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Abstract. In this study, Raupach’s localized near-field (LNF) theory is combined with appropriate
parameterizations of the turbulence inside a canopy to investigate how air stability and source con-
figuration influence the flux footprint and flux adjustment with fetch in the roughness sublayer. The
model equations are solved numerically. The flux footprint from the LNF prediction is in general
more contracted than the prediction based on the inertial sublayer similarity functions. In very un-
stable conditions, the near-field effect causes the footprint of the elevated canopy source to locate
further upwind than that of the ground-level source, and the combined footprint can become negative
in situations where the two sources are of opposite sign. The flux footprint and flux adjustment with
fetch in the roughness sublayer are sensitive to source configuration and the parameters specifying
wind speed and the Lagrangian time scale inside the canopy.
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1. Introduction

In micrometeorology, footprint theory is widely used for the interpretation of the
vertical scalar flux in the atmospheric surface layer. A number of models of flux
footprint and flux adjustment with fetch are built upon the principles of gradient-
diffusion established for relatively smooth surfaces. The applicability of these
models in the roughness sublayer over a vegetation canopy is questionable because
the scalar exchange in the roughness sublayer is influenced by dual-source diffu-
sion resulting from the elevated canopy source and the ground-level source. It is
known that the conventional gradient-diffusion theory is inadequate for describing
the diffusion processes of a spatially distributed source. Furthermore, turbulent
transport is dominated by the coherent eddies that are generated by shear instability
linked to the inflected wind profile near the top of the canopy layer, whereas in
the smooth-wall surface layer the wind profile does not possess such an inflection
point. A consequence of the shear-instability is that eddy diffusivity for scalar con-
stituents is enhanced over that predicted by the Monin–Obukhov similarity theory.
Such enhancement would cause the footprint to locate closer to the observational
point than a prediction based only on the surface-layer similarity functions. Fi-
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nally, because wind speed does not diminish at the source height, the emission
plume will advect further downwind before it is detected by a flux instrument, thus
counter-acting the effect of the enhanced eddy diffusion in the roughness sublayer.

In this study, we use a model (Model I) that combines the localized near-field
(LNF) theory of Raupach (1989) with appropriate parameterizations of the turbu-
lence in the canopy to investigate the adjustment of the vertical eddy flux with fetch
in the roughness sublayer. The results of the model calculations will be compared
with predictions from a second model (Model II) that uses only the inertial sublayer
similarity functions to determine the sensitivity of the flux footprint calculation to
the canopy turbulence formulation. The model equations are solved numerically,
using the method of Patankar (1980). An advantage of the numerical approach
is that it is free of some of the simplifications required to achieve an analytical
solution, which is sought by some published studies on flux adjustment (see a
recent review by Schmid, 2002). Thus, like stochastic Lagrangian simulations and
the large-eddy simulation technique (Leclerc and Thurtell, 1990; Horst and Weil,
1992; Wilson and Swaters, 1991; Leclerc et al., 1997), the numerical approach
should improve the physical realism represented by the analytical models. It is true
that the numerical approach is computationally less efficient than an analytical one.
However, this is no longer a serious limitation given the computing power offered
by today’s desktop computers.

2. Model I: Model with an Elevated Source

2.1. BASIC EQUATIONS

This section develops equations for a model (Model I) that incorporates the LNF
theory and the canopy turbulence formulation. In the LNF theory, the scalar
concentration resulting from the canopy source is separated into a non-diffusive
near-field and a diffusive far-field component. The dominance of the coherent eddy
transport is represented by a large Lagrangian time scale that is invariant with
height in the upper canopy layer and in the roughness sublayer. Baldocchi (1997)
adopted the LNF parameterization of the Lagrangian time scale in his random flight
simulation of flux footprint for the ground-level source inside forests.

