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Abstract 

Air flow within forests was simulated using models based on first- and second-order closure 
principles, with the addition of the mean barometric pressure gradient in the momentum 
equation. The simulations indicate that the mean pressure gradient can have a strong influence 
on the mean wind speed profiles within forests. The inclusion of the pressure term can improve 
both models in terms of their capacities to match observations. The simulations also demon- 
strate that significant wind direction shear can occur within a forest. 

1. Introduction 

In  a horizontal ly homogeneous  vegetation stand under  steady state condit ions,  the 
temporal ly  averaged equat ion for m o m e n t u m  along the longitudinal direction can be 
written as 

O-u lw  I 1 0 P  
- -  - + c~a~lOI (1) 

Oz p Ox 

where the term on the left-hand side o f  Eq. (1) is the vertical divergence o f  the 
longitudinal kinematic Reynolds  stress ( -u 'w ' ) ,  the first term on the r ight-hand side 
is the mean longitudinal kinematic pressure gradient,  and the second term is the drag 
imposed on the mean flow by plant  elements, with Cd being the drag coefficient, a the 
element area density, ~ the longitudinal velocity component ,  and /.~ the horizontal  
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Table 1 
A list of  the inputs to the models: height of  the stand (h), total ( leaf+ stem) element area density (L). 
longitudinal velocity (~) and friction velocity (u,) at z = h, and drag coefficient (Cd) 

Stand h L ~(h) u. C a Source 
(m) (ms I) (ms J) 

Corn 2.8 3.0 2.09 0.60 0.20 
crop 

Deciduous 23.0 5.5 0.90 0.42 0.15 
forest 

Coniferous 16.7 5.7 1.95 0.39 0.15 
forest 

Shaw et al. (1974), Shaw (1977) 

Baldocchi and Meyers (1988a,b) 

Lee and Black (1993) 

velocity vector. The Coriolis force and molecular transport are at least one order of 
magnitude smaller than the terms in Eq. (1) and are excluded from the discussion. In 
short agricultural crops, the pressure term is much smaller than the Reynolds stress 
divergence term, as shown by Finnigan (1979), and can be neglected in Eq. (1). In a 
forest, where the Reynolds stress divergence and canopy drag are small owing to the 
tallness of the stand and the sparseness of the plant elements, respectively, the 
pressure term can be significant. This is definitely so in the open trunk space. For 
example, OP/Ox has a typical magnitude of 1 hPa (100 km) -1 or 8.3 × 10 -4 m s ~ 
for (1/p)OP/Ox for synoptic weather systems at middle latitudes (e.g. Wallace and 
Hobbs, 1977), and Cda~tU [ is estimated to be 4.5 × 10 -4 m s -2, with Ca = 0.15 (see 
Table 1), lu] = ]UI = 0.5 m s -1, and a = 0.012 m -1 (a value corresponding to a tree 
density of 600 stems ha -1 and an average trunk diameter of 0.2 m). The two terms are 
of similar magnitude. 

Holland (1989) hypothesized that in the lower portions of a deep forest the mean 
wind speed and fluctuations of wind velocity result primarily from the mean hori- 
zontal pressure gradient and local fluctuations of the pressure gradient, respectively. 
Experimental studies have suggested that pressure fluctuations are, to a large extent, 
responsible for many turbulent aspects of subcrown air movement (Shaw et al., 1990; 
Shaw and Zhang, 1992). There is also evidence of interactions between the mean 
pressure gradient and the mean flow in forests, e.g. the change of wind direction 
with height (Shinn, 1971; Smith et al., 1972; Pinker and Holland, 1988) and upward 
momentum flux (Lee and Black, 1993) within the stand. 

Over the past three decades, a number of models have been developed for flow 
through vegetation canopies, based on mixing-length (gradient-diffusion) theory 
(Cionco, 1965; Smith et al., 1972; Li et al., 1985, 1990), the K-e method (Green, 
1993), higher order closure principles (Wilson and Shaw, 1977; Meyers and Paw U, 
1986; Wilson 1988) and large eddy simulations (Shaw and Schumann, 1992). A few of 
these modelling studies have taken the pressure gradient effect into account. In 
attempts to explain the turning of the wind with height in forests, Smith et al. 
(1972) and Shinn (1971) simplified the flow field to a balance between the Reynolds 
stress gradient and either form drag in the canopy layer or pressure gradient in the 
trunk space. They used a constant mixing length to relate mean wind speed to 
Reynolds stress and solved the flow equations analytically. Kondo and Akashi 
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(1976) advanced their analyses to allow the mixing length and plant area density to 
change with height and solved the equations numerically. In their model the surface 
pressure gradient was expressed in terms of the geostrophic wind. Since their focus 
was the effect of the vertical plant area density distribution on the flow within 
canopies, a single value was assigned to the geostrophic wind for all their 
calculations. In cases where local perturbations exist, however, the surface pressure 
gradient cannot be directly related to the geostrophic wind. Later, Yamada (1982) 
included the pressure term in modelling flow within a horizontally homogeneous 
forest, but he did not show sufficient detail to resolve the wind profile within the 
stand. The pressure term was also included in the model of Li et al. (1990) for flow 
through forest edges, but the term was confined to the perturbed pressure field and the 
ambient one was ignored. 

