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Abstract. In this paper, we use a two-dimensional eddy-resolved model to investigate the instability
of a parallel shear flow in a stably stratified boundary layer whose lower domain is occupied by a
canopy. The results support our contention that wave motion in the canopy is initiated by shear in
an air layer near the treetops. Significant modification by the wave motion of the mean velocity and
temperature fields is found even before the wave reaches saturation. The wave fluxes of momentum
and heat are not constant with height. Downwind tilting braids are found at the finite amplitude
stage of the wave growth and could persist after wave breaking; these downwind tilting structures are
believed to be the same as the temperature microfronts reported in the literature. We also present an
analysis of the velocity and temperature fields of an observed wave event in the time-height domain
and show that the simulation has captured the broad features of the observation.
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1. Introduction

Coherent structures of the turbulence in plant canopies are a subject of numerous
micrometeorological studies (Raupach et al., 1996; Finnigan, 2000). In unstable
air, these structures are manifest in the form of repetitive temperature ramps
(gradual rise in temperature followed by a sharp drop), sweeps, which bring fast
moving air downward (u′ > 0,w′ < 0), and ejections, which displace slow moving
air upward (u′ < 0, w′ > 0). Here u and w are the longitudinal and vertical velocit-
ies, respectively, and primes denote a departure from the mean. At night when air
is stably stratified, the time series of velocities, temperature and other scalars often
exhibit a high degree of periodicity. The periodic patterns at times may look like
inverse ramps, sinusoidal waves, or square waves. One way to distinguish these
coherent motions is to examine the phase relation between w and other quantities.
For example, w′ and u′ are roughly 180◦ out of phase during a sweep/ejection event
in unstable conditions and w′ and T ′ are nearly in-phase, resulting in significant
transports of momentum and heat in the air layer near the canopy. On the other
hand, wavelike motions often show a 90◦ phase relation between w′ and u′ and are
not as effective as the sweeps/ejections in transporting momentum (Figure 1).
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Figure 1. Vector plot of fluctuating velocities showing two idealized phase relations. Top: evanescent
wave (u′ leading w′ by π/2); bottom: sweep/ejection (u′ leading w′ by π).

Wavelike motions are a common form of air motion in forests (Fitzjarrald and
Moore, 1990; Lee and Barr, 1998). In an earlier study (Lee, 1997), we used a
linear model to show that the mean atmospheric state permits an unstable mode
that shares common features with the Kelvin–Helmholtz (KH) instability. The
linear analysis however suffers from several drawbacks. First, it assumes a con-
stant background flow. In reality, however, the background flow is always evolving
due to wave, canopy and mean flow interactions and change in external forcing.
Second, linear models apply to small-amplitude, sinusoidal waves. In field ex-
periments wavelike motions are identified only after they have grown to finite
amplitudes. They seldom resemble pure sinusoidal waves. Third, the measured
wind and scalar fields often show evidence of turbulent mixing, which is a highly
nonlinear phenomenon. Numerical simulations are a suitable next step beyond the
linear framework to generate further new insights into the dynamics of this motion
type.

In this paper, we present the results of a two-dimensional (2D) numerical study
of instability of a parallel shear flow in a stably stratified boundary layer whose
lower domain is occupied by a canopy. Specifically, we are interested in the time
evolution of the wave, wave-introduced mixing and modification of the mean fields,
and modification of the classical KH instability by plant elements. We also wish to
compare the spatial structures seen in the model domain with those captured by the
time-height plots of velocity and temperature time series from a field observation.