Let a step change from zero to FT in the total net ecosystem exchange (NEE)
occur at the leading edge (x = 0) and let FT be partitioned as

FT = Fe + Fg, (1)

where Fe and Fg are strengths of the elevated and the ground-level sources, respect-
ively. The far-field concentration field, cF , which is contributed by both sources, is
diffusive, and follows the diffusion equation

F = −KF

∂cF

∂z
, (2)
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and the conservation equation

u
∂cF

∂x
+ ∂F

∂z
= s∗, (3)

where F is the vertical flux, z is height above the ground, u is horizontal velocity, x
is horizontal distance from the leading edge, and s∗ is a source term. The far-field
eddy diffusivity, KF , is given by

KF = σ 2
wτ, (4)

where σw is the standard deviation of the vertical velocity and τ is a Lagrangian
time scale. To be consistent with most models of flux adjustment with fetch, the
divergence of the streamwise eddy flux is ignored here. Baldocchi (1997), Rannik
et al. (2000) and Lee (2002) show that this simplification may distort the flux
footprint near the observational point but does not alter the broad pattern of flux
adjustment with fetch.

The non-diffusive, near-field concentration, which is contributed by the elevated
source only, is transported by the mean wind. To conserve mass, Raupach (1989)
proposes the following relationship between the source term s∗ and the real source
density, s

s∗ =
{

0 for x ≤ uτ

s for x > uτ
. (5)

A comparison by Warland and Thurtell (2000) with a Lagrangian solution to the
within-canopy concentration profile suggests that LNF underestimates the near-
field effect near the top of the canopy. It is possible that the principles established
by these authors can further improve the physics of the footprint simulation.

The boundary conditions are

cF = 0, x = 0
F = Fg, z = 0
∂cF

∂z
= 0, z = 40h


 (6)

where h is canopy height
The flux footprint, f , is computed from

f = 1

FT

∂F

∂x
. (7)

Horst and Weil (1994) showed that, for a ground-level source, S, in a horizontally
homogeneous flow, f from Equation (7) is equivalent to the conventional definition
of a footprint function such that

F(x, z) =
∫ ∞

0
S(x − x′) f (x′, z)d x′. (8)
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In the case of a vertically distributed source, the principle of superposition leads to

F(x, z) =
n∑

i=1

∫ ∞

0
Fi(x

′ − x) fi(x
′, z)d x′, (9)

where Fi is the source strength of layer i, and fi is the footprint function for
this layer. For a horizontally uniform source with a step change at x = 0 and
in horizontally homogeneous flow, substitution of Equation (9) into Equation (7)
gives

f =
n∑

i=1

Fi

FT

fi. (10)

Thus, f represents a combined footprint function that is a source strength-weighted
average of the footprints of individual layers. Equation (7) offers a convenient
way of determining the combined footprint. Alternatively, one can first determine
the flux footprint for each layer by replacing the continuous source distribution
function (Equation (16) below) with discrete layers and setting the source strength
of all other layers to zero, and then calculate the combined footprint from Equation
(10). Because of the principle of superposition, the combined footprint can become
negative if one or more of the layers have a source strength that is opposite in sign
to NEE (Section 4).

2.2. PARAMETERIZATIONS

The mean wind profile in the air layer over the canopy is given by

u

u∗
= 1

k

{
ln

z − d

zo
− �m(

z − d

L
).

}
, (11)

where L is the Obukhov length, d is displacement height, zo is surface roughness
length, u∗ is friction velocity, k (= 0.4) is the von Karman constant, and �m is a
stability correction factor

�m(y) =




ln

{(
1 + η2

2

)(
1 + η

2

)2
}

− 2 arctan η + π

2
for y ≤ 0

−5y for y > 0

(12)

with η = (1−16y)1/4. The two aerodynamic parameters are specified as d/h = 0.6
and zo/h = 0.1. Equation (11), even though based on the similarity relation-
ships for the smooth-wall surface layer, predicts the stability dependence of u/u∗
that agrees with observations over a wide height and stability ranges over forests
(Figure 1). To obtain wind speed inside the canopy, we use
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Figure 1. Nondimensional wind speed as a function of air stability. Solid lines represent Equation
(11) and symbols are observations by Shaw et al. (1988) at the Borden forest.