The purpose of this paper is to test the effect of the surface pressure gradient on the 
flow within extensive horizontally homogeneous canopies under steady state con- 
ditions. Two models will be used: a first-order closure (FOC) model using the mixing 
length parameterization and a second-order closure (SOC) model based on the prin- 
ciples established by Wilson and Shaw (1977). Both models are formulated in two- 
dimensional forms and represent two levels of complexity. Unlike the study of Kondo 
and Akashi (1976), the surface pressure gradient terms are expressed explicitly in the 
flow equations so that its effect can be examined by directly assigning different values 
to these terms. The models are applied to flow in three stands, a coniferous forest (Lee 
and Black, 1993), a deciduous forest (Baldocchi and Meyers, 1988a) and a corn crop 
(Shaw et al., 1974), and the numerical results are compared with observations. 

2. The models 

2.1. First-order closure 

The FOC consists of Eq. (1), the momentum equation for the longitudinal 
direction, and that for the lateral direction as 

O - v ' w  I 1 0 P  

Oz p Oy 

where - v ' w '  is the lateral kinematic Reynolds stress, ~ the lateral velocity component, 
and ( 1 / p ) O P / O y  the lateral kinematic pressure gradient. 

The mixing length model is used to relate the Reynolds stress to the wind speed 
gradient such that 

a0 0-a 
- u' w' = l 2 -~z -~z (3) 

and 

-v 'w '  = l 2 O Oz (4) 
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where I is the mixing length. The parameterization of Li et al. (1985) for l is adopted 
here as 

kz / (1 .5  + 2.5a) z > hma x 

l = lhmax + 0.3(2 -- hmax) z < hma x (5) 

where hmax is the height of the maximum element area density and lhm,x is the mixing 
length at this height and is determined from Eq. (5) for z > hma x. 

2.2. Second-order closure 

The SOC scheme of Wilson and Shaw (1977) was originally formulated in the one- 
dimensional form and is extended here to two-dimensions. The basic equations 
include the momentum equations (Eqs. (1) and (2)), and the following equations: 

Budget of  Reynolds stress: 

2o[ 
O = - w  -~z + Oz qAl 

0 = - ~  ~-~ 2 0 [  
Oz + Oz qA1 

Ou-7~w ~] q ~ O~ 
-~-Z J -- .'~2 u14 + Cq2 0--z 

- -  o J - v + q N 

Budget of turbulent kinetic energy: 

0 - 2 u ' w  'O-a --7777"0-v O [  Oq 2 ] O [  Ow --~] q~ 
= - -  - 2v'w ~z  + 2 + 2Caa] (ti -~ - 2 --- 

Budget of  vertical velocity variance: 

0=3_0_0 [ 0 ~--~] q I ~ _ q ~ ]  2q3 
Oz qA1 ~ - z  J - ~ 2  3 A 3 

(6) 

(7) 

(9) 

where q = (u ~2 + v': + W'2) 1/2, C is a constant, and AI, /~2 and A 3 are length scales that 
are proportional to a mixing length and related to the element area density (Wilson 
and Shaw, 1977). 

2.3. Numerical  methods 

The boundary conditions used for the FOC model are ~ = ~(h) and ~ = 0 at z = h 
and ~ = ~ = 0 at z = 0. The substitution of  Eqs. (3) and (4) into Eqs. (1) and (2) 
results in two nonlinear second-order differential equations for ~ and ~. The domain 
between z = 0 and z = h is divided into 100 equally spaced intervals. The derivatives 
are approximated by the corresponding central differences at each grid point. Initial 
profiles are assumed and the solution is found iteratively. On a desk-top computer 
with an 80486 processor, the typical run time is about 5 s (40 iterations). 