The justification for a 2D simulation (instead of a three-dimensional LES) is that
the primary KH wave is 2D and is quite persistent in the initial stage of growth.
In the linear framework, a 2D treatment of the KH wave is justified according
to Squires theorem (Drazin and Reid, 1981). Only after the primary wave has
reached a saturation stage do 3D features appear in the flow (Werne and Fritts,
1999). Even then the quasi 2D, large-scale structures still persist in the presence
of small-scale 3D fluctuations. These structures are believed to be the vestige of
the primary instability in the early stage of flow transition from the laminar to
turbulent state (Klaassen and Peltier, 1985). We acknowledge that models of this
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type are not new. The 2D studies by Patnaik et al. (1976) and Peltier et al. (1978)
substantiated the broad features, such as phase speed and growth rate of the primary
mode, predicted by linear analysis. These studies also discussed the time evolution
of the wave structure. Schilling and Janssen (1992) embedded in the flow field
simulated by a 2D model a Lagrangian dispersion scheme to explain mixing of
pollutants caused by the KH instability in the stratosphere. Sykes and Lewellen
(1982) used a second-order closure scheme in their 2D model to parameterize the
3D turbulence within the KH billows. In this study we will use a simple 1.5 order
closure scheme to parameterize the subgrid-scale turbulence. Since the large-scale
structures, the main focus of our study, are essentially determined by the initial and
boundary conditions, and to a lesser extent by canopy drag on the air motion, the
quality of the turbulence closure model is not critical.

2. Numerical Model

2.1. BASIC EQUATIONS

Our 2D eddy-resolved model explicitly solves the motion with scales larger than
the grid size and the effects of the subgrid-scale motions are modelled. The formu-
lation is similar to that of the large-eddy simulation of canopy flow (e.g., Shaw and
Shumman, 1992), except that the computation is performed in the x− z plane. The
grid-cell averaged governing equations are:
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ūj ūi
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where ui (i = 1, 3) is the velocity component in the xi direction, θ is potential tem-
perature, p is pressure, ρ is air density, g is gravitational acceleration, and p′ and θ ′
are deviations from the adiabatic background pressure and potential temperature,
respectively. Overbars denote grid-cell averaging. Canopy drag, Fi , is modelled,
following Shaw and Schumann (1992), as,

Fi = −cdaV ūi, (4)

where V is instant scalar total velocity, a is leaf area density, and cd is a drag
coefficient (= 0.15; Shaw et al., 1988). Air-plant heat exchange is omitted from
Equation 2 for computational convenience. A sensitivity analysis with our linear
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model suggests that the omission may lead to a slight (5–10%) increase in the
growth rate but does not affect phase speed or wavelength of the fastest growing
mode.

The subgrid-scale momentum and heat fluxes are written as

τij = ūi ūj − uiuj = Km

(
∂ūi

∂xj
+ ∂ūj
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− 2
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where Km and Kh are the subgrid eddy viscosities of momentum and heat, re-
spectively, and E = u′2

i /2 is the subgrid-scale turbulent kinetic energy. The eddy
viscosity is obtained from the Prandtl–Kolmogorov relation,

Km = Kh = cmlE
1/2, (7)

where cm is an empirical constant (= 0.15), and l is the characteristic length
scale which is related to the horizontal and vertical grid sizes #x and #z by
l = (#x#z)1/2. The turbulent kinetic energy is determined by the following
prognostic equation
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with the empirical constant cε = 0.93.

2.2. NUMERICAL METHODS

The MATLAB flow solver for solving the model equations is developed by Stevens
et al. (2000). The same algorithm was used to study the entrainment process in a
stratocumulus marine boundary layer (Stevens et al., 2000). The numerical scheme
is based on the algorithm developed by Almgren et al. (1996). This projection
method is a fractional step scheme, and first solves the advection- diffusion equa-
tions to predict intermediate velocities, and then projects these velocities onto
the space of approximately divergence-free vector fields. A second-order upwind
method is adopted to discretize the nonlinear advection terms, which avoids any
cell Reynolds number stability restriction for high Reynolds flow. Compared with
standard upwind differencing methods, the scheme couples the spatial and tem-
poral discretization to attain a second-order accuracy in both space and time. It
leads to a robust higher order discretization with excellent phase-error properties.
Unlike the widely-used staggering grid layout, all primary variables to be computed
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are located in the centres of the grid cells so that no interpolation is needed to
compute the model statistics, such as momentum flux and heat flux. The time-step
constraint is the common Courant–Friderich–Levy condition

max

( |u|#t
#x

,
|w|#t
#z

)
≤ 1.

2.3. INITIAL AND BOUNDARY CONDITIONS

The lateral boundaries are periodical, which is appropriate for this simulation study.
The length of the computation domain is set to one wavelength of the fastest grow-
ing mode predicted by the linear wave model (Lee, 1997). The domain height is
6h, where h is canopy height. The upper and lower boundaries are treated as rigid
walls and zero-flux conditions are implemented. The upper boundary is sufficiently
far away from the maximum shear, and hence has a negligible effect on the flow
development.

