                                                     (A.4) 

In neutral stability, manipulation of Equations (A.2), (A.3) and (A.4) gives,  

 

                                                                      (A.5) 

where u* is the friction velocity. 

 

One difficulty with the above formulations is that T0 cannot be measured directly. In 

field campaigns, this temperature is usually inferred from extrapolation of the 

temperature profile to z0 or zh according to the Monin-Obukhov similarity theory 

[Garratt and Francey, 1978; Thom et al., 1975]. Both z0 and zh, however, are within 

the roughness sublayer where the similarity theory does not hold. Therefore, the 

extrapolation of temperature profile is an important source of error. In addition, 

vertical temperature profiles are generally not available in remote sensing 

applications [Kustas and Anderson, 2009; Kustas et al., 2003; Matsushima, 2005; Mu 

et al., 2011]. For these reasons, in practice T0 is usually replaced with the surface 

radiative temperature Ts which can be measured by remote sensing techniques or 

computed from the surface energy balance equation [Sun and Mahrt, 1995]. Use of Ts 

in place of T0 for the bulk parameterization is especially attractive to modelers 

because in almost all land surface models, Ts is an important prognostic variable 

solved from the surface energy balance equation.  

 

Previous researchers have reported that Ts and T0 can be very different, especially in 

unstable conditions, and a simple substitution of T0 by Ts can result in systematic high 

Rah = Ra + Rex

Rex =
ln(z0 / zh )
ku*
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biases in the prediction of sensible heat flux [Beljaars and Holtslag, 1991; 

Choudhury et al., 1986; Hall et al., 1992]. To date, efforts to remediate the problem 

fall into three categories:  

• To predict T0 from Ts: In some studies, the relationship between the radiative 

and aerodynamic temperature is expressed as a function of zh [Brutsaert and 

Sugita, 1992; Garratt and Francey, 1978].  Beljaars and Holtslag [1991] 

suggested that their relationship should depend on the temperature scale θ* 

and air stability. Mahrt and Vickers [2004] and Matsushima [2005] found that 

Ts – T0 is related to solar radiation and leaf area index (LAI). 

• To introduce a new roughness length zr, called “radiometric roughness length”, 

which is smaller than zh by up to a few orders of magnitude: In a number of 

studies, the kB-1 parameter is redefined as  instead of the standard 

formulation [kB-1= ]; this new kB-1 number is related to the roughness 

Reynolds number and Ts [Kustas et al., 1989; Stewart et al., 1994; Sugita and 

Brutsaert, 1990; Sun and Mahrt, 1995; Yang et al., 2003]. These studies show 

that the new kB-1 behaves erratically, and that a universal parameterization 

seems impossible.  

• to add an extra resistance:  a “radiometric resistance”, Rr, is added to the bulk 

transfer formulation [Lhomme et al., 1988; Stewart et al., 1994], such that,   

                                                 (A.6) 

ln(z0
zr
)

ln(z0
zh
)

H = ρCp
Ts −Ta
Rr + Rah
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According to Lhomme et al. [1988]; Stewart et al. [1994], Rr is generally 

larger than Rah.  

 

A number of studies have suggested the importance of LAI and air stability in 

controlling the biases caused by substituting T0 with Ts. Beljaars and Holtslag [1991] 

found that  T0 - Ts varies from 6 K in stable conditions to -6 K in unstable conditions. 

Mahrt and Vickers [2004] reported a significant positive linear dependence of Ts – To 

on solar radiation and a negative dependence on LAI. One way that solar radiation 

influences the heat transfer is through its effect on air stability. These relationships 

have been established with observations at several land cover types including a bare 

soil site, three grassland sites, a cropland site and 4 forest sites. Kustas et al. [2007] 

found that the slopes and intercepts of the linear regressions that Mahrt and Vickers 

[2004] proposed vary considerably when applied to a wider range of landscapes (LAI: 

0.5 – 3.0) and meteorological conditions. Similarly, the correction factor proposed by 

Matsushima [2005] for Ts - T0 has a strong correlation with LAI. In a recent study, 

Zheng et al. [2012] developed new formulations of the momentum and thermal 

roughness lengths using a green vegetation fraction derived from the remotely-sensed 

normalized difference vegetation index, the latter of which is known to be a good 

estimator of LAI.   

 

The primary objective of this study is to revisit the roles of LAI and air stability in the 

bulk formulation. Our focus is on patterns of the radiometric resistance Rr across a 

diverse set of ecosystems. Previous studies have been restricted to a small number of 
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sites (1 to 9). Here we deploy data obtained from 44 sites in the FLUXNET network. 