X. Lee et al. / Agricultural and Forest Meteorology 68 (1994) 201-212 

1.0 

~ 0.5 

i 

// 1 om,=,s 
' k l Q  2: deciduous 
/ ",, 

~ . ~  3: corn, 

10 20 
ah 

205 

Fig. 1. Profiles of nondimensionalized element area density distribution, ah, for the three selected stands. 

Smooth curves were fitted to the measured element area density distributions for 
the three selected stands (Fig. 1). For  the corn crop, the area density distribution was 
approximated by a simple triangular distribution as in Shaw and Pereira (1982). 
Table 1 summarizes the relevant information regarding the three experiments. The 
value of C a for the corn canopy is that of  Wilson and Shaw (1977), and the value for 
the forests is similar to those of  Li et al. (1985) and was determined so that the 
calculated values of  ~(h) /u .  were close to the measurements. 

The boundary conditions for the SOC model include the conditions used by Wilson 
'and Shaw (1977) and those for the lateral veloci_~_ and Reynolds stress. Specifically 
they are: (1) u'w' -2 - = 6.5u22 and W t2 2 z --U,2, V ~--- 0 ,  q2 = 1.5//,2 at z = 2h, and (2) u'w' = 
- [ k ~ ( Z ) / l n ( Z / z s o ) ]  2, ~ = - [ k ~ ( Z ) / l n ( Z / z s o ) ]  2, q2 = -6.5u 'w' ,  w '2 = - 1.5u'w', and 
u = v = 0 at z = 0, where k (=  0.4) is the von Karman constant, Z = 0.05h, Zso 
(=0.001h) is the soil roughness length, and u,2 is the friction velocity 
( = ( ~ ) 0 . s )  at z = 2h. u,2 is determined, using Eq. (1), from the values of  the friction 
velocity at z = h  (Table 1) and the longitudinal pressure gradient 
specified in each calculation. The domain between z - - 0  and z = 2h is divided 
into 200 equal grid spaces instead of  the original 40 of  Wilson and Shaw (1977). 
Such small grid spaces are needed in order to resolve the plant area near the 
floor of the coniferous forest (Fig. 1). To maintain consistency with Wilson and 
Shaw (1977), however, the components  of  Reynolds stress at the lower boundary 
are still evaluated from the velocities at 0.05 of the stand height. The solution 
is also found iteratively in a similar manner  to that of  the FOC model. The 
typical run time on the desk-top computer  is about  10 rain (170 iterations). 

In the following sections, results are presented of the calculations using a single 
value of 135 ° for the angle between the surface pressure gradient and the longitudinal 
direction (0p). Additional calculations indicate that the profiles of  the vector wind 
speed and Reynolds stress are insensitive to this angle. 
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3. Resu l t s  and discuss ion 

3.1. Wind speed 

Figure 2(a) presents the profiles of  the magnitude of the velocity vector calculated 
with the FOC model for the three stands. Several features are evident. The addition of 
the pressure gradient in the momentum equation, with a magnitude as small as 1 hPa 
(100 km) -1, a value typical for anticyclonic synoptic systems, results in secondary 
wind speed maxima. Such maxima are more pronounced in the forests than in the 
corn stand. The height of  the simulated secondary maximum agrees well with the 
observations and is structure-dependent: the secondary maximum occurs at a higher 
relative level in the deciduous forest, where the overstory is distributed in a very thin 
layer near the top of  the stand (Fig. 1), than in the coniferous forest, where the 
overstory is spread over a rather thick layer. Using a geostrophic wind of 7.5 m s 
or a surface pressure gradient of  1 hPa (100 km) -1 and including the Coriolis force in 
their flow equations, Kondo and Akashi (1972) showed that the secondary maximum 
could occur in a stand with a relatively dense foliage layer and an open space near the 
ground, and that the maximum became more pronounced as the foliage density 
increased. On the other hand, our results indicate that the magnitude of  the pressure 
gradient can be responsible for the existence and the magnitude of the maximum. 
Previously, Lee and Black (1993) reported that the mean wind speed at the height of 
the secondary maximum in the coniferous forest was least coupled with that above the 
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Fig. 2. Normalized vector wind speed profiles calculated with the first (a) and the second-order closure 
model (b). The numbers are the magnitudes of the surface pressure gradient (hPa (t 00 kin) -I ) and the dots 
indicate measurements. 
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stand, as compared with that at all other heights. It is possible that this could be 
viewed as the effect of the pressure gradient varying among the observation periods. 
Results of additional calculations with the inclusion of the Coriolis force in Eqs. (1) 
and (2) show no appreciable difference from those presented in Fig. 2. 