The same profiles in the linear canopy wave model (Lee, 1997) are used to
initiate our simulations. A Gaussian distribution describes the leaf area density

a (z) = Lh

0.125
√

2π
exp

[− (z/h− 0.65)2 /
(
2 × 0.1252

)]
(9)

where z is height and L is leaf area index. The initial mean wind speed is given by

u =
{

uh exp
[
α2 (z/h− 1)

]
z ≤ h,

uh
{
α1 tanh

[
(α2/α1) (z/h− 1)

] + 1
}
z > h,

(10)

where uh = 1 m s−1 is the wind speed at z = h, α1 (= 3) and α2 (= 2.85) are
empirical constants. The temperature profile is set up to make the Brunt–Väisälä
frequency (N) profile assume the following form

N2 = 0.003
{
(1 − γ1) exp

[−γ2 (z/h− 1)
] + γ1

}
, (11)

where γ1 = 0.2 and γ2 = 2.
The parameter values used in the simulation are listed in Table I. The minimum

Richardson number is located at z/h = 1.38 with a value of 0.112, smaller than the
critical value of 1/4. All simulations are initiated with small-amplitude white noise
added to the initial potential temperature field. Other variables adjust themselves
gradually to the perturbation. At about 200 s after the initiation, the flow field
locks into the fastest growing mode. The initial perturbation is sufficiently small so
that it does not influence the flow structure at the finite-amplitude stage. Previous
studies (e.g., Peltier et al., 1978; Sykes and Lewellen, 1982) have demonstrated the
insensitivity of the result to the exact form of the initial perturbation.
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TABLE I

Parameters used in the numerical simulations.

Parameter Definition Value

#x Horizontal grid size 3.28 m

#z Vertical grid size 1.88 m

h Tree height 20 m

L Leaf area index 4

uh Wind speed at treetops 1 m s−1

λ Wavelength of the fastest growing mode 210 m

Lx Length of computation domain λ

H Height of the computation domain 6h

3. Life History of an Observed Wave Event

In this section, we present an analysis of the velocity and scalar fields of an
observed wave event in the time-height domain following Gao et al. (1989) and
Bergström and Hogström (1989). Since field observations in a 2D spatial domain
are not feasible, the features captured by the time-height plots are helpful for us to
judge the validity of the model simulations.

3.1. DATA

The data were collected during the 1994 BOREAS (Boreal Ecosystem Atmosphere
Studies) field campaign (Lee et al., 1997). The forest was 21 m tall, with a dense 2-
m tall understory. At the time of the observation, the overstory and understory leaf
area indices were 1.8 and 3.2, respectively. There were three sonic anemometers
mounted at z = 5.5, 27.7 and 39.1 m. Air temperature fluctuations were monitored
at 12 levels (z = 2.2, 4.1, 6.4, 9.5, 12.6, 15.7, 18.8, 21.9, 25.0, 27.7, 31.4, 39.1 m)
with fine wire thermocouples.

The data used in this study, from 0145 to 0300 local standard time (LST), July
13, cover the complete life history of a wave event, from its initiation to breaking.
A portion of the data was analyzed by Lee et al. (1997). Hu (2001) presented a full
account of the time evolution of the temperature field and the interactions between
the wave and external forcing (cloudiness, mean wind) on the night of July 12–13.

3.2. FLOW AND SCALAR FIELDS IN THE TIME-HEIGHT DOMAIN

A sequence of 5-min temperature contour/velocity vector plots are presented in
Figures 3–4, and water vapour and CO2 time series for the same period are given
in Figsures 5–6. The 5-min mean wind speed at z = 1.9h was 1.8 m s−1 at
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Figure 2. Profile of 5-min mean temperature observed in a boreal forest on July 13, 1994: dotted line
with crosses, 0145-0150; dash-dot line, 0205-0210; dashed line 0225-0230; solid line, 0255-0300
LST.