u = uh

{
sinh(αz/h)

sinh(α)

}1/2

, (13)

where wind speed at the canopy top, uh, is given by Equation (11) for z = h.
Equation (13) is chosen over the exponential model because it captures both the
exponential behavior in the upper canopy layer and the logarithmic pattern near the
ground. Parameter α takes a value of 6.5, which provides the best match between
Equation (13) and the observed profile in the Borden forest (Shaw et al., 1988)
and the profile simulated with a second-order closure model for a canopy with a
leaf area index of 4 (Lee et al., 1994). The profile of u (as well as those of σw,
τ and KF ) is not a smooth function of z; this does not present any difficulty for
the numerical scheme used in the present study. However, for the inverse problem,
smooth profiles are highly desirable (Leuning, 2000; Katul et al., 2001).

The vertical velocity standard deviation over the canopy is given by

σw

u∗
=

{
1.25(1 − 3

z − d

L
)1/3 for L ≤ 0

1.25 for L > 0
. (14)
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Equation (14) has also been confirmed over a wide variety of vegetated stands (e.g.,
Ohtaki, 1985; Raupach et al., 1986). The profile of σw inside the canopy is specified
as

σw

u∗
= σw,h

u∗
[(1 − ao)

z

h
+ ao], (15)

where σw,h, the vertical velocity standard deviation at the canopy top, is given by
Equation (14) for z = h. The default ao value is 0.2.

The elevated (canopy) source density is a function of height only, and is
distributed according to

s = Fe

h

1

0.125
√

2π
exp[−(z/h − 0.65)2/(2 × 0.1252)]. (16)

The Gaussian profile, which is often used in canopy flow models to approxim-
ate the vertical leaf area distribution of the overstory, satisfies the requirement

Fe =
∫ h

0
sdz.

The τ profile is specified as (Kaimal and Finnigan, 1994)

τ =



K/σ 2
w for z > zr

β for 0.25h < z ≤ zr
βz/(0.25h) for z ≤ 0.25h,

(17)

where K is the eddy diffusivity of the inertial sublayer from

K = ku∗(z − d)/φc[(z − d)/L], (18)

and zr , the vertical extent of the roughness sublayer, is set to 2.16h. This value is
chosen so that the normalized Lagrangian time scale takes the recommenced value
in the roughness sublayer for neutral air. The stability function, φc, is given by

φc(y) =
{
(1 − 16y)−1/2 for y ≤ 0
(1 + 5y) for y > 0.

(19)

The exact form of β, the Lagrangian time scale in the upper canopy and in the
roughness sublayer, is poorly known. In the absence of theoretical and experi-
mental guidelines, Leuning (2000) proposed a stability corrected β by matching
the far-field eddy diffusivity with its inertial sublayer limit. Thus

β = k(zr − d)/

{
u∗φc(

zr − d

h
ζ )[φw(

zr − d

h
ζ )]2

}
, (20)

where ζ is a stability parameter defined as ζ = h/L. The nondimensional Lag-
rangian time scale, βu∗/h, is a function of ζ . It takes a value of 0.64 at ζ = −1
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Figure 2. Eddy diffusivity enhancement factor calculated from the LNF theory using the stabil-
ity-dependent Lagrangian time scale in the canopy layer and in the roughness sublayer (insert). Data
points are the average enhancement factor observed by Simpson et al. (1998) over the Borden forest
before leaf senescence (circles, unstable conditions; squares, neutral; triangles, stable; error bars, ±
1 standard deviation).

and 0.40 at ζ = 0, the latter of which is the value recommenced for neutral air
(Leuning, 2000), and decreases to 0.05 at ζ = 1 (Figure 2 inset).