Specifically, we examine how site mean resistance values vary across the sites, 

instead of half-hourly values at a specific site as was done in previous studies. The 

advantage of this site-mean approach is that it brings out more clearly patterns caused 

by land cover differences from synoptic meteorological fluctuations and instrument 

noises. In addition, we provide an assessment of the prediction error of sensible heat 

flux caused by omission of Rr from Equation (A.6). 

 

A.2 Data and Methods 

A.2.1 Surface observations 

In this study, we examined tower observations from 44 FLUXNET sites in the US, 

Canada and China (Table A.1). FLUXNET is a global network of surface eddy-

covariance observations. These sites cover a large range of u* (site mean value 0.10 – 

1.45 m s-1). We chose these sites because measurement was made of the longwave 

components of the surface radiation balance, in addition to the energy and momentum 

fluxes and micrometeorological variables, and for long enough time (> 12 months). 

They span a large range of LAI (0 to 9) and canopy height (0.1 to 33 m). They are 

divided into four categories: 19 conifer forest sites (with nearly constant LAI 

throughout the year), 12 deciduous forest sites (with seasonal LAI change), 6 

grassland sites (with seasonal LAI change), and 7 cropland sites(with sharp LAI 

change between growing and non-growing season). For each site, we selected one 

year of measurements and confined our analysis to December - February and June - 

August for the winter and summer seasons (>90% data coverage for each site for each 



	
   153	
  

season).  We also separate the data into stable and unstable conditions. The original 

data are half-hour values for 43 sites; for four sites (site ID: US-MMS, US-Ne1, US-

Ne2 and US-Ne3, Table A.1) only hourly measurements are available. 
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Table A.1 List of the selected FLUXNET sites and their land surface types. 
 

Site	
  ID	
   Site	
  Name	
  
State	
  
/Prov.	
   Lat.	
   Lon.	
   Vegetation	
   Reference	
  

CA-­‐WP1	
   Western	
  Peatland	
   AB	
   54.95	
   -­‐112.47	
   Conifer	
  
(Syed,	
  Flanagan	
  et	
  al.	
  

2006)	
  

CA-­‐Obs	
   Old	
  Black	
  Spruce	
   SK	
   53.99	
   -­‐105.12	
   Conifer	
  
(Jarvis,	
  Massheder	
  et	
  

al.	
  1997)	
  

CA-­‐SJ2	
   SK-­‐2002	
  Jack	
  Pine	
   SK	
   53.94	
   -­‐104.65	
   Conifer	
  
(Coursolle,	
  Margolis	
  et	
  

al.	
  2006)	
  

CA-­‐Ojp	
   Old	
  Jack	
  Pine	
   SK	
   53.92	
   -­‐104.69	
   Conifer	
  
(Baldocchi,	
  Vogel	
  et	
  al.	
  

1997)	
  

CA-­‐SJ3	
   SK-­‐1975	
  (Young)	
  Jack	
  Pine	
   SK	
   53.88	
   -­‐104.65	
   Conifer	
  
(Mahrt	
  and	
  Vickers	
  

2002)	
  

CA-­‐Oas	
   Old	
  Aspen	
   SK	
   53.63	
   -­‐106.20	
   Deciduous	
  
(Blanken,	
  Black	
  et	
  al.	
  

1997)	
  

CA-­‐Ca1	
   Douglas-­‐fir	
  1949	
   SK	
   49.87	
   -­‐125.33	
   Conifer	
  
(Humphreys,	
  Black	
  et	
  

al.	
  2003)	
  

CA-­‐Qfo	
   Quebec	
  Mature	
  Boreal	
  Forest	
   QC	
   49.69	
   -­‐74.34	
   Conifer	
  
(Bergeron,	
  Margolis	
  et	
  

al.	
  2007)	
  

CA-­‐Ca3	
   Douglas-­‐fir	
  1988	
   BC	
   49.53	
   -­‐124.90	
   Conifer	
  
(Humphreys,	
  Black	
  et	
  

al.	
  2006)	
  

US-­‐FPe	
   Fort	
  Peck	
   MT	
   48.31	
   -­‐105.10	
   Grassland	
  
(Schmidt,	
  Hanson	
  et	
  al.	
  