Relatively high magnitudes of the surface pressure gradient are needed in order to 
produce strong secondary maxima comparable with the measurements within the two 
forests. Such magnitudes were possible during the experiments. As described by Lee 
and Black (1993), the coniferous forest was under the influence of strong thermally 
driven upslope/sea breezes. The associated surface pressure gradient, estimated from 
the divergence of the Reynolds stress above the stand, was in the order of 4 5 hPa 
(100 km) 1. The wind at the deciduous site, on the other hand, was mainly a topo- 
graphically modified one, primarily caused by the channeling of the synoptic-scale 
flow by the local terrain (Eckman et al., 1992). The topographic effect was interpreted 
as one of the reasons for the lack of constant Reynolds stress above the stand 
(Baldocchi and Meyers, 1988a). Based on the information on the local topography 
(Verma et al., 1986) and the theory proposed by Jackson and Hunt (1975) for flow 
over hills, the pressure gradient owing to the perturbation of the topography was 
estimated to be 2-3 hPa (100 km) -1 . The refinement of the model, however, requires 
precise determination of the surface pressure field in addition to measurements of 
turbulence within the stand and the stand structure. To our knowledge such experi- 
ments have yet to be reported in the literature. 

Figure 2(b) presents the wind speeds calculated with the SOC model. Because 
Reynolds stress transport (term 2 in Eqs. (6) and (7)) is included in the flow 
equations, this model can produce weak to moderate secondary wind speed maxima 
within vegetation stands with zero pressure gradient. As with the FOC model, the 
calculations have been improved for the lower part of the two forest stands by 
the addition of the pressure gradient terms. Overall this model is less sensitive to the 
pressure gradient than the FOC model. This is especially so in the corn stand, where 
the pressure gradient effect can hardly be seen. 

The mean absolute error of the normalized wind speed estimates of the FOC model, 
with the above probable magnitudes of the pressure gradient, is 0.10 for the con- 
iferous forest and 0.16 for the deciduous forest. The corresponding values for the 
SOC model are 0.12 and 0.07. These errors are slightly higher than that reported by 
Meyers and Paw U (1986) (0.08, averaged for six stands). The SOC model tends to 
underestimate the wind speed in the lower part of the coniferous stand. There are 
several ways of improving the result of the SOC model. The constants of the model 
were originally evaluated against the observations in the corn stand. They may need 
to be adjusted according to the results of recent forest turbulence experiments. The 
transport of Reynolds stress is parameterized with the gradient diffusion method. A 
certain degree of smoothing is applied to the gradients of Reynolds stress in order to 
avoid a zero value of the transport term above the canopy and to make the transport 
non-local. This can be improved by using budget equations of third order moments 
(Meyers and Paw U, 1986). 

Using the pressure gradient derived from the Reynolds divergence above the stand, 
the sensitivity of the normalized wind speed at the secondary maximum height within 
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the coniferous forest was estimated to be about 0.03 hPa (100 km) -1, similar to that of 
the SOC (0.04, Fig. 2(b)), but much smaller than that of the FOC (0.17, Fig. 2(a)). The 
high sensitivity of the wind profile computed using the FOC is almost certainly 
symptomatic of the manner in which the Reynolds stresses are parameterized (Eqs. 
(3) and (4)). Because the stresses are directly linked to the wind profiles, the inclusion 
of a pressure gradient in the FOC or a change in its magnitude must result in a change 
in the curvature of the wind profile. The wind velocity itself is obtained as a double 
integral of this curvature and can thus change substantially with the pressure field. On 
the other hand, the SOC schemes involve balance equations for the Reynolds stresses 
(Eqs. (6) and (7)) which include turbulent diffusion terms that allow non-local tran- 
sport of momentum. Thus, the stresses are not immediately coupled with the local 
gradient of wind speed. As will be seen later (Fig. 5), the transport term assumes great 
importance in the Reynolds stress budget, illustrating that turbulence in the canopy is 
not a consequence only of local processes. The inability of FOC to deal with non-local 
effects must be considered a deficiency of this type of model. 

3.2. Wind Direction Shear 

In the case when the vertical Reynolds stress divergence is small in the lower part of 
a vegetation community, the drag force is mainly balanced by the pressure gradient 
force (Eqs. (1) and (2)). As a result, wind direction near the ground tends to align with 
180 ° - 0p and significant wind direction shear can occur within the stand. This feature 
was observed in a gum-maple forest (Shinn, 1971) and is suggested by the simulations 
with the FOC model for the three stands with various surface pressure gradients 
(Fig. 3(a)). Unlike those of the FOC, the results of the SOC model indicate that little 
wind direction shear exists in the corn stand and that only under the influence of 
strong pressure gradients can wind direction near the floor of the two forests 
approach 180 ° - 0p, i.e. 45 ° (Fig. 3(b)). Once again, the high sensitivity of the FOC 
model appears to be unrealistic because there is no evidence that there is a 45 ° turning 
of wind from the top to the bottom of corn canopies. 