Leuning (2000) found that once the stability correction on the Lagrangian
time scale was accounted for by Equation (20), excellent agreement was obtained
between the observed fluxes of heat, water vapor and carbon dioxide over a rice
paddy and predictions from the inverse LNF analysis. Baldocchi and Harley (1995)
computed their Lagrangian dispersion matrix as a function of air stability. Another
way of checking the validity of Equation (20) is to compare the eddy diffusivity
enhancement observed in the roughness sublayer with the prediction from the
LNF theory. To do this, we first compute the total concentration, C (the sum of
the far- and near-field components), from the LNF theory using the Lagrangian
time scale (Equation (20)) and the profiles of σw and s (Equations (14)–(16)) for
a given stability condition. An apparent eddy diffusivity is first computed from
Ka = −FT /(∂C/∂z) and then divided by the inertial sublayer diffusivity (Equa-
tion (18)) to produce a vertical profile of the eddy diffusivity enhancement factor,
Ka/K. A comparison with the observation by Simpson et al. (1998) for the Borden
forest is given in Figure 2. Simpson et al. (1998) show that the eddy diffusivity
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enhancement factor has a maximum value near the treetops and decreases with
increasing height. The result from the LNF theory agrees reasonably well with
their observation.

2.3. NUMERICAL METHOD

Before a numerical solution of the model equations is sought, all the variables are
made nondimensional by u∗, h, FT , thus eliminating the dependence of the solution
on these three scaling variables. The model equations are discretized according to
Patankar (1980), with an upwind scheme for the advection term of Equation (3).
The vertical grid size is 0.05 (zm − d), and the horizontal grid size is 0.05 (zm − d)

for x ≤ 5h and 0.2 (zm − d) for x > 5h, where zm is measurement height. The
solution for cF is sought with a line-by-line method in the forward wind direction,
until the vertical flux at the height of zm reaches a pre-specified value. The flux
footprint is then computed from Equation (7).

3. Model II: Model Using the Surface-Layer Functions Only

In the same spirit as Rannik et al. (2000), a second model (Model II) is used in
conjunction with the above model to investigate the influence of canopy turbulence
formulation on the calculation of flux adjustment and also to allow comparisons
with the published models. This model consists of Equation (7), the wind and eddy
diffusivity profiles (Equations (11) and (18)), and the following equations

F = −K
∂c

∂z
(21)

u
∂c

∂x
+ ∂F

∂z
= 0. (22)

The boundary conditions are

c = 0, x = 0
F = FT , z − d = 0
∂cF

∂z
= 0, z − d = 40(zm − d)


 (23)

Equations (21)–(23) imply (a) that all the sources are located at height z = d, (b)
that there is no near-field contribution to the concentration field, and (c) that there
is no roughness sublayer over the canopy. The same numerical procedure is used
to solve the model equations. Once again, all variables are made nondimensional
by u∗, FT and the length scale, zm − d, prior to the model computation.
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Figure 3. Comparison of the numerical calculation (dashed lines) with Philip’s (1959) analytical
solution (solid lines) of flux adjustment and footprint function at the height of 1 m above the ground.

4. Results and Discussion

4.1. COMPARISON WITH ANALYTICAL SOLUTIONS

Philip (1959) derived an exact solution to Equations (21)–(23) using power func-
tions for the wind and eddy diffusivity profiles. His solution was later deployed
by Dyer (1963) to examine flux adjustment with fetch. To check the accuracy of
the numerical procedure, we replace Equation (11) and (18) with those given by
Dyer (1963) and compare the numerical solution of Model II with the analytical
one (Figure 3). The numerical procedure gives the vertical flux and flux footprint
that are virtually indistinguishable from the exact solution except a slight overes-
timation of the footprint distribution near the observational point. Therefore, the
accuracy of the numerical solution for the flux distribution is adequate for most
practical purposes.

Figure 4 compares the results from Model II and the analytical model of Horst
and Weil (1994) for two (zm − d)/zo ratios. The two models agree reasonably
well in terms of the overall shape and magnitude of the footprint function (Figure
4a) and the stability dependence of fetch requirement (Figure 4b), but differ in
several details. First, Model II predicts a footprint peak closer to the observational
point. Second, its peak value is slightly lower for the smooth surface and slightly
higher for the rough surface than Horst and Weil’s model prediction, although the
latter is probably not intended for very rough surfaces because their solutions were



570 XUHUI LEE

established from diffusion experiments over surfaces with short vegetation. Finally,
according to Model II, it takes a longer fetch for the vertical flux to reach 80% or a
higher fraction of the total NEE under unstable conditions.