2011)	
  

CA-­‐Gro	
   Groundhog	
  River	
  Mixedwood	
   ON	
   48.22	
   -­‐82.16	
   mixed	
  
(Coursolle,	
  Margolis	
  et	
  

al.	
  2006)	
  

CA-­‐Na1	
  
Nashwaak	
  Lake	
  1	
  1967	
  Balsam	
  

Fir	
   NB	
   46.47	
   -­‐67.10	
   Deciduous	
  
(Coursolle,	
  Margolis	
  et	
  

al.	
  2006)	
  

US-­‐WCr	
   Willow	
  Creek	
   WI	
   45.81	
   -­‐90.08	
   Deciduous	
  
(Davis,	
  Bakwin	
  et	
  al.	
  

2003)	
  

US-­‐UMB	
   UMBS	
   MI	
   45.56	
   -­‐84.71	
   Deciduous	
  
(Schmid,	
  Su	
  et	
  al.	
  

2003)	
  

CA-­‐Mer	
   Mer	
  Bleue	
  Eastern	
  Peatland	
   ON	
   45.41	
   -­‐75.52	
   Deciduous	
  
(Coursolle,	
  Margolis	
  et	
  

al.	
  2006)	
  

US-­‐Ho2	
   Howland	
  Forest	
  West	
  Tower	
   ME	
   45.21	
   -­‐68.75	
   Conifer	
  
(Thornton,	
  Law	
  et	
  al.	
  

2002)	
  

US-­‐Ho3	
   Howland	
  Forest	
  East	
  Tower	
   ME	
   45.21	
   -­‐68.73	
   Conifer	
  
(Hollinger,	
  Aber	
  et	
  al.	
  

2004)	
  

US-­‐Ho1	
   Howland	
  Forest	
  Main	
   ME	
   45.20	
   -­‐68.74	
   Conifer	
  
(Hollinger,	
  Goltz	
  et	
  al.	
  

1999)	
  

US-­‐MRf	
   Marys	
  River	
   OR	
   44.65	
   -­‐123.55	
   Conifer	
  
(Vickers,	
  Thomas	
  et	
  al.	
  

2009)	
  

US-­‐Me2	
   Metolius	
  Intermediate	
  Pine	
   OR	
   44.45	
   -­‐121.56	
   Conifer	
  
(Law,	
  Turner	
  et	
  al.	
  

2004)	
  

US-­‐Bkg	
   Brookings	
   SD	
   44.35	
   -­‐96.84	
   Grass/Crops	
  
(Gilmanov,	
  Tieszen	
  et	
  

al.	
  2005)	
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US-­‐Me3	
   Metolius	
  Second	
  Young	
  Pine	
   OR	
   44.32	
   -­‐121.61	
   Conifer	
  
(Vickers,	
  Thomas	
  et	
  al.	
  

2009)	
  

CN-­‐Du2	
   Duolun-­‐grassland	
  

Inner	
  
Mongo
lia	
   42.05	
   116.28	
   Grassland	
  

(Chen,	
  Chen	
  et	
  al.	
  
2009)	
  

US-­‐GLE	
   GLEES	
   WY	
   41.36	
   -­‐106.24	
   Conifer	
   (Massman	
  2000)	
  

US-­‐Ne3	
  
Mead	
  rainfed	
  maize-­‐soybean	
  

rotation	
  	
   NE	
   41.18	
   -­‐96.44	
   Cropland	
  
(Suyker,	
  Verma	
  et	
  al.	
  

2005)	
  

US-­‐Ne1	
  
Mead	
  irrigated	
  continuous	
  

maize	
   NE	
   41.17	
   -­‐96.48	
   Cropland	
  
(Suyker,	
  Verma	
  et	
  al.	
  

2004)	
  

US-­‐Ne2	
  
Mead	
  irrigated	
  maize-­‐soybean	
  

rotation	
   NE	
   41.16	
   -­‐96.47	
   Cropland	
  
(Suyker,	
  Verma	
  et	
  al.	
  

2004)	
  

US-­‐NR1	
   Niwot	
  Ridge	
   CO	
   40.03	
   -­‐105.55	
   Conifer	
  
(Monson,	
  Turnipseed	
  

et	
  al.	
  2002)	
  

US-­‐Bo1	
   Bondville	
   IL	
   40.01	
   -­‐88.29	
   Cropland	
  
(Hollinger,	
  Bernacchi	
  

et	
  al.	
  2005)	
  

US-­‐Slt	
   Silas	
  Little	
  Experimental	
  Forest	
   NJ	
   39.91	
   -­‐74.60	
   Deciduous	
  
(Clark,	
  Skowronski	
  et	
  

al.	
  2010)	
  

US-­‐MMS	
   Morgan	
  Monroe	
  State	
  Forest	
   IN	
   39.32	
   -­‐86.41	
   Deciduous	
  
(Schmid,	
  Grimmond	
  et	
  

al.	
  2000)	
  

US-­‐CaV	
   Canaan	
  Valley	
   WV	
   39.06	
   -­‐79.42	
   Cropland	
  
(Hollinger,	
  Ollinger	
  et	
  

al.	
  2010)	
  

US-­‐MOz	
   Missouri	
  Ozark	
   MO	
   38.74	
   -­‐92.20	
   Deciduous	
  
(Gu,	
  Meyers	
  et	
  al.	
  