0145 LST and increased steadily to 2.5 m s−1 at 0300 LST. Net radiation over
the forest was −75 W m2. The 5-min mean temperature and its vertical gradient
decreased steadily with time due to radiative cooling and wave mixing, respectively
(Figure 2).

3.2.1. Wave Initiation
In the wave initiation stage (Figure 3 top panel), temperature fluctuations were
found mainly in the air layer 1h − 1.5h. Although wind fluctuations at z = 1.9h
were small, distinctive periodic patterns were clearly visible. In comparison, wind
fluctuations at z = 1.3h were larger and less organized. The remarkably constant
concentrations of water vapour and CO2 at z = 1.9h indicate that there was little
vertical displacement of air parcels at this height or that the sensors were located
in a previously well-mixed layer (Figure 5 top panel). From these features we may
infer that the source of disturbance was located near the treetops rather than in the
upper boundary layer beyond the tower height.
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Figure 3. Observed velocity fluctuations superposed on temperature contours at 0.2 K intervals. Top:
Wave initiation (maximum wind fluctuation of 0.79 m s−1); bottom: Wave growth (maximum wind
fluctuation of 1.01 m s−1).
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3.2.2. Wave Growth
By 0205 LST, the wave had gained moderate strength (Figure 3 bottom panel). The
top most sonic anemometer was located just above the upper limit of the wave core,
away from the maximum shear. The wind fluctuation pattern is quite similar to the
evanescent wave shown in Figure 1, indicating that w′ at z/h = 1.9 was approxim-
ately in quadrature with u′, that is, u′ leading w′ by π /2. The wave resulted in little
momentum transport despite the relatively large velocity fluctuations. Similarly, w′
was also in quadrature with the temperature fluctuations, resulting in little sensible
heat flux. The fluctuations in water vapour and CO2 concentrations were closely
associated with the strength of the wave activity (Figure 5 bottom panel). The flat
baselines of CO2 and H2O were periodically interrupted by spikes that were a result
of the wave motion of sufficiently large magnitude bringing air of high CO2 and
low humidity to the sensor height, a pattern consistent with our contention that the
wave motion was initiated near the treetops. [The 180◦ phase between humidity
and CO2 suggests a downward flux of water vapour (dew formation).]

The wave structure was tilted in the downwind direction, a common feature of
billow waves (Delisi and Corcos, 1973). Near the centre of the wave cores (e.g.,
z = 1.2h), temperature gradient at the leading edge was more diffusive than at the
trailing edge. Hence, a temperature sensor would record a time series characterized
by inverse ramps.

The sonic anemometer at z = 1.3h was located in the middle of the wave
cores. Once again, wind fluctuations at this height were bigger than those at z =
1.9h. Sweep/ejection patterns, similar to the idealized case shown in Figure 1, can
be identified. Unlike the daytime coherent structures in which sweeps dominate
over ejections, here both motion types were of equal importance in momentum
transport. There was a slight positive correlation between w and T over this period,
indicating an upward, counter-gradient transport of heat.

3.2.3. Wave Saturation
In the next plot (Figure 4 top panel), the wave had reached a stage of maximum
intensity, which we label as saturation stage. The wave core extended beyond
z = 1.9h on several occasions. A striking feature at z = 1.9h is the altern-
ate quadrature and sweep/ejection phase relations: u′ and w′ were in quadrature
as in Figure 3 when the sensor was outside the wave core and displayed the
sweep/ejection pattern when it was within the core. It was these sweeps/ejections
that generated downward momentum flux at this height. In other words, momentum
flux was only generated over a fraction of a wave cycle. The wind fluctuations were
as strong as those at z = 1.3h. The square wave pattern in the H2O and CO2 time
series was also indicative of wave saturation (Figure 6 top panel).

