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Strong contributions of local background climate to
urban heat islands
Lei Zhao1,2, Xuhui Lee1,2, Ronald B. Smith3 & Keith Oleson4

The urban heat island (UHI), a common phenomenon in which sur-
face temperatures are higher in urban areas than in surrounding
rural areas, represents one of the most significant human-induced
changes to Earth’s surface climate1,2. Even though they are localized
hotspots in the landscape, UHIs have a profound impact on the
lives of urban residents, who comprise more than half of the world’s
population3. A barrier to UHI mitigation is the lack of quantitative
attribution of the various contributions to UHI intensity4 (expressed
as the temperature difference between urban and rural areas, DT).
A common perception is that reduction in evaporative cooling in
urban land is the dominant driver of DT (ref. 5). Here we use a cli-
mate model to show that, for cities across North America, geographic
variations in daytime DT are largely explained by variations in the
efficiency with which urban and rural areas convect heat to the lower
atmosphere. If urban areas are aerodynamically smoother than sur-
rounding rural areas, urban heat dissipation is relatively less efficient
and urban warming occurs (and vice versa). This convection effect
depends on the local background climate, increasing daytime DT by

3.0 6 0.3 kelvin (mean and standard error) in humid climates but
decreasing DT by 1.5 6 0.2 kelvin in dry climates. In the humid east-
ern United States, there is evidence of higher DT in drier years. These
relationships imply that UHIs will exacerbate heatwave stress on human
health in wet climates where high temperature effects are already
compounded by high air humidity6,7 and in drier years when pos-
itive temperature anomalies may be reinforced by a precipitation–
temperature feedback8. Our results support albedo management as
a viable means of reducing DT on large scales9,10.

The conversion of natural land to urban land causes several notable
perturbations to the Earth’s surface energy balance. Reduction of evap-
orative cooling is generally thought to be the dominant factor contrib-
uting to UHI. Anthropogenic heat release is an added energy input to
the energy balance and should increase the surface temperature. Energy
input by solar radiation will also increase if albedo is reduced in the
process of land conversion. Buildings and other artificial materials can
store more radiation energy in the daytime than can natural vegetation
and soil; release of the stored energy at night contributes to night-time
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Figure 1 | Precipitation and population
influences on MODIS-derived annual-mean
UHI intensity. a, Map of daytime UHI (shown in
K by symbol type/size). b, Dependence of daytime
UHI on precipitation (r 5 0.74, P , 0.001).
c, Map of night-time UHI. d, Dependence of
night-time UHI on population (r 5 0.54,
P , 0.001). Red, green and blue symbols denote
cities with annual mean precipitations less than
500 mm, between 500 and 1,100 mm, and over
1,100 mm, respectively. Lines in b and d are linear
regression fits to the data. Parameter bounds for
the regression slope are the 95% confidence
interval.
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UHI. Finally, energy redistribution through convection between the sur-
face and the atmospheric boundary layer can either increase or reduce
DT, depending on whether the efficiency of convection over urban land
is suppressed or enhanced relative to that over adjacent rural land.
Although these concepts have been known for some time11–13, a quant-
itative understanding of their roles across different climate regimes
remains elusive4.