2006)	
  

US-­‐Var	
   Vaira	
  Ranch	
   CA	
   38.41	
   -­‐120.95	
  
Shrubs/Gras

sland	
  
(Ma,	
  Baldocchi	
  et	
  al.	
  

2007)	
  

US-­‐ARM	
   ARM	
  Southern	
  Great	
  Plains	
   OK	
   36.61	
   -­‐97.49	
   Grass/Crops	
  
(Fischer,	
  Billesbach	
  et	
  

al.	
  2007)	
  

US-­‐WBW	
   Walker	
  Branch	
   TN	
   35.96	
   -­‐84.29	
   Deciduous	
  
(Wilson	
  and	
  Meyers	
  

2001)	
  

US-­‐NC1	
   North	
  Carolina	
  Clearcut	
   NC	
   35.81	
   -­‐76.71	
   Deciduous	
  
(Noormets,	
  Gavazzi	
  et	
  

al.	
  2010)	
  

US-­‐NC2	
  
North	
  Carolina	
  Loblolly	
  

Plantation	
   NC	
   35.80	
   -­‐76.67	
   Conifer	
  
(Noormets,	
  Gavazzi	
  et	
  

al.	
  2010)	
  
US-­‐Fwf	
   Flagstaff	
  Wildfire	
   AZ	
   35.45	
   -­‐111.77	
   Shrubs	
   (Dore,	
  Kolb	
  et	
  al.	
  2008)	
  
US-­‐Fmf	
   Flagstaff	
  Managed	
  Forest	
   AZ	
   35.14	
   -­‐111.73	
   Conifer	
   (Dore,	
  Kolb	
  et	
  al.	
  2008)	
  
US-­‐Fuf	
   Flagstaff	
  Unmanaged	
  Forest	
   AZ	
   35.09	
   -­‐111.76	
   Conifer	
   (Dore,	
  Kolb	
  et	
  al.	
  2008)	
  

US-­‐Goo	
   Goodwin	
  Creek	
   MS	
   34.25	
   -­‐89.87	
   Deciduous	
  
(Wilson	
  and	
  Meyers	
  

2007)	
  

US-­‐SRM	
   Santa	
  Rita	
  Mesquite	
   AZ	
   31.82	
   -­‐110.87	
  
Shrubs/Gras

sland	
  
(Scott,	
  Jenerette	
  et	
  al.	
  

2009)	
  

US-­‐Aud	
   Audubon	
  Research	
  Ranch	
   AZ	
   31.59	
   -­‐110.51	
   Grassland	
  
(Krishnan,	
  Meyers	
  et	
  

al.	
  2012)	
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Except for the Mead Irrigated cropland site in Nebraska (site ID, US-Ne1, Table A.1), 

all the results were reported as site mean values. At the Mead cropland site, high 

frequency measurement of LAI was available from 2006 to 2012, showing large LAI 

changes within the growing season. To capture these seasonal variations, we analyzed 

the daily mean quantities for this site.  

 

A.2.2 Data Analysis 

We computed the half-hourly or hourly Rr using Equation (A.6). In this equation, the 

total heat resistance consists of three additive components (Figure A.1). The 

aerodynamic resistance Ra was determined with Equation (A.3). The excess resistance 

Rex was approximated by 

                                                                                  (A.7) 

Equation (A.7) indicates that , a typical ratio for rough surfaces [Garratt, 

1994]. The corresponding kB-1 value is 2. Making use of Equations (A.4), (A.6), and 

(A.7), we obtained an expression for computing Rr: 

                                                     (A.8) 

 

In Equation (A.2), (A.3), and (A.8), H, Ta and u* were from direct tower 

measurements, Ts, ρ, Ra and the stability correction factor and	
   were 

calculated using measured variables, and d and zo were assumed as 70% and 10% of 

the canopy height (h), respectively.  