Wind direction shear was also simulated by Kondo and Akashi (1972) for canopies 
with various structures. They showed that the shear was more significant in denser 
stands. By comparing Fig. 3 with their results, it appears that the profile of wind 
direction is more sensitive to plant area density than to the surface pressure gradient. 

3.3. Reynolds Stress 

Compared with the wind field, the calculated Reynolds stress profile is less sensitive 
to the pressure gradient, particularly in the upper part of the stands. As an example, 
Fig. 4 shows the profiles for the coniferous forest after a coordinate rotation has been 
made following the procedure of Baldocchi and Hutchison (1987). This apparent 
insensitivity is a consequence of the fact that the pressure gradient significantly 
influences the wind speed only in the lower half of the forests (Fig. 2) where the 
Reynolds stress is small. The influence may be large in a relative sense but because 
the stresses have small magnitudes, there is little absolute change. With the addition 
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Fig. 3. Same as in Fig. 2 except for wind direction shear. The angle between the surface pressure gradient 
and the longitudinal direction (0p) is set at 135 ° . Wind direction is referenced to the longitudinal direction. 

of a relatively large pressure gradient, both models produce slightly negative 
Reynolds stress, or upward momentum flux in the trunk space, but the magnitude 
is smaller than the observed one. This difference may be because the choice of the 
length scales is not accurate in the trunk space in both models. 

Figure 5 shows the longitudinal Reynolds stress budget for the deciduous forest: 
shear production (term 1 of Eq. (6)), transport (term 2) and pressure velocity 
correlation or loss (the sum of terms 3 and 4). The addition of the pressure gradient 
does not alter the basic pattern, but increases the magnitudes of the normalized 
budget terms mainly by reducing u,2. In the upper part of the crown layer and 
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Fig. 4. Same as in Fig. 2 except for the normalized Reynolds stress profiles within the coniferous forest. 
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Fig. 5. Budget of the longitudinal Reynolds stress for the deciduous forest calculated using the second-order 
closure model with 0 (a) and 3 hPa (100 km) -I (b) for the surface pressure gradient. All three terms are 
nondimensionalized by u3,2/h~ 

above, the structure is similar to the numerical (Wilson and Shaw, 1977; Meyers and 
Baldocchi, 1991; Meyers and Paw U, 1987) and experimental results (Raupach et al., 
1986; Meyers and Baldocchi, 1991) obtained for various vegetation stands. The 
results presented here differ in two respects from the observations and the numerical 
calculations made for the same forest by Meyers and Baldocchi (1991). A slightly 
positive production term is created here in the layer below the crown where the 
vertical velocity gradient is negative, while Meyers and Baldocchi showed that the 
budget terms were not discernible below z/h = 0.7. Their modelled results for the 
layer z/h > 0.8, based on higher-order closure principles, agreed well with the 
observations. In contrast, the magnitudes near the tree-tops presented in Fig. 5 are 
smaller than their observed values. 

4. Conclusions 

Calculations based on first- and second-order closure models show that the mean 
wind speed within forests can have a strong dependence on the mean horizontal 
pressure gradient. The inclusion of the pressure gradient terms in the momentum 
equations allows the FOC model with a simple mixing length parameterization to 
reproduce secondary wind speed maxima in the trunk space of forests and can 
improve the predictive ability of the SOC model for flow in forests. The calculations 
also suggest that significant wind direction shear can occur within forests. The 
Reynolds stress profile, on the other hand, is less sensitive to the pressure gradient. 

There is a possibility that the improvement shown here is fortuitous because no 
direct measurements of the pressure gradient were available to allow rigorous 
evaluation of  the modelled results. Further experimental validation of the models is 
therefore needed. 

Because the FOC model ignores the non-local effects, the calculated profiles of 
wind speed and direction are very sensitive to the mean pressure gradient. This is 
believed to be unrealistic. Models based on more advanced closure schemes have been 
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developed (e.g. Meyers and Paw U, 1986; Wilson, 1988), in which the physics of 
canopy turbulence is better described. It remains to be seen how the mean flow 
simulated with these models responds to the mean pressure gradient. 
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