4.2. FOOTPRINTS OF GROUND-LEVEL SOURCE VERSUS ELEVATED SOURCE

Figure 5 compares footprints of the ground-level and elevated sources computed
from Model I by setting Fg/FT = 1 and Fe/FT = 1, respectively. The measure-
ment height is 1.6h. The footprint peak shifts progressively further upwind with
increasing stability for both sources as eddy diffusion is weakened under increas-
ing stability. The two footprints are similar at near-neutral stability, but differ in
stratified air. In stable air, the footprint of the ground-level source peaks further
upwind than that of the elevated source, and vise versa in unstable air. The largest
relative difference is found under very unstable conditions (ζ = −1), which can
be explained by the large near-field effect due to the large Lagrangian time scale
(Figure 2 insert) that causes the footprint of the elevated source to locate further
upwind. This is in spite of the fact that there is a large vertical separation between
the ground-level source and the measurement height. On the other hand, the near-
field effect is negligibly small in stable conditions, and the large vertical separation
causes the footprint of the ground-level source to shift upwind of that of the elev-
ated source. The footprint mismatch in unstable conditions is not a serious problem
for observational studies as long as the two sources are uniform within these short
fetch distances. On the contrary, the very extensive footprints and the mismatch
in their peak position under stable conditions are two factors contributing to the
difficulty in the interpretation of nighttime eddy fluxes.

At ζ = −1, both footprints are very localized: The fetch distance for 90% flux
adjustment at height z/h = 1.6 is 5.18 and 5.47 for the ground-level and the elev-
ated sources, respectively. The very localized footprint under unstable conditions
is also simulated by all other valid footprint models.

In Figure 6, the footprint distribution predicted by the random walk model
of Baldocchi (1997) is plotted together with the prediction from Model I for the
ground-level source at neutral stability. The footprint of the present study peaks
at a higher value, at a position much closer to the observational point, than the
random walk model. The difference arises in large part from the ways in which the
physics of the canopy turbulence is parameterized. In the random walk model, the
wind profile inside the canopy takes an exponential form that does not diminish at
the ground, and the Lagrangian time scale is given a smaller value below height
zr hence resulting in a smaller eddy diffusivity in the canopy and in the roughness
sublayer. In other words, the random walk model is more advective and less dif-
fusive than the present model. If the default u and τ parameterizations are replaced
with those used in the random walk model, a closer agreement is produced in terms
of the footprint peak value and position, although some difference still remains.
The high sensitivity of the model results to the turbulence parameterization and
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Figure 4. Comparison of calculations from Model II with the analytical results given by Horst and
Weil (1994): (a) Normalized footprint function for two ratios of (zm − d)/zo at neutral stability
(solid lines, Horst and Weil; dashed lines, this study); (b) fetch distance, normalized by measurement
height, as a function of air stability. Fetch distance refers to the horizontal position at which the
vertical flux ratio F/FT reaches the value specified.
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Figure 5. Normalized flux footprints of the elevated source (solid lines) and the ground-level source
(dashed lines) at height z/h = 1.6 and in three stability conditions. For convenience of comparison,
the footprint function is scaled by a factor p.

numerical schemes (Lagrangian versus numerical solution) highlights the need for
field validation of the model predictions.