Rex =
2
ku*

z0
zh
= 7.4

Rr =
ρCp(Ts −Ta )

H
− Ra −

2
ku*

ΨM ΨH
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We separated the data between stable and unstable conditions by the direction of the 

surface sensible heat flux: 

H < -5 W m-2         stable condition 

H > 5 W m-2           unstable condition. 

The surface radiative temperature Ts was determined from the upward longwave 

radiation flux and corrected for the surface reflection of the downward longwave 

radiation flux, as 

                                                               (A.9) 

where is the upward longwave radiation, is the downward longwave radiation, 

is the surface emissivity (assumed to be 0.98), and is the Stefan-Boltzmann 

constant.  
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Figure A.1 Schematic of the resistance decomposition model for calculating the 

sensible heat flux, H. Toh is the aerodynamic temperature at the thermal roughness 

height; Tom is the aerodynamic temperature at the momentum roughness height. 

 

A.3 Results and Discussion 

A.3.1 Relations of heat resistances to LAI under unstable conditions 

In this section, we provide a detailed examination of the resistances under unstable 

conditions. Previous studies have shown that the bulk formulation is much more 

uncertain under unstable conditions than under stable conditions. The excess 

resistance Rex shows little dependence on LAI (Figure A.2e, A.2f). The excess 

resistance arises from the fact that heat is transferred by molecular diffusion through 

the laminar boundary layer in immediate contact with the surface whereas the 



	
   159	
  

momentum exchange is more efficient due to viscous shear and form drag [Thom, 

1972]. The form drag is associated with the individual roughness elements of a 

surface, and the viscous shear is related to wind speed. The molecular heat diffusion, 

however, depends mainly on the temperature field of the fluid. The insensitivity of 

Rex to LAI suggests that Rex is controlled primarily by these processes at the leaf scale 

and is not affected by the amount or arrangement of the foliage elements at the 

canopy scale.  

 

Unlike the excess resistance, the radiometric resistance Rr behaves more dynamically. 

It shows an exponential decay as LAI increases (Figure A.2a and A.2b). At low LAI 

values (LAI < 1), Rr is 3.7 times larger than Rex in the summer and 1.4 times larger in 

the winter. An alternative interpretation is that the effective zr is much smaller than zh 

for sparse vegetation. Because at sites of larger Rr the temperature difference Ts - T0 

should be larger in magnitude, our results are consistent with those found by Mahrt 

and Vickers [2004]. Using airbone measurements in the Southern Great Plains 

Experiment, these authors showed that Ts – T0 can be described by the simple linear 

expression model,  

                                                  (A.10) 

where C and Cs are positive  regression coefficients, S is solar radiation, and the 

reference LAI value (LAIref) is approximately 1.0. This expression illustrates that Ts – 

T0 is large when LAI is small. They also acknowledged that a more complex function 

of LAI is required for very large LAIs. The dependence on S is explained by the fact 

that sunlit surfaces warm up faster than the air at the roughness height. 

Ts −T0 =C S −Cs (LAI − LAIref )"# $%
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Figure A.2 Relationship between the three heat resistances and LAI under unstable 
conditions. a, c, e: summer; b, d, f: winter. Each date point represents a site seasonal 
mean value. Lines are regression fits to the data: Rr,  (summer), 

 (winter); Ra,  (summer),  
(winter); Rex,   (summer),  (winter). 

 

y = 24.4exp(−0.5x)
y =14.9exp(−0.2x) y = 35.9exp(−0.4x) y = 22.9exp(−0.6x)

y = 5.0 y = 4.4
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Figure A.3. Same as Figure 2 except for under stable conditions. 
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The aerodynamic resistance Ra behaves similarly to Rr as LAI changes (Figure A.2c 

and A.2d). In terms of magnitude, Ra is comparable with Rr. The physical explanation 

of the exponential correlation between the LAI and the aerodynamic resistance lies in 

the convection efficiency. High LAI usually corresponds to aerodynamically rough 

surfaces that trigger large coherent eddies which are efficient in heat convection, 

whereas low LAI surfaces (grassland or fallow cropland) are more like bluff-rough 

surfaces which are less efficient to generate eddies [Stewart et al., 1994; Voogt and 

Grimmond, 2000].  

 

A.3.2 Summer versus winter 

There is some seasonal difference in the three resistances (Table A.2). Figure A.2 

shows that the general patterns on LAI are similar between the summer and winter 

seasons. In the winter when LAI is small, the site-mean values of Rr and Ra are more 

scattered than those in the summer (Figure A.2a-d). One reason is related to 

deciduous forest sites. These sites have low LAI in the winter, but are still 

aerodynamically rough. Instead of assuming zo being proportional to stand height, an 

improved parameterization, such as in Raupach [1994] where zo is a function of both 

canopy height and LAI, may reduce these scatters. 