The climatic context can be understood by posing the following ques-
tion in a thought experiment: if two cities are built identically in terms of
morphological and anthropogenic aspects but in different climates, will
they have the same DT? The answer depends on time of day according
to observations of surface temperature by the NASA MODIS satellite.
For 65 selected cities in North America, the annual-mean midnight DT
(surface temperature of urban core pixels minus that of rural pixels) is
positively correlated with the logarithm of population (correlation coef-
ficient, r 5 0.54; confidence level, P , 0.001; Fig. 1d), but is invariant
with climate, showing a statistically insignificant correlation with pre-
cipitation (r 5 0.05, P 5 0.70; Extended Data Fig. 1), solar radiation
(r 5 0.15, P . 0.20) and air temperature (r 5 0.20, P . 0.10). However,
the annual-mean midday DT is strongly correlated with precipitation
(r 5 0.74, P , 0.001; Fig. 1b) and has a weaker statistical dependence
on population size than does the night-time DT (r 5 0.27, P 5 0.027;
Extended Data Fig. 1). The night-timeDT shows little spatial coherence
(Fig. 1c), but the daytimeDT has a discernible spatial pattern that follows
precipitation gradients across the continent (Fig. 1a). Twenty-four of
the cities are located in the humid southeast United States, which coin-
cides roughly with the Köppen–Geiger temperate climate zone (Fig. 2a).
Their daytime annual-meanDT is on average 3.9 K and is 3.3 K higher
than that of the 15 cities in the dry region (Fig. 2d, e). By comparison, the
night-timeDT differs by 0.1 K between the two groups (P . 0.60; Fig. 2f, g).
These results are in broad agreement with previous remote-sensing
studies on UHI across biophysical and developmental gradients14–17.

At first glance, the relationship with precipitation (Fig. 1b) seems con-
sistent with the hypothesis that reduction in evaporative cooling in urban
land is the main driver of daytimeDT, because the denser vegetation in
wet climate regions has a higher evaporation rate than the vegetation
in dry climates. However, our model-based analysis does not support
such an interpretation. In the model domain,DT is a perturbation signal
to the surface temperature caused by biophysical contrast between rural
and urban land units in the same model grid cell18. This signal is further
decomposed, using the method described in ref. 19, into contributions
from changes in radiation balance, evaporation, convection efficiency
and heat storage, and from anthropogenic heat addition (Fig. 2). The
credibility of the model is supported by the reasonable agreement of
the modelled DT with the MODIS DT (r 5 0.31, P , 0.02 for daytime;
r 5 0.30, P , 0.025 for night time) and by its accurate depiction of the
relationship between night-timeDT and albedo (Extended Data Fig. 4).
Furthermore, the model has reproduced the observed positive correla-
tion between the daytime DT and precipitation (Fig. 3a).
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Figure 2 | Attribution of UHI intensity in three Köppen–Geiger climate
zones. a, Map of climate zones: white, mild temperate/mesothermal climate;
grey, continental /microthermal climate; dark grey, dry climate. b, d, e, Daytime
values of MODIS and modelled DT and its component contributions in each
of the three zones (see arrows). c, f, g, Night-time values in each of the three
zones (see arrows). Green bars denote model-predicted DT and blue bars
denote UHI intensity calculated as the sum of the component contributions.
Error bars, 1 s.e. for each climate zone.

CLM
Radiation
Convection
Evaporation
Storage
Anthropogenic heat

CLM

Radiation

Convection

Evaporation

Storage

Anthropogenic heat

−100

0

100

200

C
o

v
a
ri
a
n
c
e
 e

x
p

la
in

e
d

 (
%

)

500 1,000 1,500
−4

−2

0

2

4

6

8

Annual-mean precipitation (mm)

ΔT
 (
K

)

a

b

y = (0.0043 ± 0.0010)x –0.94

y = (0.0060 ± 0.0009)x – 4.0

Figure 3 | Relationship between model-predicted daytime DT and
precipitation among the cities. a, Correlation of DT and the individual
biophysical components with annual-mean precipitation. Lines are linear
regression fits to the corresponding data. Parameter bounds for the regression
slope are the 95% confidence interval. b, DT–precipitation covariance
explained by different biophysical factors. Note that the covariance explained
by the anthropogenic heat term is negligibly small.
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We find that it is the changes in convection efficiency (associated
with aerodynamic resistance changes), rather than those in evapotran-
spiration, that control the daytimeDT–precipitation spatial covariance
among the cities (Fig. 3). In the humid climate (the Köppen–Geiger
temperate climate zone), convection is less efficient at dissipating heat
from urban land than from rural land, and the associated temperature
increase is 3.0 6 0.3 K, which dominates the overall DT (Fig. 2e). At
these locations, the rural land is in general densely vegetated, owing to
ample precipitation, and is aerodynamically rough. Quantitatively, this
difference is manifested in a lower aerodynamic resistance to sensible
heat diffusion in the rural land (39 s m21) than in the urban land
(62 s m21). Measured in terms of aerodynamic resistance, urbaniza-
tion has reduced the convection efficiency by 58%.