The velocity fluctuations at z = 1.3h show the classical sweep/ejection pattern
(Figure 1). The sharp transition from a sweep to an ejection occurred roughly in
the middle of the wave core. The highly correlated u′ and w′ generated a large
downward momentum flux. The temperature contours suggest overturning in the
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Figure 4. Observed velocity fluctuations superposed on temperature contours at 0.2 K intervals. Top:
Wave saturation (maximum wind fluctuation of 1.29 m s−1); bottom: Wave destruction (maximum
wind fluctuation of 2.08 m s−1).
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Figure 5. Scalar fluctuations for periods shown in Figure 3.
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Figure 6. Scalar fluctuations for periods shown in Figure 4.
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wave core, that is, some cooler air being brought over the warmer air, and give
the impression that the warmer air and cooler air were spinning around each other
with a positive spanwise vorticity. Since such overturning structures were statically
unstable, turbulence would develop from convective instability, similar to those
found in the laboratory experiment (Thorpe, 1987). Indeed, air temperature within
the wave core was rather uniform and showed a slight increase with time, which
supports the conjecture of turbulent mixing.

The wind at z = 0.26h was fairly strong at this time. The velocity vector plot
appears as a mirror image of that shown in Figure 1 (top panel). From this we infer
that w′ led u′ by π/2. Thus, wave motion within the lower part of the canopy was
of the evanescent type.

3.2.4. Wave Destruction
In the wave destruction stage (bottom panels of Figures 4 and 6), the steep tem-
perature gradient delineating the wave core began to disappear. Irregularity was
evident in the velocity and scalar time series except in the lower canopy layer where
the sinusoidal pattern remained. Temperature gradient in the air layer z/h = 1–1.5
was reduced substantially as a result of overturning and wave breaking (Figure 2).
This was followed by a one-hour quiescent period and then the initiation of another
wave event (Hu, 2001).

4. Results of Numerical Simulations

4.1. COMPARISON WITH LINEAR WAVE THEORY

Numerical simulations have been carried out for flow with and without the canopy.
Because the initial perturbation is sufficiently small in magnitude, the 2D simu-
lations can capture a linear growth stage. The growth rate and phase speed are
compared with the linear theory to establish, among other things, confidence of the
numerical procedure. A cross-correlation algorithm is used to calculate the phase
speed (Appendix A). To estimate the growth rate, we first determine the mean
horizontal velocity u in the streamwise direction as

〈u〉 = 1

Lx

∫ Lx

0
u (x, z) dx, (12)

where Lx is the horizontal domain size. The total perturbation kinetic energy is
given by

e =
∫ H

0
dz

(∫ Lx

0

1

2

[
(u− 〈u〉)2 + w2] dx

)
, (13)
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Figure 7. Wave growth rate simulated by the 2D model (solid line, with canopy; dotted line, without
canopy).

where H is the height of the model domain. The growth rate of the primary mode
is given by

σ = 1

2

d

dt
(ln e) . (14)

The result is shown in Figures 7 and 8.
The linear growth stage, characterized with a constant growth rate, is found

between 400 s and 700 s, or 4 to 7 linear time constants, noting that a linear time
constant is the inverse of the growth rate in the linear stage, for both simulations
with and without the canopy drag. The oscillations in the growth rate prior to
this are a result of the initialization with white noise, similar to those reported
by Peltier et al. (1978). The growth rate without the canopy is 0.010 s−1, identical
to the prediction of the linear stability analysis. Inclusion of the canopy drag in the
simulation increases the growth rate slightly (0.011 s−1). In comparison, the linear
model (Lee, 1997) predicts a growth rate of 0.067 s−1 for flow with the canopy
effect.

The 2D simulation of flow without the canopy gives a phase speed of about 1.6
m s−1 in the linear growth stage, once again in excellent agreement with the linear
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Figure 8. Wave phase speed simulated by the 2D model (solid line, with canopy; dotted line, without
canopy).

model prediction (Figure 8). For flow with the canopy, the phase speed is reduced
to 1.5 m s−1, 8% lower than the linear model prediction.

The agreement on the linear growth parameters between the 2D simulation and
linear stability analysis for flow without the canopy is similar to previous studies
on KH instability (Patnaik et al., 1976; Peltier et al., 1978) and is indicative of
a good performance of our 2D flow solver. The discrepancy for the simulation
with the canopy can be understood in terms of the changing background flow
(next sub-section). Once the wave has grown beyond the linear stage, the growth
rate decreases to zero within 2–3 linear time constants (Figure 7). The 2D flow
structures indicate that the wave becomes saturated in amplitude at t = 900 s
(Figure 9 below). The phase speed increases steadily to 1.9 m s−1 at wave saturation
(Figure 8). A saturated canopy wave propagates at an increased speed because the
shear layer has been broadened by wave mixing.