In terms of magnitude, only Rr shows higher values in the winter than in the summer, 

whereas the other two resistances do not show much seasonal differences. The Rr 

seasonality is partly explained by LAI changes. For the deciduous forest group, the 

average winter LAI is low (1.5), and the average Rr is 65.6 s m-1. In the summer when 

the average LAI increases to 4.1, the average Rr is 37.0 s m-1. It appears that the 
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seasonal LAI change alters the radiative property of the surface that is related to the 

radiometric resistance, but the exact nature of this property is not known.  

 

For the coniferous forest site group, because the difference in the average LAI 

between summer and winter is very small, the seasonal difference Rr is largely 

reduced (Table A.2). The LAI difference is not zero between summer and winter for 

this group because of the presence of deciduous understory vegetation and deciduous 

trees at some of the coniferous sites.  

 

The Rr in the cropland group behaves similarly to the deciduous forest group, 

showing much larger values in the winter than in the summer. The 

grassland/shrubland group, unlike the deciduous forest and cropland groups, shows 

little difference in Rr between summer and winter under unstable conditions. This is 

because for grasslands, unless it is burned, dead vegetation is still standing at the 

surface, whereas for cropland there is a drastic difference in the vegetation stands 

between growing and non-growing season. 
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Table A.2 Statistics of the three component resistances among all the sites. 

 

Veg.	
  Type	
   Season	
   Stability	
   LAI	
  
Rr	
   Ra	
   Rex	
  

mean±s.e.	
  
(s	
  m-­‐1)	
  

mean±s.e.	
  
(s	
  m-­‐1)	
  

mean±s.e.	
  
(s	
  m-­‐1)	
  

Deciduous	
  
Summer	
  

Unstable	
  
4.1	
  

4.3±09	
   7.6±2.1	
   5.5±1.2	
  
Stable	
   46.8±6.9	
   54.8±7.6	
   9.5±0.8	
  

Winter	
  
Unstable	
  

1.5	
  
8.6±1.8	
   9.3±3.1	
   4.1±0.5	
  

Stable	
   78.3±9.7	
   28.1±5.3	
   6.1±0.6	
  

Conifer	
  
Summer	
  

Unstable	
  
4.0	
  

6.4±1.8	
   8.2±2.5	
   4.1±0.2	
  
Stable	
   51.8±6.3	
   66.5±6.0	
   10.6±0.8	
  

Winter	
  
Unstable	
  

3.4	
  
9.3±2.0	
   9.2±2.4	
   3.8±0.4	
  

Stable	
   59.8±9.4	
   44.0±5.9	
   7.3±0.8	
  

Grass/Shrub	
  
Summer	
  

Unstable	
  
1.2	
  

17.5±5.2	
   27.7±3.7	
   6.0±0.5	
  
Stable	
   31.8±1.6	
   62.6±8.3	
   8.8±0.9	
  

Winter	
  
Unstable	
  

0.3	
  
16.9±7.5	
   20.6±5.7	
   5.4±1.4	
  

Stable	
   56.0±17.8	
   44.2±11.9	
   7.1±1.8	
  

Crop	
  
Summer	
  

Unstable	
  
3.6	
  

8.5±0.5	
   19.8±1.7	
   6.3±1.0	
  
Stable	
   98.3±8.5	
   58.3±5.2	
   8.8±0.8	
  

Winter	
  
Unstable	
  

0.4	
  
17.5±4.8	
   22.7±1.8	
   7.4±0.6	
  

Stable	
   98.1±16.2	
   50.4±2.4	
   8.9±0.1	
  
 

A.3.3 Daily variations 

In order to further investigate the influence of LAI, we analyzed the daily variations 

of the radiometric resistance for a cropland site with continuous maize plantation, 

Mead Irrigated site in Nebraska (site ID, US-Ne1, Table A.1). The growing season is 

from the beginning of June to the end of September. The irrigated cropland site has a 

more dynamic LAI change over the year compared to a typical forest or grassland 

site.  

 

The patterns seen in the seasonal mean values across multiple sites still hold for the 

daily values at this specific site (Figure A.4). The multiyear data show obvious annual 
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cycles of Rr with a range from -20 to 330 s m-1 in variations (Figure A.4a and b).  The 

trend of the cycle is just opposite to the phase of the crop LAI cycle. The seasonal 

pattern is much stronger under unstable conditions than under stable conditions, 

which is consistent with what was observed in the seasonal mean values at multiple 

sites (Figure A.2). 