The opposite occurs in the dry climate zone, where urban land is
rougher than rural land and has enhanced convection efficiency. The
result is actually a cooling effect (Fig. 2d). In this zone, the urban land-
scape has lower aerodynamic resistance (53 s m21) than the adjacent
rural land (66 s m21), which is typically inhabited by vegetation of low
stature such as shrubs, sagebrushes and grasses. On average, the urban
land is about 20% more efficient in removing heat from the surface by
convection than is the rural land. The average cooling signal is 21.5 6

0.2 K. In a few of the cities, convection is much more efficient than in
the surrounding natural land, such that DT becomes negative (Figs 1a
and 3a). It has been suggested that negativeDT, a phenomenon known
as ‘urban heat sink’, arises from evaporative cooling of trees and lawns
planted in the city15–17. Our explanation seems more logical, because the
MODIS urban temperature comes from the urban core pixels with neg-
ligible amounts of vegetation cover (enhanced vegetation index, ,0.18)
and the urban land unit in the climate model is completely free of veg-
etation. An analogous situation exists in a semi-arid plantation forest
where trees serve as efficient ‘heat convectors’, leading to a lower sur-
face temperature than in the adjacent smoother shrub land20.

At night, release of the stored heat is the dominant contributor to
DT across all three climate zones (Fig. 2c, f and g). The dependence on
population size (Fig. 1d), which is an indicator of the city’s horizontal
dimension, can be understood in light of these results. At night, the re-
leased heat is trapped in a very shallow atmospheric boundary layer. As

air moves across the urban land, it will accumulate more heat with in-
creasing travel distance. Having a longer upwind fetch, that is, a longer
distance between the upwind edge of the city and the point of obser-
vation, the centre of a larger city should experience stronger warming11.

There is some evidence of precipitation control on interannual vari-
ability in the daytime DT for individual cities. For each city, we have
calculated the linear regression slope of the annual daytime DT against
the annual precipitation, and we refer to it as the temporal sensitivity to
precipitation. Both the MODIS and the model data show a negative
dependence of the sensitivity on site mean precipitation (Fig. 4b, d).
Twenty-four cities have annual-mean precipitation exceeding 1,100 mm.
According to the model, all of these cities, which are mostly distributed
in the eastern United States, have negative temporal sensitivity (Fig. 4c),
meaning higherDT in drier years. The mean temporal sensitivity of this
group of cities is 20.0021 K mm21. The MODIS results are less con-
sistent because of shorter data records, showing negative sensitivity for
42% of them (Fig. 4a, b).

To gain further insight into the interannual variability, we have com-
pared the daytime DT–precipitation correlations for Billings in Mon-
tana (annual-mean precipitation, 353 mm) and Richmond in Virginia
(1,183 mm). We choose these two cities because they have nearly the
same morphological and biophysical specifications (Extended Data
Table 1) and therefore are essentially identical in the model world. The
sensitivity to precipitation is positive at Billings and negative at Rich-
mond (Extended Data Fig. 2). In contrast to the spatial variations across
North America (Fig. 3b), the DT interannual variability shown here is
driven primarily by changes in surface evaporation (Extended Data Fig. 3).