4.2. THE ROLE OF CANOPY DRAG IN THE WAVE DYNAMICS

Even though the canopy drag represents a momentum sink (Equation (1)) and
hence some stabilizing effect on the flow, its overall role is to destabilize the
flow through the KH instability. The process can be understood if we start with



214 XINZHANG HU ET AL.

Figure 9. Evolution of the simulated temperature field in the x − z domain. The layer z < h is
occupied by a plant canopy. Wind is from left to right. Contour interval is 0.2 K.

a hypothetical quiescent period during which air is stably stratified and wind speed
is very low both within and above the canopy. Let us now suppose that a sporadic
external forcing, such as the breakdown of a nocturnal low-level jet, speeds up
the background flow. Initially, the wind speed is modified only by the canopy
drag because the flow is essentially laminar. The time constant for a shear layer
to establish can be estimated from

Fc = cdau
2 = u/2tc, (15)

where tc = 2/cdau is referred to as half time, the time needed for the wind within
the canopy to be reduced by a half, and is similar to the concept of distance constant
proposed by Finnigan and Brunet (1995). For a 20-m tall forest with a leaf area
index of 5 and foliage uniformly distributed with height, an initial wind speed of
u = 2 m s−1, and a canopy drag coefficient cd = 0.15, the half time is about
10 s. Thus, in a very short time wind shear is established near the treetops. The
initial shear layer is thin for lack of turbulence mixing, with a shear that may be
strong enough to reduce the Richardson number below the critical value and thus
trigger the KH instability. The thin shear layer will limit the initial instability to
small scales, but will be broadened by the subsequent mixing. Further instability
at a larger scale may be triggered in the broadened shear layer or by merging of
previous small-scale waves. It is possible that several such instability cycles may
occur before the wave is observable by the eddy covariance instruments.

The effect of the canopy drag on the wave dynamics is captured to some extent
by comparing the 2D simulation and the linear analysis. In the linear analysis, the
background flow is assumed constant with time. However, in the 2D numerical
simulation, because the half time of wind adjustment within the canopy is much
shorter than the linear time constant, a significant reduction in the wind in the
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canopy layer occurs almost immediately after the simulation is initiated. As a
result, the instability grows on a background wind profile whose shear is actually
larger than the initial shear given by Equation (10) and thus a larger growth rate
is computed. Likewise, because the instability moves at a speed of the mean wind
near the canopy top, which is reduced from the initial value, the phase speed is
smaller than predicted by the linear analysis. Unfortunately, our 2D model cannot
reproduce the small-scale KH waves proceeding the primary mode because the
model forces the instability to lock onto a specified wavelength equal to the domain
length (Table 1).

4.3. TWO-DIMENSIONAL WAVE EVOLUTION

The simulation is initiated at t = 0 s with a small disturbance added to the back-
ground temperature field. From a sequence of the simulated temperature contour
plots (Fig. 9), we can identify the first three stages of the wave development:
wave initiation (t < 600 s), wave growth (600–740 s) and wave saturation (820–
900 s), each bearing resemblance, at least in a qualitative sense, to the observation
described above. The horizontally homogeneous stratification becomes visibly dis-
torted as the waves grow beyond the linear stage (t = 600 s). Not surprisingly,
the distortion starts in a layer near the treetops where the maximum shear occurs.
Further growth of the wave gives rise to two broad features of the classical KH
instability (Patnaik et al., 1976; Peltier et al., 1978), the roll-up of the temperature
contours in the wave core and crowding of these contours along an inclined band
called ‘braid’. The braid, located on the downwind side of the wave core, connects
the top of one core to the bottom of the next (also Figure 10 below). The horizontal
temperature gradient upwind of the core is more diffuse than in the braid. Thus
an imaginary temperature sensor at the height of the wave core would record a
time series characterized with inverse ramps. Overturning structures similar to the
observation (Figure 4 top panel) are found at 820 s. At 900 s, the wave has reached
its finite amplitude and become saturated, with a core of uniform temperature due
to overturning.