4.3. INFLUENCE OF SOURCE CONFIGURATION ON FLUX FOOTPRINT AND

FETCH

Figures 7–9 present the results of the calculations made for three source config-
urations: Fe/FT = 0.8 or Fg/FT = 0.2 (configuration A), Fe/FT = 1.2 or
Fg/FT = −0.2 (B), and Fe/FT = 0.2 or Fg/FT = 0.8 (C). Configuration A, in
which the elevated and the ground-level sources are of the same sign and with
the former dominating, is a good representation of water vapour and sensible heat
exchanges in a moderately dense vegetation stand. Configuration B can be regarded
as a model for carbon dioxide in the growing season in daylight hours when the
elevated canopy and the ground-level sources are of opposite sign. Nighttime CO2

exchange in a forest during the growing season and water vapour and sensible
heat exchanges in a deciduous forest in the dormant season are two examples
of configuration C, in which the ground-level source is the dominant one. These
figures bring out several points:
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Figure 6. Comparison of the normalized flux footprint calculated from Model I and the Lagrangian
simulation results found in Baldocchi (1997) for the ground-level source (Fg/FT = 1) at neutral
air stability: Dots, Baldocchi’s results; solid lines, output from Model I with the default wind speed
and Lagrangian time scale profiles; dashed lines, output from Model I using the profiles in Baldocchi
(1997).

Footprints in the roughness sublayer. Footprints in the roughness sublayer are
sensitive to the source distribution. In situations where NEE is dominated by the el-
evated source, the footprint peak is found further upwind in unstable air and closer
to the observational point in stable air, than in situations where NEE is dominated
by the ground-level source, consistent with the result in Figure 5. The footprint
distribution becomes more contracted as the contribution of the elevated source
to the total NEE increases. A negative footprint is possible in unstable air if the
two sources are of opposite sign. As explained in Section 2.1, a negative combined
footprint can result from a vertically distributed source and is not a mathematical
artifact.

Footprints in the inertial sublayer. Once in the inertial sublayer, the influence of
source configuration on the footprint is detectable only in very unstable conditions,
due primarily to the large near-field effect noted above. Even then, the detectable
influence is limited to roughly 0.3h distance upwind of the observational point
(Figure 7 top panels).
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Figure 7. Normalized flux footprints at two heights within the roughness sublayer (z/h = 1.2 and
1.6) and at one height in the inertial sublayer (z/h = 2.6): Dashed line, Fe/FT = 0.8 (configuration
A); dash–dot–dot line, Fe/FT = 1.2 (configuration B); dash–dot line, Fe/FT = 0.2 (configuration
C); solid line, calculation with Model II using d/h = 0.6 and zo/h = 0.1.

Fetch distance. The largest relative difference in fetch distance exists between
configurations B and C, in very unstable conditions and near the canopy top. At
ζ = −1, the fetch distances for 90% flux adjustment are 2.73h and 2.45h at a
measurement height of 1.2h for configurations B and C, respectively, with a relative
difference of only 10%. As z or ζ increases, source configuration becomes even less
important. Therefore, for the purpose of deciding fetch criteria in site selection for
field campaigns, the exact form of source distribution is not required.

Comparison between Model I and II. In the roughness sublayer, the two mod-
els differ most in near-neutral stability: Model II predicts a footprint peak value
much lower than the prediction from Model I. For example, at neutral stability,
Model II produces a normalized footprint peak value of 0.23 for a measurement
height z/h = 1.2 whereas Model I gives peak values of 0.46, 0.50 and 0.41 for
source configurations A, B, and C, respectively. Thus, the inclusion of the can-
opy turbulence processes results in a contracted footprint distribution. A random
flight simulation that considers the canopy turbulence also produces a contracted
footprint distribution over the canopy (Baldocchi, 1997). [On the other hand, the
random flight simulation by Rannik et al. (2000) shows that the maxima of foot-
prints from a vertically distributed source shift further upwind and decrease in
value, compared to when the atmospheric surface flow is assumed.] In part because
of the contraction effect, the vertical flux adjusts more quickly with fetch according
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Figure 8. Flux footprint peak position (a) and peak value (b) plotted as a function of air stability
for two measurement heights: Dashed line, Fe/FT = 0.8; dash–dot–dot line, Fe/FT = 1.2; dash–dot
line, Fe/FT = 0.2; solid line, calculation with Model II using d/h = 0.6 and zo/h = 0.1.
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Figure 9. As in Figure 8a but for fetch of 90% flux adjustment.

to Model I, reaching 90% of the NEE at a fetch distance 5–10% closer to the
leading edge than the prediction from Model II.