Our results can be interpreted in the context of heatwave climatology.
A measure of heatwave intensity is the degree of deviation, in multiples
of standard deviation (North American mean value, s < 0.6 K) of sum-
mertime temperature from the climatological mean21. For example, the
2003 European heatwave8 is a rare event measured at 5s. These stat-
istical considerations are based on regional background climatology.
Being an additional anomaly on this background condition, UHI will
aggravate heat stress on human health. In the southeast United States,
where the heat stress is already amplified by high air humidity7, the
daytime DT is equivalent to 7s (Fig. 2e). The situation may be further
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worsened in drier years when the positive temperature anomaly is likely
to increase owing to a precipitation–temperature feedback8. Empirical
evidence exists for such synergistic effects22. Using the temporal sens-
itivity of 20.0021 K mm21, a 500 mm reduction in the annual precip-
itation corresponds to an increase in the daytimeDT by 1.1 K, or ,2s.
We caution that these numbers represent the upper bound of the UHI-
added stress because UHI intensity at the screen height23 (the height of
air temperature observation at a standard weather station) and under
all-sky conditions should be smaller than our DT, which is for clear
skies and for the surface. However, summertimeDT is generally larger
than annual DT (refs 13–17, 24).

The health impact of heatwaves is one factor that motivates the
growing efforts to mitigate UHI. According to our results, a strategy
that focuses on reducing anthropogenic heat would bring virtually no
relief, but this might be because of the primitive anthropogenic heat
scheme in the model18. Managing the convection efficiency or heat stor-
age of urban land does not seem viable, even though these are large con-
tributors to DT, because it would require fundamental changes to the
urban morphology, such as a city-wide increase in building height. How-
ever, efforts to increase urban albedo have the promise of producing
measurable results on a large scale. For the cities in the southern United
States, the reduction of net radiation loading amounts to a daytime cool-
ing effect of 0.7 K (Fig. 2e). In the model, this reduction is caused by the
fact that these cities have an average albedo that is 0.06 higher than the
surrounding rural land. This albedo difference is modest, considering
that phasing in reflective roofs in Chicago25 has already increased the
city-wide albedo by ,0.02 and that some cool-roof implementations10

aim to increase the urban–rural albedo contrast by as much as 0.6. Albedo
increases have little direct effect on the night-time UHI (Fig. 2g) but
may have an indirect cooling benefit through the reduction in the day-
time heat storage and, therefore, less heat release from storage at night16,26,27.
The negative correlation between the night-time DT and urban–rural
albedo contrast16 (Extended Data Fig. 4) can be viewed as empirical evi-
dence of this indirect benefit.

METHODS SUMMARY
MODIS data. We calculated the annual-mean DT using the MODIS-Aqua eight-
day composite land surface temperature from 2003 to 2012. The night-time and
daytime DT were determined at 1:30 and 13:30 local time, respectively. Data were
collected at 65 cities distributed across the United States and Canada. For each city,
we paired pixels in the centre of the city with those outside the city to determineDT.
Climate model. We used the Community Earth System Model28 to simulate UHI.
The model grid cell consists of urban and rural land units whose surface energy bal-
ance variables are calculated using a single-layer urban surface parameterization
and a standard land surface scheme, respectively18,29. We ran the model for 33 yr of
simulation time from 1972 to 2004 after a 60 yr spin-up. The forcing data are an
atmospheric reanalysis product validated against various observations30. The simu-
lation was conducted at the finest resolution supported by the model (0.23u
longitude 3 0.31u latitude) to resolve individual cities. The surface skin temper-
ature was determined from the emitted long-wave radiation. To be consistent with
the MODIS observations, we used the modelled data at 1:00 and 13:00 local time
and under clear-sky conditions to compute the annual DT and to perform the
surface energy balance analysis.
Attribution of UHI. Attribution of UHI is accomplished by a surface energy bal-
ance analysis. The total DT is partitioned, using the method of ref. 19, into contri-
butions from the differences, between the urban and rural land units, in surface
radiation balance, convection efficiency, evapotranspiration and heat storage, and
from anthropogenic heat addition. The perturbation to the radiation balance results
mainly from albedo contrast and also includes a minor part associated with surface
emissivity change. The analysis was done separately for daytime and night time
using the relevant forcing and prognostic model variables.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
MODIS LST, precipitation and population data. The UHI temperature differ-
ence DT can be defined using shelter-derived air temperature or a satellite-derived
radiative surface temperature. The former suffers from inhomogeneity in the urban
landscape. The latter is a valuable spatial average, but is influenced by the emissivity
of the surface. Neither exactly matches the human experience of UHI as an indi-
vidual walks across the rural or urban landscape. For the purpose of comparing dif-
ferent cities, the surface temperature approach is easier and more stable. Nichol et al.
(ref. 31) showed that the correlation between the surface and screen-height air
temperature can be weak on neighbourhood scales and improves considerably at
the scale of urban–rural transition.