In Figure 10, the wind fluctuation vectors are superposed on the potential tem-
perature field at t = 800 s. Three identical frames are patched together to allow a
visual comparison with the field observation. The maximum velocity fluctuations
are found within the wave core. (The rather large wind fluctuations near the ground
are unrealistic since the lower boundary condition in the calculation does not
provide a momentum sink.) The simulated vertical velocity above the billow core
is in quadrature with the horizontal velocity. This evanescent feature is expected
because the mean fields in this air layer (Equations (9)–(11)) satisfy the condition

N/(c − 〈u〉) < 2π/λ, (16)

where c is phase speed. The wind fluctuations within the billow core display clearly
the sweep/ejection pattern, allowing the wave motion to extract kinetic energy from
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Figure 10. Top: Simulated velocity fluctuation vectors superposed on the temperature contours at t
= 800 s in the presence of a canopy (contour interval 0.2K, maximum wind fluctuation 1.01 m s−1).
Bottom: Observed velocity/temperature fields (a portion of the data shown in Figure 3 bottom panel).

the mean flow at the maximum shear height and to re-distribute the energy. The
height-dependent phase relation is similar to the observation discussed above ex-
cept that the layer of simulated wave disturbance is much deeper than the observed
one.

In a reference frame moving with the mean flow, the classical KH instability
is characterized with a closed streamline pattern known as ‘cat’s eye’ (Draizn and
Reid, 1981). Here we check the streamlines of the simulated canopy wave. The
stream function is defined as

φ =
∫
(u− c) dz, (17)

and a sequence of streamline plots is presented in Figure 11. Closed streamlines
are found at t = 520 s at height z/h = 1.35, near the height of the minimum
Richardson number of the initial velocity and temperature fields. In the moving
reference frame, the fluid circulates along the vorticity lines associated with the
initial shear. As the wave grows, the centre of the cat’s eye moves slightly upward
and its major axis turns slightly in the clockwise direction. The pattern is not
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Figure 11. Simulated streamlines at various time steps for flow with a canopy.

symmetrical because of the unsymmetrical wind profile and the effect of canopy
drag.

4.4. WAVE INTRODUCED MIXING

The role of the above u′ − w′ phase relation in momentum transport can be fur-
ther understood by examining the mean wind profile and a horizontally averaged
momentum flux computed as

〈u′w′〉 = 1

Lx

∫ Lx

0
(u− 〈u〉)(w − 〈w〉) dx, (18)

noting that this is a flux from the resolved-scale motion. A constant flux layer does
not exist over the canopy (Figure 12); the divergence of the momentum flux above
the maximum shear height (z/h > 1.2) leads to deceleration there. The momentum
flux exhibits a convergence pattern below the maximum shear height, but because
the canopy is a momentum sink, the flow does not accelerate. A small secondary
wind speed maximum appears near the forest floor at t = 600 s, perhaps related
to an open trunk space specified by the leaf area density profile (Equation (9)).
Flow reversal occurs near the ground at the wave saturation stage (t = 900 s), at the
same time when the momentum flux exhibits a kinky pattern. This suggests some
effect of entrainment of fast fluid into the slow-moving lower layer as discussed
by Peltier et al. (1978), or else a numerical artifact of the lower zero-flux rigid
boundary condition.
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Figure 12. Profiles of horizontal mean wind speed (top) and momentum flux (bottom) at various time
steps of model integration.
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The lack of a constant flux layer in the presence of wave motion is not a new
finding. Divergence/convergence of the momentum flux is predicted by linear the-
ory (e.g., Davis and Peltier, 1977) and was observed in a field experiment (Lee et
al., 1997). What impresses us is the rapid increase of momentum flux with time as
the wave gains strength. At the wave saturation stage, the momentum flux is two
orders of magnitude larger than in the linear growth stage.

Similarly, the wave acts to smooth out the temperature field, with warming
below the height of maximum wind shear due to convergence of heat flux and
cooling above this height due to divergence of heat flux (Figure 13). Here the heat
flux is computed as,

〈w′θ ′〉 = 1

Lx

∫ Lx

0
(w − 〈w〉)(θ − 〈θ〉) dx. (19)

The time evolution of the temperature profile bears some resemblance to the obser-
vation (Figure 2) in that the vertical gradient in the air layer undergoing vigorous
wave motion is substantially reduced. In the wave saturation stage, the original in-
version layer is split into two, one in the lower canopy and one above z/h > 2.5–3,
similar to that reported by Peltier et al. (1976).