 

Under unstable conditions, the day-to-day variation is smaller than the contrast 

between the growing and the non-growing season. For example, in the year 2008 – 

2009 the standard deviation of the daily Rr is 6.1 s m-1 for the growing season (June 

10th 2008- October 7th 2008) under unstable conditions. For comparison the mean 

difference between the two seasons is 56.7 s m-1 under unstable conditions.  The day-

to-day flucutations were caused by variations in the site microclimatic conditions. 

Since the goal of this research is to better isolate the influences on the heat resistances 

from different land surface types, these variations are unwanted “random noises”. By 

using seasonal mean values, these fluctuations were filtered out.  

 

Under unstable conditions, the daily mean Rr shows a similar pattern (Figure A.4c) as 

the seasonal mean across the sites (Figure A.2a), that is, an exponential decay of Rr 

with increasing LAI. Although the general pattern is similar with what is seen in the 

seasonal mean values at multiple sites, the regression curve is different. The 

difference is caused by the negative radiometric resistance values that occurred 

persistently in the growing season (Figure A.4a and c). The two outliers in Figure 4c 

should result from the measurement errors. These two days are July 12th 2006 and 
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July 6th 2007. For both days, during the daytime only one single value can be used to 

calculate resistances, because for all other hourly measurements, the sign of Ts – Ta is 

opposite to the sign of H.  
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Figure A.4. Correlation between the daily radiometric resistance and LAI at the 

Mead Irrigated site in Nebraska (site ID, US-Ne1). a, time series under unstable 

conditions (daytime); b, time series under stable conditions (nighttime); c, scatter plot 

under unstable conditions; d, scatter plot under stable condition. 
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Under stable conditions, this exponential decay relationship is no longer detectable 

(Figure A.4d). Instead Rr appears independent of LAI. The mean Rr value is 105.1 s 

m-1.  

 

Negative resistances are physically unacceptable. Two possible causes of the 

negative Rr values in this site are contamination of the air temperature 

measurement by solar heating and inaccurate z0 parameterization. The scatter 

plot of half-hourly H versus Ts – Ta for this site revealed that at H = 0 W m-2, 

the temperature difference Ts – Ta had an offset of 1 – 1.5 K, indicating a 

potential bias in the temperature measurement. One source of bias errors was 

related to sunlight heating of the air temperature sensor. Another possible 

source of error was the temperature calibration. Vaisala calibration, which was 

not always a very accurate calibration, was used in this site. Indeed, reducing 

Ta by 1K did eliminate a number of negative Rr values and brought the result 

into better agreement with the site mean regression curve (Figure A.5a).  

 

Raupach [1994] has shown that z0 should dynamically respond to both canopy 

height and LAI. We then parameterized z0 as a function of canopy height and 

LAI according to Raupach [1994] to determine if negative Rr may be caused 

by inaccurate z0 parameterization. Comparison of this new result (Figure A.5a) 

with the calculation using fixed z0 (Figure A.4c) shows that this dynamic 

parameterization has little effects on the negative Rr values.  
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Figure A.5 Sensitivity analyses to air temperature bias and z0 parameterization under 

unstable conditions for the Nebraska site. a, Ta reduced by 1.0K; b, original Ta, 

 

 

A.3.4 Relations of heat resistances to air stability 

All the three component resistances are generally larger under stable conditions than 

those under unstable conditions (Figures A.2 and A.3). Table A.2 shows the average 

resistances among all the sites under unstable and stable conditions in the summer 

and the winter. Our results confirm that the stratified air under stable conditions 

prevents the heat transfer more than the air under unstable conditions. This air 

stability effect has been known for a long time for aerodynamic resistance [Garratt, 

1994]. According to our results, air stability has similar impacts on the radiometric 

resistance. 

 

z0 = exp(−2.3)×h× LAI
−0.15
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Under stable conditions, there is no apparent correlation between LAI and the 

aerodynamic resistance  (summer: R2 < 0.05, winter: R2 < 0.01), a pattern that is 

different from that observed in unstable conditions (summer: R2 > 0.58, winter: R2 > 

0.30). Under stable conditions, Rr shows no apparent correlation to the LAI either 

(Figure A.3a and A.3b), and is on average 40.2 s m-1 larger than the Rex in summer 

and 64.8 s m-1 larger in winter for all the sites examined in this study. These values 

are compatible with the Rr estimates by Stewart et al. [1994] (22 – 73 s m-1). Under 

unstable conditions, the average Rr is 7.8 s m-1 and is only slightly larger than Rex (4.9 

s m-1). 