MODIS Aqua land surface temperature (LST) data obtained at 65 cities in the
United States and Canada were used in this analysis. This is an eight-day clear-sky
composite data set. The spatial resolution is 1 km. The satellite overpass times are
approximately 13:30 and 1:30 local time, which are close to the times of daily max-
imum and minimum temperature, and the measurement therefore gives a better
representation of the diurnal range of DT than does that of the other MODIS sat-
ellite, Terra. According to the product quality control flag, the data we used have
an average LST error less than or equal to 2 K. While selecting urban–rural paired
pixels, we avoided the rural pixels that have large elevation differences and large
latitude differences relative to the urban core. Specifically, the upper thresholds for
elevation difference and latitude difference are 100 m and 0.1u. Nine urban pixels
(3 3 3) were selected in the city centre, paired with 1–3 patches of 9–49 pixels each
(3 3 3 to 7 3 7) in the surrounding rural land. Because of topographic and lati-
tudinal limitations, the number of rural pixels varied (one patch for 15 cities, two
patches for 41 cities and three patches for 9 cities). The magnitude of DT is insen-
sitive to the number of urban–rural pixels. Fixing the number of urban and rural
pixels for all the cities to one 3 3 3 patch of pixels altered DT by at most 0.6 K. All
the pixels selected were validated by the MODIS land cover map and cross-checked
against Google Earth. Rural pixels are classified in the MODIS land cover map as
natural surfaces such as forests, grassland, cropland and bare soils. To avoid high
bias of UHI, we excluded water pixels. Urban pixels are classified in the MODIS land
cover map as urban and built-up surface. The resultingDT represents the difference
between the city core and minimally developed land outside the city. The annual
mean values were calculated based on the 10 yr time series of the MODIS LST
(2003–2012). Linear gap filling was done for short periods of missing values to
minimize the impact of missing data on the annual means. If there are more than
three consecutive missing values, we excluded that year.

Cities were chosen so that each state, province or territory was represented by at
least one city, with the exception of four provinces and a territory in Canada (Nova
Scotia, Prince Edward Island and Newfoundland and Labrador; Extended Data
Table 2). The chosen cities are large enough to be resolved by the climate model,
except for five small cities (Helena, Montana; Augusta, Maine; Whitehorse, Yukon;
Yellowknife, Northwest Territories; Iqaluit, Nunavut). These cities span a popu-
lation range of 7,000–379,300. In addition, we avoided the cities on hilly terrain.

The US precipitation data were obtained from PRISM (PRISM Climate Group,
Oregon State University; http://prism.oregonstate.edu). The precipitation data for
cities in Canada were obtained from Environment Canada (http://climate.weather.
gc.ca/). The PRISM data sets are elevation-corrected grid estimates of monthly,
yearly and event-based climatic variables. The precipitation data for Canadian cities
are station measurements.