Our numerical results and field data show that a canopy wave can significantly
modify the mean velocity and temperature fields, even before the wave reaches its
finite amplitude. Mixing is accomplished by three mechanisms. First, organized,
quasi 2D structures seem to be the dominant form of transport of momentum
and heat, especially in the wave core where w′ is not in quadrature with either
u′ or θ ′ (Figure 10). Second, small-scale eddies play a role at a later stage when
overturning structures develop. The overturning first appears at the leading edge of
the wave, making the temperature gradient more diffuse than at the trailing edge.
Third, mixing also occurs at the time of wave breaking. However, a quantitative as-
sessment of the relative importance of each of these mechanisms requires realistic
3D simulations and is beyond the scope of this study.

5. Conclusions

In this study we propose a four-stage (initiation, growth, saturation, destruction),
idealized life cycle for the canopy wave. We conclude that the canopy wave
is initiated in an air layer near the treetops. At the height of the wave core
center, the velocity fluctuations and temperature time series display the familiar
sweep/ejection and inverse ramp patterns, respectively. Further away from this
height, w′ is in quadrature with u′ and T ′ and the temperature time series become
more or less sinusoidal. The height-dependent phase relation is necessary for the
wave motion because it allows the wave to extract kinetic energy from the mean
flow to support its growth.
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Figure 13. Profiles of horizontal mean temperature (top) and temperature flux (bottom) at various
time steps of model integration.
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Wave saturation (or finite amplitude wave) is a prominent feature of the field
data and is reproduced by our 2D simulations. Distinct isothermal cores are found
as a result of wave folding and overturning. The cores travel at a speed that matches
the wind speed near the treetops. In this regard, the canopy wave motion differ from
propagating buoyancy gravity waves whose phase speed is unrelated to the speed
of the medium.

In the wave destruction phase, the leading edge of the wave is destroyed first
because this is the place where overturning structures are found (Fig. 4 top panel,
Figure 9). The surviving trailing edge exhibits downwind tilting structures, which
we believe are essentially the same as the temperature microfronts studied by Gao
et al. (1989), Paw U et al. (1992) and others.

Significant modification of the mean velocity and temperature fields is found
even before the wave reaches saturation. This is accomplished primarily through
mixing caused by the 2D wave motion. The wave motion invalidates the constant-
flux-layer assumption made in some field studies of the surface-air exchange.
Embedded in the 2D large-scale structures are small-scale overturning features,
which also contribute to the mixing especially within the wave core. Further modi-
fication of the mean fields occurs when the wave breaks into smaller eddies. Since
the background flow is always being modified, the choice of a basic flow for linear
stability analysis is not straightforward.
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Appendix A: Algorithm for Computing Phase Speed

Let φ0 = w(x, z, t0) and φ1 = w(x, z, t0 + #t) be the simulated vertical velocity
fields at time t0 and t0 +#t , respectively. The streamwise displacement of the two
fields,#d, is estimated by finding the maximum of the spatial correlation of φ0 and
φ1 via an FFT algorithm. The Fourier transformation pairs are denoted as φ0 ⇔ /0

and φ0 ⇔ /1. The correlation theorem states

Corr(φ0, φ1) ⇔ /0/
∗
1,

where the asterisk denotes complex conjugate. The (discrete) correlation function
is calculated by the inverse FFT transformation according to the correlation the-
orem. We use sufficiently small #t so that the primary flow structure does not
differ significantly between the two fields.
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The estimate of #d is further improved by a curve fitting routine. Suppose that
we have found the discrete maximum of Corr(φ0, φ1) at x′ = n#x, where n is an
integer and #x is the horizontal grid size. We then fit a parabolic curve,

C(x) = α(x − x′)2 + β(x − x′)+ γ,

to the discrete correlation function with a number of points adjacent to x′. The
estimate of the displacement is given by

#d = x′ + β/2α,

which is more accurate than the original grid size estimate. The phase speed is
given by

c = #d/#t.
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