 

A.3.5 Impacts of radiometric resistance on sensible heat flux calculation 

In order to assess the impacts of radiometric resistance on the sensible heat flux 

calculation, we first calculated the sensible heat flux by using the complete Equation 

6 and again by omitting Rr from Equation 6, as  

                                                               (A.11) 

In Equation 6, Rr was obtained from the regression fit functions of LAI shown in 

Figure 2a (summer) and 2b (winter) for unstable conditions and constant values of 50 

s m-1 (summer) and 66 s m-1 (winter) for stable conditions, and other terms were 

provided by field measurements. The prediction error e and the relative prediction 

error er are defined as, 

                                                                           (A.12) 

                                                                                (A.13) 

H
∧

= ρCp
Ts −Ta
Ra + Rex

e = H
∧

−H

er =
e
H
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where H is the observed sensible heat flux. 

 

Not surprisingly, omission of Rr results in an overestimation of the magnitude of 

sensible heat flux. Under stable conditions, the prediction error has no apparent 

correlation to the site LAI. Under unstable conditions the prediction error is much 

larger for low LAI sites and smaller for high LAI sites (Figure A.6a). The relative 

error decreases as the LAI increases under unstable conditions and has no apparent 

correlation with LAI under stable conditions (Figure A.6b). These results show that 

the largest overestimation due to omission of Rr occurs at low LAI surfaces and under 

unstable conditions.  

 

Similar results can be found in published literature. In an experiment study in a 

soybean field, Lee et al. [2009] reported larger prediction errors (up to 308 W m-2) for 

the early part of the growing season (LAI < 2) than in the middle part of the growing 

season (error < 15 W m-2) when LAI is large (LAI = 7.6). Chen and Zhang [2009] 

compared the observed heat transfer coefficient Ch from Ameriflux sites and the 

modeled Ch by Noah LSM, and reported large model overestimations for short 

vegetation in Noah LSM. In Noah, the two roughness (zh and z0) are used to calculate 

Ch without the radiometric resistance Because Ch is inversely proportional to the heat 

resistance, overestimation of Ch indicates overestimation of H in the model. Zheng et 

al. [2012] reported a large cold bias in the daytime Ts (up to -15oC) produced by 

NCEP operational Global Forecast System over the arid western continental United 

States where LAI is very small. In NCEP, Ts is solved from the energy balance 
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equation with H parameterized according to Equation (A.1) and with the 

approximation Ts = T0. In other words, the default NCEP calculation omits the 

radiometric resistance. By adding the radiometric resistance as a function of 

vegetation fraction to the bulk formula, Zheng et al. [2012] significantly reduce the 

cold bias in Ts (average bias < -4oC). Similar with our findings, they found that their 

Rr formulation has a minimal effect on the nighttime Ts under stable conditions.. 

Recently, Zhang et al. [2014] also reported a large high bias (120 W m-2) in H 

calculated with a LAI-independent parameterization of zr for a dessert steppe site, and 

using a time-varying heat roughness length as a function of vegetation growth 

reduced more than half of the root mean squared error of H.  
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Figure A.6 Bin average prediction errors of sensible heat flux caused by omission of 

the radiometric resistance. Top panel: prediction error; bottom panel: relative 

prediction error.  Error bars denote 1 s.e. 
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A.4 Conclusions 

A simple resistance model was used to decompose the total resistance to heat transfer 

from the surface to the reference height into three additive components: radiometric 

resistance, excess resistance, and aerodynamic resistance. On average, all the 

resistances are higher under stable conditions than under unstable conditions. The 

excess resistance shows no apparent relations to the LAI change under unstable or 

stable conditions. The aerodynamic and radiometric resistance decrease exponentially 

as the LAI increases under unstable conditions. Under stable conditions, the 

aerodynamic and radiometric resistance show no apparent relations to the LAI change 

and are much larger than the excess resistance.  The daily data at a cropland site show 

that the relations to LAI seen in the seasonal mean values across multiple sites still 

hold for the daily values.  

 

High bias in the sensible heat flux calculation occurs if the radiometric resistance is 

omitted from the bulk transfer formulation. The overestimation is larger at lower LAI 

surfaces. The problem is especially severe at low LAI (<4) and under unstable 

conditions.   
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