The population data were obtained from the US Census 2010 (http://quickfacts.
census.gov) and Canada 2011 Census from Statistics Canada (http://www12.statcan.
gc.ca/census-recensement/2011/dp-pd/index-eng.cfm).
Climate model and simulation. We used NCAR’s climate model CESM28 (Com-
munity Earth System Model) to simulate the UHI in the United States and in Canada.
In this model system, the land surface processes are represented by the Community
Land Model29 (CLM). We used CLM version 4.0. In CLM, the land surfaces are
categorized into five land units: vegetation, glacier, wetland, urban and lake. Each
grid cell can have one or more of these land units. The surface radiation and energy
balance equations are solved separately for these land units, and the results are ag-
gregated to yield grid cell means. Specifically, the urban land unit is modelled using
a ‘canyon’ structure and consists of the following subsurfaces: roof, sunlit wall, shaded
wall, and pervious (for example bare soil) and impervious (for example road, side-
walk and car park) canyon floor. It should be noted here that there is potentially
more evaporation from the pervious canyon floor in the urban land unit than from
the comparable bare soil in the rural land, because all of the water in the bare soil
column is available for evaporation in the urban land unit. The vegetated land unit
corresponds to nonurban or rural land. This land unit may contain up to 15 dif-
ferent plant functional types and bare soil.

The model was run in the offline mode (uncoupled from an active atmospheric
model). The urban and rural parameterizations in each grid cell were driven by the
same atmospheric forcing. The atmospheric forcing data used in this study is a

careful reconstruction of the climatology from 1972 to 200430. It was derived from
a combination of the NCEP-NCAR reanalysis32, observation-based analyses and
observational records. Therefore, the data set has an improved accuracy compared
with the NCEP-NCAR reanalysis. We ran the model for 33 yr from 1972 to 2004
after a 60 yr spin-up. The simulation was conducted at the finest resolution as
a standard model configuration supported by this version of the model (0.23u
longitude 3 0.31u latitude), to resolve individual cities. We note that even at this
finest resolution the grid cell is still large enough that the total urban area in a grid
cell can be a combination of several urban areas. The surface skin temperature was
determined from the emitted long-wave radiation for each land unit, with an emis-
sivity of 0.88 for the urban land unit and 0.96 for the vegetated land unit. The urban
emissivity is the mean value of the weighted averages of the emissivity values of the
urban subsurfaces prescribed in the model for the selected cities. The rural emis-
sivity is the mean value of the weighted average of the vegetation and soil emissivity.

To construct the UHI, urban and rural flux and state variables were extracted
from the model output at the grid cells where the selected cities reside. CLM invokes
the urban parameterization only if the urban area fraction exceeds a threshold of
0.1%. Therefore, five small cities used in the MODIS data analysis (Helena, Mon-
tana; Augusta, Maine; Whitehorse, Yukon; Yellowknife, Northwest Territories;
Iqaluit, Nunavut) are neglected by the model.

We included only the modelled data at 1:00 and 13:00 local time each day in this
analysis; these times were selected to match closely the MODIS overpass times. To
replicate the MODIS clear-sky conditions, we excluded cloudy days whose clear-
ness index33 was less than 0.5. We then converted the daily values into eight-day
averages. The gap filling and processes of calculating annual means are the same as
for the MODIS data. Under all-sky conditions, the modelled UHI intensity is on
average 0.59 K lower during the daytime and 0.02 K lower at night than the clear-
sky values, and the pattern regarding the component contributions remains un-
changed from the clear-sky plot (Fig. 2).