It is also of interest to note that in very unstable conditions, the prediction from
Model II resembles the prediction from Model I with source configuration B in
which the ground-level source dominates. This is in spite of the fact that Model
II effectively places the source at the displacement height. It appears that a large
vertical separation between the measurement height and the source height in Model
I is compensated by an enhanced eddy diffusion in the roughness sublayer.

In the inertial sublayer, some of the ‘contraction effect’ remains. Model II
predicts that the footprint peaks occur further upwind and decrease in value, com-
pared to predictions from Model I. The fetch distances of 90% flux adjustment are
virtually identical.

4.4. SENSITIVITY ANALYSIS

Table I summarizes the calculations of model sensitivity to three key model para-
meters. The analysis is carried out by changing one parameter by a specific amount
and holding others at their default values. The model output is most sensitive to the
depth of the roughness sublayer: A 20% change in zr will result in changes of a
similar amount in the 90% fetch distance and the footprint peak value and of a
lesser amount in the peak position, noting that an increase in zr corresponds to a
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TABLE I

Model sensitivity to changes in parameter values for height z/h = 1.6, neutral stability and source
distribution Fe/FT = 0.8. Here x90 is fetch distance of 90% flux adjustment, xm is footprint peak
position, and fm is footprint peak value. The default parameter values are zr = 2.16, α = 6.5 and
ao = 0.2. Predictions from Model II are given for comparison.

Model II Default zr α ao

+20% −20% +20% −20% +100% −100%

x90/h 66 58 54 62 55 63 58 58

xm/h 2.6 1.6 1.5 1.9 1.4 1.7 1.5 1.7

fmh 0.093 0.17 0.20 0.12 0.18 0.15 0.17 0.15

larger Lagrangian time scale in the roughness sublayer according to Equation (20).
The model is insensitive to ao, indicating that even a crude parameterization of
the within-canopy σw profile would not cause large uncertainties in the footprint
prediction.

The default parameter values are chosen to yield a good match, in terms of the
eddy diffusivity enhancement and wind statistics, with the observations made at
the Borden forest. In other vegetative stands, the model parameters will vary with
canopy morphology and may actually be linked. For example, α usually increases
with increasing canopy density. Because the shear layer depth is inversely pro-
portional to α (Raupach et al., 1996), the vertical extent of the influence of shear
instability should decrease with increasing canopy density, which in turn may result
in a shallower roughness sublayer (Lee, 1997). The effect of the interplay among
the parameters is not known, but one could consider the prediction from Model II
to be the limit for very dense vegetated surfaces (Table I).

5. Conclusions

The present work extends the published studies on footprint over canopies by
combining the LNF theory with parameterizations of the canopy turbulence over a
range of stability conditions. The main findings are as follows:
(1) The numerical method for solving the system of equations provides a useful

alternative that is free of some constraints inherent in other methods found in
the literature.

(2) In the roughness sublayer, the footprint distribution from the LNF prediction
is in general more contracted than the prediction based on the inertial sublayer
similarity functions. Once in the inertial sublayer, the difference between the
two predictions is small, and for practical purposes, solutions derived from the
Monin–Obukhov similarity are sufficient.
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(3) In unstable conditions, the near-field effect causes the footprint of the elevated
canopy source to locate further upwind than the ground-level source and the
combined footprint can become negative in situations where the two sources
are of opposite sign. In stable conditions, the near-field effect is negligibly
small, and the footprint of the ground-level source extends beyond that of the
elevated canopy source.

(4) The flux footprint and flux adjustment with fetch in the roughness sublayer
are sensitive to source configuration and the parameters specifying wind speed
and the Lagrangian time scale inside the canopy. The default parameters values
are tuned to various field observations at the Borden forest. It is shown that
the parameterization of the Lagrangian time scale as a function of air stabil-
ity yields eddy diffusivity enhancement in the roughness sublayer that is in
reasonably good agreement with the field data.
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