We note that the climate model cannot explicitly capture population depend-
ence (Fig. 1). This is because population size is not a model parameter and the heat
advection occurs at subgrid scales not resolved by its one-dimensional parameter-
ization of land–atmosphere interactions.
Attribution of UHI. We used a surface energy balance analysis to isolate the con-
tribution to the model-predicted DT from each individual biophysical factor asso-
ciated with urban land conversion. In this analysis, the rural land is regarded as the
base state, and urbanization is a perturbation to this base state. The perturbation
signal is denoted by D. For example, DT 5 Tu – Tr, where Tu is urban surface tem-
perature and Tr is rural surface temperature within the same model grid cell. Follow-
ing the method of ref. 19, the solution of the UHI intensity can be approximated by

DT<
l0

1zf
DR�nz

{l0

(1zf )2 (R�n{QszQAH)Df1

z
{l0

(1zf )2 (R�n{QszQAH)Df2z
{l0

1zf
DQs

z
l0

1zf
DQAH

ð1Þ

with

f ~
l0rCp

ra
1z

1
b

� �

R�n~(1{a)K;zL;{(1{e)L;{esT4
a

Df1~
{l0rCp

ra
1z

1
b

� �
Dra

ra

Df2~
{l0rCp

ra

Db

b2

where T is the surface temperature, l0~1=4esT3 is the local climate sensitivity, f is
the energy redistribution factor, R�n is the apparent net radiation, ris the air density,
Cp is the specific heat of air at constant pressure, ra is the aerodynamic resistance to
heat diffusion, b is the Bowen ratio, a is the surface albedo, K; is the incoming solar
radiation, L; is the incoming long-wave radiation, eis the surface emissivity, s is the
Stefan–Boltzmann constant, Ta is the air temperature at a reference height. In this
analysis, we assume that ra, b, Rn* and Qs and QAH are parameters associated with
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the external perturbation (land use conversion) and are independent of T; the
partial derivative of these variables can then be calculated.

In equation (1), the terms on the right-hand side represent, in order from the
first to the last, contributions from changes in radiation balance (term 1), aerody-
namic resistance (term 2), Bowen ratio (term 3), and heat storage (term 4) and from
anthropogenic heat addition (term 5). Because ra is the resistance to sensible or
convection heat flux, term 2 is essentially a measure of change in the convection
efficiency between urban and rural land. In an abstract sense, changes in b (term 3)
can result from changes in sensible heat flux (H), latent heat flux (LE) or both (see
equation (2), below). In the present context of partial differentiation, however, H
and LE are not independent because the delta term Df2 is evaluated with the net
radiation R�n and other valuables held constant. Thus, a reduction in b is accomp-
lished by channelling more radiation energy to the surface latent heat flux, and it is
appropriate to attribute term 3 to changes in surface evaporative cooling.

The calculation was performed separately for 1:00 and 13:00 local time, with
cloudy days omitted. Three sets of variables were used. The first set comes directly
from the forcing data and includes precipitation, incoming solar radiation (K;),
reference-height air temperature (Ta; air temperature at 30 m above the surface),
air pressure and downward long-wave radiation (L;). The second set has model-
predicted variables, including reflected short-wave radiation (aK;), sensible heat
flux (H), latent heat flux (LE), storage heat flux (Qs) and anthropogenic heat flux
(QAH). The third set of variables, including surface temperature (T), air density (r),
Bowen ratio (b) and aerodynamic resistance (ra) were derived from the forcing data
and the model-predicted variables. Specifically, the Bowen ratio was calculated as

b~
H
LE

ð2Þ

and the aerodynamic resistance to heat diffusion was calculated from

ra~
rCp(T{Ta)

H
ð3Þ

The aerodynamic resistance determined from equation (3) is the sum of the dif-
fusion resistance in the atmospheric surface layer and the excess resistance assoc-
iated with the thermal roughness34,35. The urban and rural land units within each
model grid cell have the same forcing variables and have different values for the
second and third sets of the variables. It should be noted here that the model un-
derestimates the anthropogenic heat flux (QAH) owing to the primitive anthropo-
genic heat scheme. The total anthropogenic heat in the model includes only heating
and air conditioning (HAC) fluxes, waste heat generated by HAC and the heat
removed by air conditioning. These fluxes are based on some prescribed parameters
in the surface data set of CLM and calculated heat transfer into and out of roofs and
walls. The heat flux due to traffic is neglected by the current version of the model36.

The sum of the component contributions is slightly lower than the modelledDT
(Fig. 2) because high-order terms are ignored in the linearization of the surface

long-wave radiation term of the energy balance equation and nonlinear interactions
among the factors are omitted in the analysis. Comparison between model-predicted
DT and calculated DT (sum of the individual contributions) reveals excellent cor-
relation for daytime (r 5 0.88, P , 0.001) and night time (r 5 0.55, P , 0.001).
Covariance analysis. The covariance analysis was performed on modelledDT and
its components against precipitation. Let CR, CH, CLE, Cs and CAH be the contribu-
tions from radiation, convection efficiency, evaporation, storage and anthropo-
genic heat, respectively (terms 1 to 5 in equation (1)). Equation (1) can be rewritten
as

DT~CRzCHzCLEzCszCAHze

where e is an error term arising from nonlinear interactions. Because the covar-
iance operation is linear, theDT–precipitation covariance is equal to the sum of the
covariance between each component and precipitation

Cov(DT,P)~Cov(CR ,P)zCov(CH,P)

zCov(CLE,P)zCov(Cs,P)

zCov(CAH,P)zCov(e,P)

ð4Þ

where P is precipitation. Equation (4) decomposes the total covariance between
DT and precipitation into the covariance contribution from its five components
and a residual error term. We presented covariance here rather than correlation
coefficient because the correlation is not a linear operation. In Fig. 3 and Extended
Data Fig. 3, we normalized the covariance between each component and precip-
itation by the total DT–precipitation covariance.

We applied this technique to the analysis of both spatial covariance and temporal
covariance. In the analysis of spatial covariance, each data point is the climatic annual
mean value of a city (Fig. 3). In the analysis of the temporal covariance at a city, each
data point is the mean value for an individual year of that city (Extended Data Fig. 3).
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Extended Data Figure 1 | Precipitation and population influences on
MODIS-derived annual mean UHI intensity. a, Dependence of daytime UHI
on population size (r 5 0.27, P 5 0.027). b, Dependence of night-time UHI on
precipitation (r 5 0.05, P 5 0.70). Red, green and blue symbols denote cities
with annual mean precipitations less than 500 mm, between 500 and 1,100 mm,
and over 1,100 mm, respectively. The solid line in a is the linear regression
fit to the data. Parameter bounds for the regression slope are the 95%
confidence interval.
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Extended Data Figure 2 | Time series of MODIS and model-predicted daytime DT and annual precipitation. a, Billings, Montana. b, Richmond, Virginia.
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Extended Data Figure 3 | Relationship between interannual variations in
model-predicted daytime DT and precipitation. a, Correlation of DT and the
individual biophysical components with annual precipitation at Billings,
Montana. b, Same as in a except for Richmond, Virginia. c, DT–precipitation

temporal covariance explained by different biophysical factors at Billings,
Montana. d, Same as in c except for Richmond, Virginia. Lines are best linear
regression fits to the data points. Parameter bounds for the regression slope are
the 95% confidence interval.
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Extended Data Figure 4 | Albedo influence on annual mean night-time UHI
intensity. a, Dependence of night-time MODIS-derived UHI on white-sky
albedo difference (that is, urban albedo minus rural albedo; r 5 20.60,
P , 0.001). b, Dependence of night-time modelled UHI on modelled albedo
difference (r 5 20.56, P , 0.001 excluding four outliers; r 5 20.18, P 5 0.16

with all data points). The four outliers in the upper right corner of b are coastal
cities (Olympia, Washington; Seattle, Washington; Salem, Oregon; Vancouver,
British Columbia) that have high biases of the modelled DT compared to
the MODIS DT. Lines are linear regression fits to the data. Parameter bounds
for the regression slope are the 95% confidence interval.
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Extended Data Table 1 | Urban parameters of a city pair in CLM
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Extended Data Table 2 | Size statistics for selected cities in the United States and in Canada
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